

Physics & Wildfires modeling

Dominique MORVAN Aix-Marseille University / UMR CNRS 7340 M2P2 dominique.morvan@univ-amu.fr

Wildfires: some physical characteristics (I)

<u>Flames:</u>

- Turbulente,
- Very bright and sooty,
- Intense radiation,
- Soot production,

H_f: Flame height (m)

$$I = \eta M_{fuel} \times \Delta H \times R \sim 300 \times H_f^2$$

Fire intensity scales...

Efficiency limit: 2000 kW/m (terrestrial), 7000 kW/m (aerial)

TEL MOLL

Black Saturday (07/02/2009) Victoria district (Australia)

Fire storm (Kinglake) 100 000 ha burned in 12H 120 fatalities I ~ 80 000 kW/m ROS ~ 1 à 3 m/s Plume height 15 km

Wildfires modelling: a complex multi-scale problem

Fire front (combustion, turbulence): Flame thickness: $d_F \sim 500 \ \mu m$

Soot + hot gases Radiation + Convection Fuel: drying, pyrolysis, combustion

H_{Fuel}

ABL (turbulence): Large scale: $L_t \sim H_{Fuel}$ Micro scale: $\eta \sim 100 - 500 \mu m$

Morvan, Fire Technology 2011

Radiation heat transfer (length of extinction): L_R ~ 2xH_{Fuel} / LAI 0.1 – 5 m

An other mecanism of fire propagation : firebrands

Distance travelled by a firebrand > 2400 m (source: SALTUS) !

Factors affecting the behaviour of forest fires: the fire triangle

• Fine or Heavy • Arrangement & continuity • Fuel Moisture

Atmosphere/wildfire interaction Unstable Neutral or stable

 $\frac{dT}{dz} < DATG \qquad \qquad \frac{dT}{dz} \ge DATG$ **DATG: dry adiabatic temperature gradient** $DATG = -\frac{g}{c_p} \approx -10 \ K / km$

Semi-empirical Rothermel's model de (BEHAVE, FARSITE)

Excelsior

Pine needles

R = ξ Ir / ($\rho_s \alpha_s \Delta hi$), ξ = (192+7.894 σ_s) ⁻¹ exp[(0.792+3.760 $\sigma_s^{1/2}$) ($\alpha_s - 0.1$)] $\rho_s \alpha_s$: Fuel density and fuel volume fraction Ir : Heat of combustion $\Delta hi = C_p [T_i - T_a]$ Enthalpy of ignition σ_s : Surface area / Volume ratio of solid fuel particles

Aix*Marseille Université Semi-empirical Rothermel's model de (BEHAVE, FARSITE)

 $R = R_0 [1 + \phi_w + \phi_s]$ $\phi_w = C_w U_w^{Bw} [\alpha_s / \alpha_s^{0}]^{-Ew} \text{ (wind effect)}$ $\phi_s = 5.275 \alpha_s^{-0.3} \text{ tg}^2 (\phi) \text{ (slope effect)}$ $C_w, B_w, E_w = f(\sigma_s), B_w = 0.0132 \sigma_s^{0.54}$

 $B_w = 0.4 (\sigma_s = 666 \text{ m}^{-1})$ $B_w = 1.6 (\sigma_s = 7596 \text{ m}^{-1})$

Malibu fire (22/10/1996)

AVIRIS Derived Fuel

HIGRAD-FIRETEC

FARSITE

Hanson & al Environ. Sci. Policy 2000

Malibu fire: semi-empirical vs physical models

Time observed to burn 50 ha (real time =10 minutes) (Hanson & al 2000)

effect upon the wind	Slope Fire	Time
Farsite (Behave)		180 min.
Behave+Higrad	X	20 min.
Firetec + Higrad	XX	10 min.

