

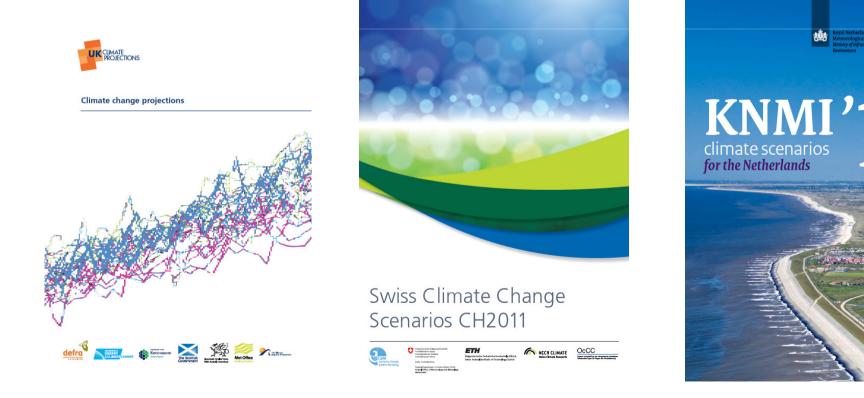
Interpretation of the Hadley Centre probabilistic framework

Ben Booth, Mat Collins, Glen Harris, Ambarish Karmalkar, Hugo Lambert, James Murphy, Jonty Rougier, David Sexton

With slides on National climate Scenarios from Suraje Dessai

ICTP, Trieste, 2015

Contents:


 Current context for National Climate Projections
Ingredients for probabilistic UK Climate Projection framework (UKCP09)

- Climate model simulations
- Statistical tools
- Accounting for model discrepancy
- Sensitivity tests for the projections
- User reception

Climate Scenario construction

 National Climate Change assessments have been carried out by a number of countries. Most are non-probabilistic.

Scenario and climate scenarios

1950s – usage in military strategy and planning

1970s – usage in the energy business (Royal Dutch/Shell; Van der Heijden, 1997).

1980 – first climate scenario (Wigley et al. 1980)

ARTICLES

Scenario for a warm, high-CO₂ world

T. M. L. Wigley, P. D. Jones & P. M. Kelly

Climatic Research Unit, University of East Anglia, Norwich, UK

Plausible patterns for temperature and precipitation changes accompanying a general global warming, such as might occur due to a large increase in atmospheric carbon dioxide levels, are presented. The patterns are determined by comparing the five warmest years in the period 1925–74 with the five coldest in this period. Temperature increases are indicated for most regions, with maximum warming over northern Asia. A few isolated regions show cooling. Precipitation changes are fairly evenly distributed between increases and decreases; the most important features being an increase over India, and decreases in central and southcentral USA and over much of Europe and Russia. The latter decreases, should they occur, could have considerable agricultural impact.

Insights into a warm world

Two approaches may be used to derive a scenario for the pattern of climatic changes which might result from a large increase in atmospheric CO₂. These are: numerical modelling using general circulation models (GCMs)¹⁰⁻¹²; and the use of past warm periods as analogues of the future^{8.9}. The latter includes the possibility of using recent instrumental data to determine the characteristics of individual warm years which may then be used as analogues of the future.

Both methods have their limitations. GCMs are restricted by their present state of development; current computer power dictates that these models simulate in detail only one part of the atmosphere-hydrosphere-cryosphere system. Most models only consider the atmosphere and use the hydrosphere and cryosphere as externally specified boundary conditions¹¹. GCMs do, however, simulate present-day climate reasonably well; and, provided sea-surface temperatures and ice margins are prescribed, they also appear to simulate ice-age climate in a realistic way^{11,13}. For a high-CO₂ world we cannot accurately prescribe sea-surface temperatures and should ideally use a coupled ocean-atmosphere model. Although such models do

MAN has upset the global carbon cycle by burning fossil fuels and, probably, by deforestation and changing land use. The net result of these activities is to increase the $CO_{\rm c}$ content of both

Scenarios and climate scenarios

1950s – usage in military strategy and planning

1970s – usage in the energy business (Royal Dutch/Shell; Van der Heijden, 1997).

