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Oultine

We use fire spread model to investigate a model from ecology and a model in
evolution.

Part 1 (ecology) Bistability of savanna and forests.
Part 2 (evolution) Evolution of flammability in C4 grass species.
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PART 1: Dynamics of fire spread and the bistability of savanna and forest.
(Joint work with C. Staver and S. Levin. Journal of Mathematical Biology
2014)

Emmanuel Schertzer (Laboratoire de Probabilités et Modèles Aléatoires, Collège de France). Joint work with A.C. Staver (Yale U.) and S.A. Levin (Princeton U.)Percolation models in fire ecology. 3 / 36



The Savanna Problem.
Savannas are characterized by the coexistence of grass and tress, with
low tree cover.
Under the same environmental constraints (precipitation, soil
composition), savannas and closed canopy forest are two alternative
stable biomes.
At the same location, fossils records have shown evidences of rapid
transition from one state to the other.
Fire hypothesis: fire gives a competitive advantage to grass.

� at low tree density, fire propagates and tends to exclude trees.
� at high tree density, fire is not able to propagate, and trees are favored.
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Fire and vegetation feedbacks
Fire readily propagates in savannas, but is blocked beyond a certain tree
cover threshold.
The effect of fire on tree mortality is negligeable. Fire mainly impacts
demography.

� Adult trees have thick bark, and their leaves are high enough to escape the
flame zone.

� Savanna saplings lie within the flame zone, but they are very robust
resprouters after a fire, thanks to a sophisticated root system.

� Saplings can be trapped in the flame zone.
Fire primarily affects tree cover via its effects on tree establishment
(demographic bottleneck).
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A model for describing vegetation/fire feedbacks

Simple model describing the local interaction between fire and
vegetation.
Analytically tractable.
Provide insights on the physical/ecological processes affecting
coexistence and bi-stability.
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Individual based model

Individual based model on the square lattice Z2. Model with two interacting
components:

Ecology: each site can be either Sapling (S), adult tree (T) or grass (G).
Fire spread.
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Fire spread
Tree patches act as barriers to fire spread.
Partition the landscape into two parts: (1) fuel (S+G), and (2) non
flammable (T).
An ignition event at a flammable cell z will only be able to propagate to
cells within the same flammable cluster. Fire frequency should be higher
at sites belonging to a large flammable cluster.
F(z)=density of the connected Flammable component containing z.
survival probability of z (i.e., probability of not burning):

Ω(F(z))

where Ω is a decreasing function.

Figure : White = flammable, Black = non flammable
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More on Ω
fire propagates by a nearest neighbor infection process, i.e. if a site is on
fire, the fire invades each of its neighboring flammable sites with a given
probability λ.
The survival probability is characterized by

� A threshold θc, under which fire does not propagate through the cluster.
� A convexity parameter α.

Threshold θc ↓ as infection probability λ ↑.
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Fire stochasticity

The interannual stochasticity of the infection rate λ impacts the convexity
survival probability.
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Fire spread model

We choose Ω of the form

Ω(F) = Ωmax − (Ωmax − Ωmin)
max ((F − θc), 0)α

(1 − θc)α
, (1)

θc is a macroscopic expression of the infection probability λ.
The convexity parameter α encapsulates fire stochasticity.
Simple enough to make the model analytically tractable, but capture the
main features of fire spread ( modeled as an infection process).
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The ecology
Individual based model on the square lattice on Z2. Each site can be
either Sapling (S), adult Tree (T) or grass (G).

Fire does not impact tree mortality : death rates ν and µ are constant.
Saplings invasion rate is proportional to local tree density

� Tσ(z) = local density of tree in a neighborhood of radius 1/σ.
Adult tree recruitments increases with survival probability.

� Fire primarily affects tree cover via its effects on tree establishment.
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Results

There is always a “forest equilibrium” (low fuel density, high tree cover).
High flammability (low θc) and high stochasticity (high α) tend to
promote a second “savanna” equilibrium (at high fuel density).
Consistent with the hypothesis that fire stochasticity can promote
tree-grass coexistence via the storage effect
Mild variation in θc can trigger a discontinuous transition from a savanna
equilibrium to a forest equilibrium. Hysteresis effect.
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Analytical results based on percolation theory

The previous observations can be justified by heuristics arguments based
on percolation theory.
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Analytical results based on percolation theory

Let p ∈ [0, 1].
On Z2, color independently each square in white (resp., in black) with
probability p (resp., 1 − p). There exists pc ∈ (0, 1) such that

� If p ≤ pc, there are only finite white clusters.
� If p > pc, there exists a unique infinite white cluster, whose density is

deterministic and is denoted by θ(p).
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Analytical results based on percolation theory

θ(p) = density of the infinite cluster as a function of the percolation
parameter p.
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Mean field theory

Simplifying assumption: The density of S,G and T can evolve in the
landscape but spatial aggregation between types does not, i.e. the
arrangement of trees and grasses in the landscape remains uncorrelated
throughout.
Assume that the density of fuel (G+S) at time t is given by pt. Above the
percolation threshold pc:

� a unique infinite inflammable cluster of density θ(pt).
� the remaining fraction of fuel sites (density pt − θ(pt)) belongs to finite

clusters (density 0).
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Population dynamics