Hanson & al Environ. Sci. Policy 2000

Combustion

Turbulence

Energy

Soot

Radiation

Vegetation Drying Pyrolyse Combustion

CFD (Navier Stokes) Low Mach

Fire

ABL/canopy interaction

Aix*Marseille

Drag coefficient in a sea grass

(C_D défini à partir de la LAD (Leaf Area Density))

- If ad < 0.01 < C_D > = C_D (R_e) (~ single particle)
- If $ad > 0.01 < C_D > = f(ad)$ (wake interaction)
- •Typical values: ad ~ α_s ~ 10⁻³- 10⁻² C_D = 0.38 (Water Resources Research Vol.35(2) pp.479-489 (1999), H.M. Nepf)

Energy balance in the solid phase

Aix*Marseille

Optically thin fluctuation approximation (OPFA)

$$\frac{d\alpha_{G}\bar{I}}{ds} = \alpha_{G}\left(\frac{\sigma\sigma_{a}T^{4}}{\pi} - \overline{\sigma_{a}}\bar{I}\right) + \frac{\sigma_{S}\alpha_{S}}{4}\left(\frac{\sigma T_{S}^{4}}{\pi} - \bar{I}\right)$$

$$\overline{\sigma_{a}T^{4}} \approx \overline{\sigma_{a}}\bar{T}^{4}\left[1 + 6\frac{\overline{T'^{2}}}{\overline{T}^{2}} + 4\frac{\overline{\sigma_{a}'T'}}{\overline{\sigma_{a}}\overline{T}}\right] = \overline{\sigma_{a}}\bar{T}^{4}\left[1 + 6\frac{\overline{T'^{2}}}{\overline{T}^{2}} + 4\frac{\overline{T'^{2}}}{\overline{\sigma_{a}}\overline{T}}\frac{\partial\sigma_{a}}{\partial T}\right]$$

$$\frac{\partial\sigma_{a}}{\partial T} = 1862 \times \alpha_{soot} \quad \overline{T'^{2}} = \theta$$

$$\frac{D\bar{\rho}\theta}{Dt} = \frac{\partial}{\partial x_{j}}\left(\frac{\mu_{eff}}{Pr_{T}}\frac{\partial\theta}{\partial x_{j}}\right) + 2P_{\theta} - 2\varepsilon_{\theta} \quad P_{\theta} = \frac{\mu_{T}}{Pr_{T}}\left(\frac{\partial\overline{T}}{\partial x_{j}}\right)^{2} \quad \varepsilon_{\theta} = \rho\frac{\theta}{2 \times R} \times \frac{\varepsilon_{R}}{K}$$

Aix*Marseille

Mass balance in the solid phase

Water & dry solid fuel

$$\frac{d\left(\alpha_{s,p} \ \rho_{s,p} Y_{s,p}^{h2o}\right)}{dt} = -\omega_{vap}^{s}$$
$$\frac{d\left(\alpha_{s,p} \ \rho_{s,p} Y_{s,p}^{i}\right)}{dt} = -\omega_{pyr}^{s}$$

Charcoal

$$\frac{d(\alpha_{s,p} \rho_{s,p} Y_{s,p}^{char})}{dt} = (v_{char} - v_{soot})\omega_{pyr}^{s} - \left(\frac{v_{ash}}{v_{char}} + 1\right)\omega_{char}^{s}$$

Mass balance in the solid phase

Global mass balance

 $\frac{d\left(\alpha_{s,p} \ \rho_{s,p}\right)}{dt} = -\sum_{\alpha} M_{s,p,\alpha}$

Volume balance

 $\frac{d\alpha_{s,p}}{dt} = -\frac{1}{\rho_{s,p}}\omega_{char}^{s}$

Physical description of the vegetation layer

Physical properties

- Density
- Volume fraction
- Surface Area/Volume (SA/V)
- Fuel moisture content (FMC)

Fire residence time

New tools for simulating wildfires WFDS: Wildland Fire Dynamic Simulator

Mell & al Combust. Flame 2009 US Foret Services Pacific Wildland Fire Sciences Lab. (Seatle) NIST National Fire Research Lab. (Gaithersburg)

Large scale experimental fires (grassland, CSIRO, Australia) Plot: 20 m x 50 m (+ safety band) Mesh > 20 Millions cells

Cheney & al Int. J. Wildland Fire 1998 Morvan & al Fire Safety Journal 2009

Aix*Marseille Fire in grassland: 3D simulation (WFDS) Plot: 50m × 20m U₁₀ = 1 m/s

Aix*Marseille Fire in grassland: 3D simulation (WFDS) Plot: 50m × 20m U₁₀ = 3 m/s

Aix*Marseille Fire in grassland: 3D simulation (WFDS) Plot: 50m x 20m U₁₀ = 10 m/s

Experimental fire in shrubland (EU Firestar project, Galicia-Spain)

Experimental fire in shrubland (EU Firestar project, Galicia-Spain)