1980 – first climate scenario paper (Wigley et al. 1980)

1980s-90s – scientific papers and policy documents use and develop climate scenarios

1990s – first national climate scenarios published (UK)

2001 – IPCC TAR WG1 devotes a chapter to the science of climate scenario construction (Mearns et al., 2001)

2009 – first probabilistic climate change projections published (UK)

A chronology of UK climate scenarios

UK Climate Scenarios		UK developments	International developments			
	1989	Hadley Centre established				
	1990		IPCC FAR			
CCIRG91 scenarios	1991	LINK Project established				
	1992		IPCC IS92 emissions scenarios UN FCCC agreed			
	1993					
	1994		UN FCCC comes into force			
	1995					
CCIRG96 scenarios	1996		IPCC SAR			
	1997	UKCIP established	Kyoto Protocol agreed			
UKCIP98 scenarios	1998					
	1999					
	2000	UK climate change programme IPCC SRES emissions scenarios				
	2001		IPCC TAR			
UKCIP02 scenarios	2002					
	2003					
	2004					
	2005		Kyoto Protocol comes into force			
	2006	UK climate change program	me			
	2007	n an an an ann an ann an an an an an an	IPCC AR4			
UKCIP08 scenarios	2008					

UK Climate Projections

Demand for climate scenarios

- Early mainstreaming into planning (e.g., water resources in late 1990s) now more diverse
- Success of UKCIP (1997-)
- Research demand (e.g., ARCC programme, 2007-17)
- Climate Change Act (2008)
 - Adaptation Reporting Power (2009): "The UKCP09 Projections are likely to be a useful tool for some organisations in undertaking assessments of their risks from climate change. They will allow decision makers to consider a range of possible future climates, as well as an estimate of the uncertainties surrounding those changes." (Defra, 2009, p. 8).
 - Climate change risk assessment (2012)

A chronology of selected national climate scenarios

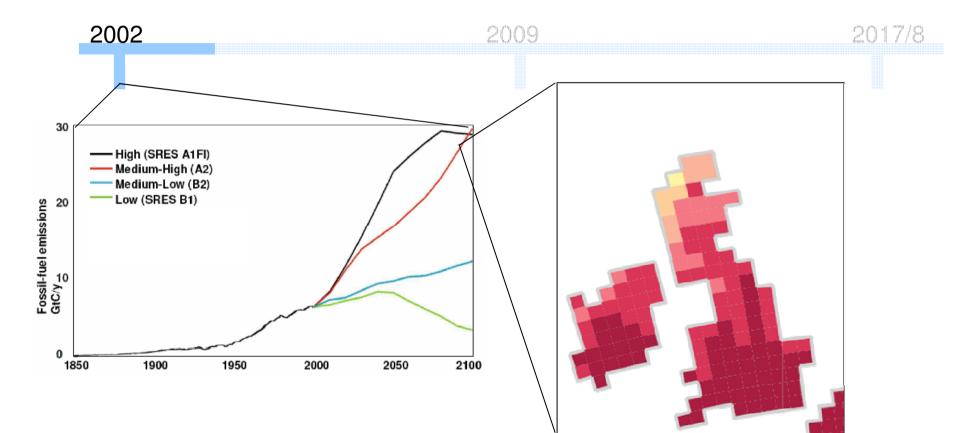
	UK	Australia	USA	Netherlands	Switzerland	Europe	International developments
1987		Greenhouse 1987					
1988							IPCC established
			EPA report to congress				
1989			(Smith & Tirpak 1989)				
1990		CSIRO (1990)					IPCC FAR
1991	CCIRG91	CSIRO (1991)					
1992		CSIRO (1992)					IPCC IS92 emissions scenarios & UNFCCC agreed
1993							
1994					Single institutes		UNFCCC comes into force
1995							IPCC SAR
1996	CCIRG96	CSIRO (1996)					
1997							Kyoto Protocol agreed
1998	UKCIP98						
1999							
2000			First US Climate Assessment			ACACIA project	IPCC SRES emissions scenarios
2001		CSIRO (2001)					IPCC TAR
2002	UKCP02						
2003						ATEAM project	
2004							
2005							Kyoto Protocol comes into force
2006				KNMI'06			
2007		CCIA (2007)			CH2050 Scenarios		IPCC AR4
2008		. ,					
2009	UKCP09		Second US Climate Assessment			ENSEMBLES project	COP-15 in Copenhagen fails to agree a post 2012 regime
2010							
2011					CH2011	ALARM project	
2012						Climate-ADAPT Map Viewer	
2012							IPCC AR5 WG1
2013		NRM projections	Third US Clim Ass	KNM'I14			IPCC AR5 WG1
2014							COP-21 in Paris
2015	I			1		1	