ω(p) = [
θ(p)

p
Ω(θ(p)) + (1 − θ(p)

p
)Ω(0)]

e.g., during a time interval dt, the fraction of saplings establishing as adult
trees is given by S ω(p) dt
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Population dynamics vs IBM

Population dynamics predict a lower range of parameters under which
bistability occurs.
This shows that taking spatial aggregation into account can be important
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Extension of the population dynamics

Staver et al (’12) studied an extension of the previous model where
Savanna Trees compete with Grass and Forest trees.
Fire trees more competitive in a fire-free regime.
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Extension of the population dynamics

Existence of heteroclinical cycles in a region of the parameter space.
Question: can we estimate the parameters to evaluate whether the
simulated non-linear oscillations belong to a realistic domain of the
parameter space.
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PART 2: A model for the evolution of C4 grasses.
(Joint work with C. Staver. Work in progress)
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Adaptation of plants in fire prone systems

Plants in fire prone ecosystem are well adapted to their environment.
Thick bark, investment in root systems allowing savannah trees to
re-grow after fire, pines etc ...
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Mutch hypothesis (’70)

“Fire dependent communities burn more readily than non-fire-
dependent communities because natural selection has favored
development of characteristics that make them more flammable”.
Species have developed reproductive and anatomic mechanisms to
survive fire. “Then” plants might also have evolved traits to enhance the
occurrence of fire.
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Controversial topic.

Converse: if plants have developed flammability traits – whether or not
as a by-product of selection for other traits – then there must exist some
selective pressure for fire-resistant characteristics.
Main criticism : fire is a collective phenomenon.
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Group selection

Fire occurrences are typically the result of few ignitions resulting in large
fires.
Evolution acts on individuals, not on groups.
How can one single flammable mutant invade a whole non flammable
landscape ?
Even if it is advantageous from the group point of view, what is the
evolutionary force driving individuals to evolve flammability.
Group selection issue.
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Grass evolution

In savannah, fire prevents tree
invasion and gives grass (as a
group) a competitive advantage.
First C4 dominated habitats
coincide with the presence
charcoal in the fossil records
This indicates that fire may have
played a role in making C4
ecologically dominant.

Figure : Strömberg 2011
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A grass model

Did flammability evolve ? or is it the by-product of favorable
environmental conditions (high O2 concentration, arid climate etc.)
We propose a model for the evolution of grass, and show that the truth
may lie in between:

� Arid conditions may have favored the evolution of flammability.
� Once flammability has evolved, there exists evolutionary forces

maintaining, and promoting flammability in milder environments.
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Decomposition strategies
We assume that grasses are perennial and seasonal. Their fitness is
determined by how well they grow over multiple years.
Decomposition is key: Grasses that do not decompose, shade themselves.
This prevents them from continuing to grow.
Decomposition also plays an essential role in nutrients recycling (DeBano
et al. (’98))
Two alternative strategies

(1) bacterial decomposition / moisture friendly,
(2) fire / moisture adverse.

More efficient to burn, but also more risky.
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Costs

Grasses come close to having a single, relatively simple trade-off axis:
� m: moisture allocation

Costs are built in. Let p(z) the probability for z to burn:
� Biomass loss from burning: p(z)× πF.
� Biomass loss from decomposition : (1 − p(z))× πNF(m(z)),
� fitness:

p(z)× πF + (1 − p(z))× πNF(m(z))

� πNF is increasing in m.
� p(z) is decreasing in m

p(z) depends on the moisture trait m(z), but also on the ability of the
whole population to spread fire !
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Adaptive dynamics framework

Decompose the landscape into units – grass tuft – of variable
flammability {λ(z) : z ∈ Z2}.
Infection probability

λ(z) = 1 − m(z).

m is an heritable trait.
For each individual, introduce small and rare mutations in m.
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Equilibria
m = 1 (λ = 0) is is always a (non flammable) stable equilibrium of the
system.

If πF is large enough, there exists a second flammable stable equilibrium.
Flammability can be maintained and even enhanced in a flammable
landscape.
Dependence of the initial conditions: flammability can not evolve in a
non-flammable environment.
Back to the original question: How did flammable C4 grass succeeded in
invading non-flammable environment ?
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moisture vs realized moisture

Moisture was modeled as a trait, whose value was independent of the
environment.
We now assume that m is an heritable trait, but that the “realized
moisture” also depends on environmental conditions

mreal = (mmax − mmin)m + mmin

dry: low mmax, high mmin

wet: high mmax, low mmin

mmin and mmax can both depend on space and time ( fluctuations of
climatic conditions).
Depending on the environment,

� One flammable equilibrium (arid)
� One flammable and one non-flammable equilibrium (wet)
� One non-flammable equilibrium (very wet).
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Temporal fluctuations

Arid: only one flammable equilibrium
Wet: two stable equilibria (flammable and non-flammable)

Flammability can evolve under an arid climatic regime. If aridity decreases
slowly enough, evolution of the flammability trait m can maintain
flammability.
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Spatial fluctuations

Flammability can invade an area with a wet climate from a neighboring area
with a dry climate, where flammability is the only stable strategy.
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Conclusion

Previous results suggest that the conditions for the evolution of
flammability are not very restrictive
The flammability trait can temporally persist or spatially invade into
climates where flammability could not have evolved spontaneously.
Necessary ingredient: spatially localized arid conditions in the past.
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