- Fuel: Ulex (Europaeus, Minor),
- Fuel families=14

Aix*Marseille

- FMC:
 - 108-150 % (vivant), 10-32% (mort)
- Fuel depth = 1.25 m,
- Wind : 5.7 m/s (z=10 m),
- Slope : 5°

Experimental fire in shrubland (EU Firestar project, Galicia-Spain)

Grassland fire | 30 Nov 2005 | FIRESTAR

Aix*Marseille

		800	2		0	0		5(0		ſ	50	0		-	70	0			8	0	0		0	00	0		1(0	0	11	1.00	h	12	00)	13	00	1	40
		500	,	4	i U i	U		50	л	,	C	00	0			'n	0	,		0	U	U		>	/0	0		10	,0	U	1.		,	12	U	,	13	00	T	40
0 F	,	· ·				· ·			•		-	-				-				-			-																	
-		 	· -			· ·	•	- ·	•	 	•	-	 			-	•		•		· ·	•	-				•													
; -		 	· -			 	•	 		 			 		•••	-							•																	
-	-					•••			•					•			•	•	•			•			•		•		•						•				•	
)	1	i.	ļ	1		1	0	i				1		i	2	2.0)	1							į	3	0	- 1		_				40)		- 1			1

Experiment: ROS = 0.273 m/s
Simulation : ROS = 0.248 m/s

Wildfire propagation regimes

Wildfires classification

Surface fires (wind driven)

Crown fires (plume dominated)

Rate of spread versus wind speed

McArthur 1969, Rothermel 1972

Surface fires (grass)

Load= 7 t/ha
Density = 500 kg/m³
SA/V = 4000 m⁻¹
FMC = 10 %
Wind speed = 1 - 25 m/s
Nc ~ 0.1 - 1400

Cheney & al IJWF 1993

Aix*Marseille Grassland fires: temperature field for U₁₀ = 1 and 12 m/s

Fireline intensity versus wind speed

Aix*Marseille

Convective Byram number / regime of propagation

Time evolution of the fireline intensity

Fireline intensity (normalized standard deviation) versus convective Byram number

Aix*Marseille

$$f = 3.4 Hz$$

f = 5.5 Hz

 $f_{KH} = 2.66 \ Hz$ $f_B = 0.66 \ Hz$

Aix*Marseille

Instabilities associated with a fire front

$$S_{t}^{KH} = \frac{f_{KH}H_{Fuel}}{U_{10}} = 0.093$$
$$f_{KH} \nearrow if \quad U_{H} \nearrow$$

$$S_{t}^{B} = f_{B} \sqrt{\frac{D_{Fire}}{g}} \approx 0.5$$
$$D_{Fire} \nearrow if U_{H} \nearrow \Rightarrow f_{B} \searrow$$

Strouhal number (wind scale) versus convective Byram number

Turbulence/canopy interaction (KH) (St = 0.093) (streamwise direction)

Strouhal number (plume scale) versus convective Byram number

Pool fire (St = 0.5)

Effect of an unsteady (sinusoidal) inlet wind flow

$$U_{X} = A \times U_{10} \times Ln\left(\frac{z+z_{0}}{z_{0}}\right) + \Delta U_{10}\sin\left(2\pi \times f \times t\right)$$

 $U_{10} = 2 m / s$ $\Delta U_{10} = 1 m / s$ f = 0 - 3 Hz $z_0 = 0.01 m$

Pitts Prog. Energy Combust. Sci. 1991 Morvan Combust. Sc. Tech. 2014

Grassland fires: temperature field $U_{10} = 2 \text{ m/s} + / - 1 \text{ m/s}$

F = 0.5 Hz \rightarrow <I_B> = 6972 kW/m (+7%) F = 1 Hz \rightarrow <I_B> = 6742 kW/m (+3.6%)

Aix*Marseille

Fireline intensity normalized spectrum

Aix*Marseille

F=1 Hz

Fireline intensity normalized spectrum

Aix*Marseille

F=0.5 Hz

Fire intensity and standard obtained for $U_{10} = 2 \text{ m/s}$ and a sinusoidal time variation (f = 0.26 - 3 Hz)

 $(f_{KH} = 0.26 Hz)$

Aix*Marseille

Fire residence time versus 10m open wind velocity

 $SA/V = 500 \text{ m}^{-1}$

Reduced fire residence time versus Byram convective number

Thank you for attention Questions ?