National climate projections in Europe

Country	Name of projection	Publ.	Time	Number of Da		Data	Uncertainty representation in		
		date	horizon	Em. sce	<u>GCM</u>	RCMs	download	maps	graphs
AT	reclip:century	2011	2050	2	2	2	Х	Ind.sim.	_
BE	Regional projections (Walloon region)	2011	2100	1	3	3	-		
	CCI-HYDR & INBO (Flamish region)	2009	2100	3	3	3	-	Ind.sim.	Ind.sim.
СН	CH2011	2011	2100	3	4	9	Х	MMM	Ind.sim.; % (2.5,50,97.5)
CZ	Projekt VaV 2007-2011	2011	2100	1	1	1	_	Ind.sim.; MMM; sign-rob	Ind.sim.; % (25,50,75)
	Deutscher Klimaatlas g	2011	2100	5	4	11	-	% (15, 50, 85) ; g ; g	Ind. simulations
ES	Escenarios regional. de cambio climático	2009	2100	2	3	9	-	Ind.sim.; MMM	Ind.sim.; MMM; unc.rge (±1 st.dev.)
	PNACC 2012	2013	2100	3	3	3	Х	_	% (0, 25, 50, 75, 100)
FI	ACCLIM	2009	2100	3	19	9	—	MMM	MMM; % (5, 95)
FR	Climat de la France	2012	2100	3	3	2	Х	Ind.sim.	% (2.5, 97.5)
HU	OMSZ 2008	2008	2100	1	2	2	—	Ind.sim.	-
IE	C4I	2008	2100	4	5	2	—	Ind.sim.; MMM	_
NL	KNMI'06, Klimaateffectatlas	2006, 2009	2050, 2100	n.a.	5	10	-	Best guess	Unc. Range
NO	Klima i Norge 2100	2009	2100	3	6	10	-	Ind.sim.; MMM; % (5, 50, 95)	Ind.sim.; MMM; % (10, 50, 90); unc.rge (±1 st.dev.)
PL	Projekcje klimatu	?	2100	1	4	7	_	MMM;% (0, 10, 50, 90, 100)	_
UK	UKCP09	2009	2100	3	1	1	Х	MMM; % (10, 50, 90)	MMM; PDF/CDF; joint prob. plot

Ind.sim. - individual simulations; MMM - multi-model mean; % - percentiles; sign-rob - robustness of sign; unc.rge - uncertainty range

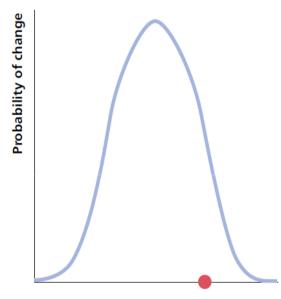
Slide by Stefan Fronzek: adopted from Füssel (2014), in Capela et al. (eds.) Adapting to an Uncertain Climate – Lessons from Practice (via Suraje Dessai)



