

### Introduction

#### **Outline:**

- Range of scales associated with wildland fires
- Modeling of Fire-Atmosphere interactions in WRF-Sfire
- Idealized LES simulations of prescribed burns
  - plume dynamics
  - thermal structure
- Wildland fire smoke modeling in a coupled fire-atmosphere framework
  - Levels of coupling and role of fuel moisture
  - Plume rise and smoke dispersion forecasting
  - Simulating air quality impacts of wildland fires

### Range of scales affecting fires

| <ul> <li>Atmospheric and fire scales</li> </ul>                  |                                                                                      |                                                                                              | Range of scales that WRF         |                             |           |
|------------------------------------------------------------------|--------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------|-----------------------------|-----------|
| 10,000 km 1000 km<br>Planetary Extratropical<br>waves Cyclones C | 100 km 10 km<br>Cumulonimbus<br>Mesoscale<br>clouds<br>Convective Systems<br>Wildlar | 1 km 100 n<br>1 km 100 n<br>1 km 100 n<br>10 n<br>10 n<br>10 n<br>10 n<br>10 n<br>10 n<br>10 | n 10 m<br>=><br>Structural Fires | 1 m<br> <br> <br> <br> <br> | 10 cm<br> |
| Global weather<br>model                                          | Mesoscale weather<br>model                                                           | Large Eddy Si<br>(LES)                                                                       | mulator                          | FDS                         |           |
| bound                                                            | dary<br>tions<br>bor<br>con                                                          | undary<br>ditions bounda<br>condition                                                        | OII Storage Tank Fire            |                             |           |

#### Modeling of Fire-Atmosphere interactions WRF-Sfire



# Idealized LES simulation of a small-scale prescribed burn (FireFlux experiment)

- FireFlux prescribed burn of 155 acres (0.63 km<sup>2</sup>) prairie Potential temperature
- Model setup:
  - 1 domain, 1000m x 1600m, 10m horizontal resolution
  - 80 vertical levels from 2-1200m AGL
  - Fire grid resolution 1m



FireFlux picture from Clements et al. 2008



### FireFlux Experiment







#### Thermal structure of the fire plume



#### Fire-atmosphere interaction wind speed



## Upward velocity at 2m and 10m AGL - short tower (WRF vs. observations)

Short tower

Main tower



#### FireFux Simulation look from the top





### Impact of the fire-atmosphere feedback on the local wind



# Smoke modeling in a coupled fire-atmosphere framework



### An integrated system for smoke modeling based on WRF-Sfire



## An integrated system for smoke forecasting based on WRF-Sfire

Integrating WRF-Fire with WRF-Chem allows for a representation of interesting fire-atmosphere interactions (aerosols and radiation)









## Example #1 Simulation of Barker Canyon Fire (smoke as a passive tracer)



## Example #1 Simulation of Barker Canyon Fire (smoke as a passive tracer)



### Simulated fire area and fuel moisture for Barker Canyon fire 2012

#### Simulated fire area and fuel moisture



#### Simulation of maximum plume height from 2012 Barker Canyon Fire (WA)



### Maximum plume height simulated by WRF-Sfire vs. satellite observations (MISR)



# Example #2 Santa Ana fire simulation with full atmospheric chemistry





#### Simulated progression of the 2007 Santa Ana fires simulated vs. observed fire progression

#### 10.22.2007 02:45 local time



10.22.2007 20:00 local time



#### 10.22.2007 05:00 local time



#### 0.23.2007 15:00 local time



UNIVERSITY OF UTAH

area

#### Simulation of smoke emissions from 2007 Santa Ana fires (Witch and Guejito) d04 (500m)





#### Simulation of maximum plume height from 2008 Santa Ana Fires (Witch and Guejito)



### Simulated fire area for 2007 Santa Ana fires (Witch and Guejito)







### Summary #1

- WRF-Sfire may be used for idealized simulations of small burns as well as realistic simulations of wildland fires
- Analysis of numerical simulations of field experiments helps in interpretation of the measurement data and seeing a "bigger picture"
- WRF-Sfire renders the fire smoke as a passive tracer, or as a mixture of chemically active species (through coupling with WRF-Chem)
- Fire-atmosphere coupling allows the model render basic aspects of fire plume rise and dispersion without any external parameterization
- Integration with the fuel moisture model fire enables diurnal variations in fire activity and smoke emissions
- Smoke as a tracer is handled directly by the WRF dynamical core, so its does not increases computational cost significantly

😈 THE UNIVERSITY OF UTAH 🚽

### Summary #2

- The newly added components need thorough validation we invite other researchers to share data validate the model and contribute to its development
- Simplicity of the fire spread model may potentially create problems as the fire heat release will be only as good as the fire spread simulation
- The ability of this system to render smoke dynamics is resolutiondependent, so at coarse horizontal resolutions a 'bridge' parameterization may be needed to handle sub-grid scale plumes
- Since the model aims to capture, fire intensity, fire-induced winds, fire heat release, injection height and the emissions, the perfect validation dataset would require in-situ simultaneous measurements of the fire and plume properties, as well as the chemical fluxes and meteorology
- Chemical simulations are computationally expensive, so in operational application two approaches are possible:
  - WRF-Sfire resolves plume rise and emission of basic species as tracers that are then used in a coarser chemical transport model
  - if the air quality and fire contributions are important only for certain locations WRF may be used to drive Lagrangian chemical transport models

😈 THE UNIVERSITY OF UTAH 💾



#### Assessing air quality impacts of Wildland Fires using Lagrangian framework



1\_ ~4



#### Assessing air quality impacts of Wildland Fires using Lagrangian framework

**Observed vs STILT modeled CO concentrations at Salt Lake City for August 2012** 



**Observed vs STILT modeled CO concentrations at Salt Lake City for September 2012** 



### Assessing air quality impacts of Wildland Fires using Lagrangian framework





## Simulated smoke emission from 2007 Santa Ana fires – WRF-Sfire vs. MODIS