UK Climate Projections

© Crown copyright Met Office

UKCIP02


UKCIP02 presented climate change projections from a single Climate Simulator, for 4 different socio-economic scenarios. No estimate of climate uncertainty was made

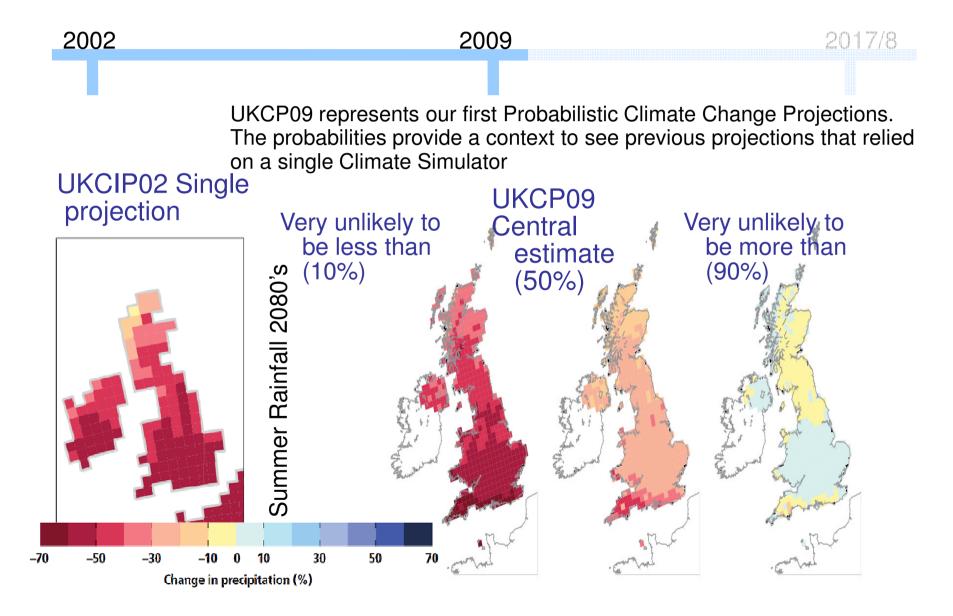
UKCIP02 presented maps of change based on projections from a single model (in this case change in Summer rainfall 2080-2100)

Motivation to moving to probabilities

Figure 5: A schematic diagram showing the progression from UKCIP02 to UKCP09, using temperature as an example. The single estimate of change in temperature from UKCIP02 (left, for a given emissions scenario, location, time period, etc.) gives no information about uncertainty. A range of changes in temperature from different climate models (centre) gives no information about which model to use, and only partly reflects uncertainties. The PDF given in UKCP09 (right) shows the probability of different outcomes, that is, different amounts of change in temperature.

Change in temperature

UKCIP02 gave a single estimate of change in temperature


Change in temperature

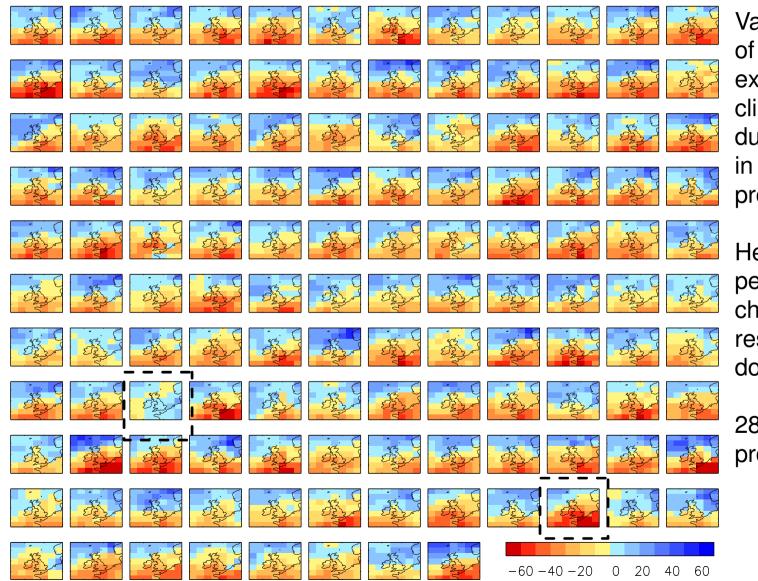
Using many models would give a range of different changes in temperature, but no information on which to use Change in temperature

UKCP09 gives the probability of different amounts of change in temperature

UKCP09: Probabilistic Projections

Climate Projections: Ingredients

- Ensemble of Climate Simulators used to explore the modelling uncertainty.
- Statistical tools (emulators) to extend this to explore relationship between parameters and climate simulations.
- Observations to down weight less plausible models (using Baysian approach)
- Other climate models (CMIP3) to estimate Structural uncertainties



Climate Model Simulations

© Crown copyright Met Office

Multiple realisations of equilibrium climate response

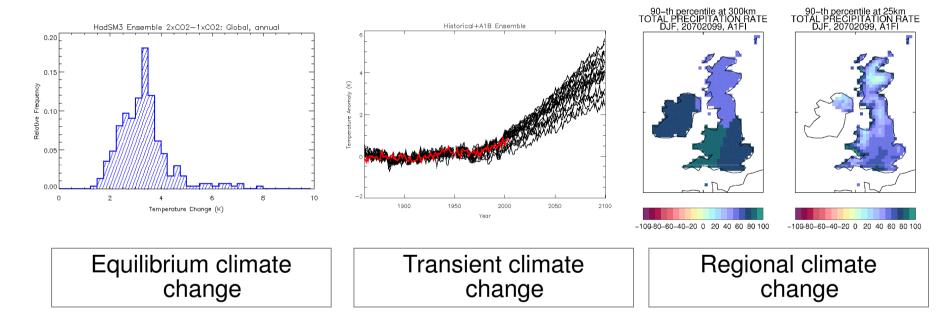
Vary 31 parameters of HadCM3, to explore range of climate response due to uncertainty in unresolved processes.

Here: summer percentage rainfall changes in response to doubling of CO2

280 simulations produced

Pragmatic choices: Why perturbed parameter ensembles?

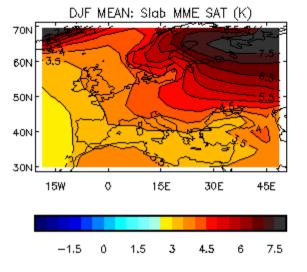
- To assess risk, need to quantify modelling uncertainties
- single-model studies can't do this.
- Could use CMIP3/5 ensembles (National Scenarios released by Australia and Netherlands in 2014 both use processed CMIP5 projections).

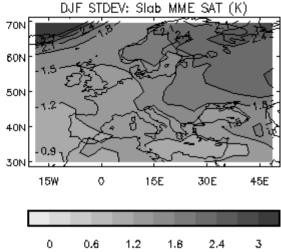

Multi-model Ensembles (do sample a variety of model structures):

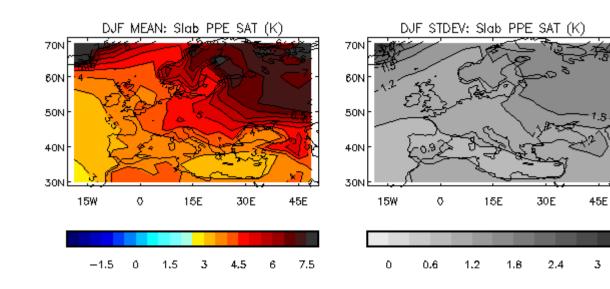
- Models inter-dependant due to common components (sample sizes even smaller than one thinks). Is uncertainty comprehensively sampled?
- Difficult to identify what drives variations across ensemble: is it resolution, low/high top, aerosol chemistry, convection and cloud schemes, microphysics, etc...
- Performance is unequal across ensemble.

Perturbed Parameter Ensembles (only single model structure sampled)

- Designed experiments, with comprehensive sampling, and control over what causes variation in response.
- Can construct statistical models (emulators) to understand, and predict response.
- Allowed us to
- use very large samples apply a formal statistical framework
- constrain by observations make probabilistic projections
- make easy sensitivity analyses provide more robust projections

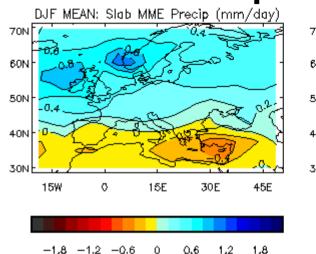


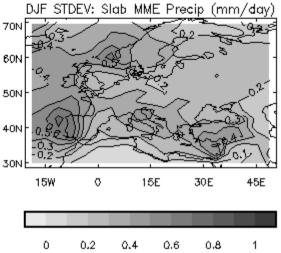


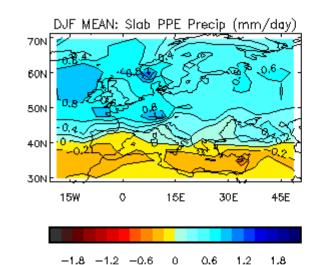


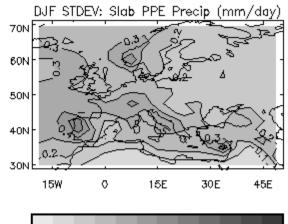
Comparison of MME and PPE responses

Winter Temperature Change at 2xCO2: Mean and Standard Deviation

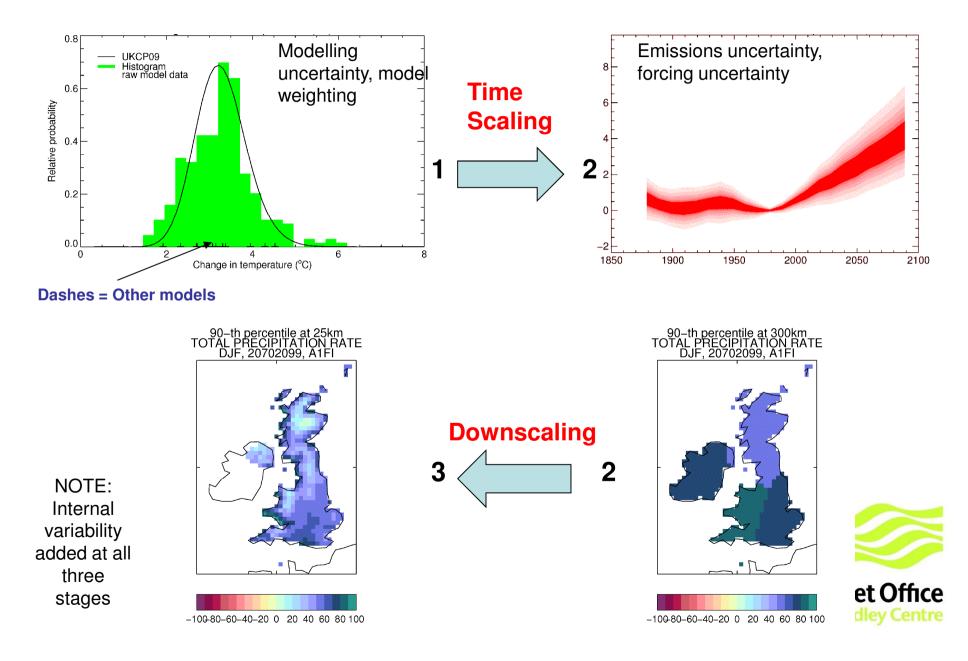







Comparison of MME and PPE responses

Winter Precipitation Change at 2xCO2: Mean and Standard Deviation



0 0.2 0.4 0.6 0.8 1

UKCP09 made in three stages

Statistical Framework

© Crown copyright Met Office

Bayesian prediction (Goldstein and Rougier 2004)

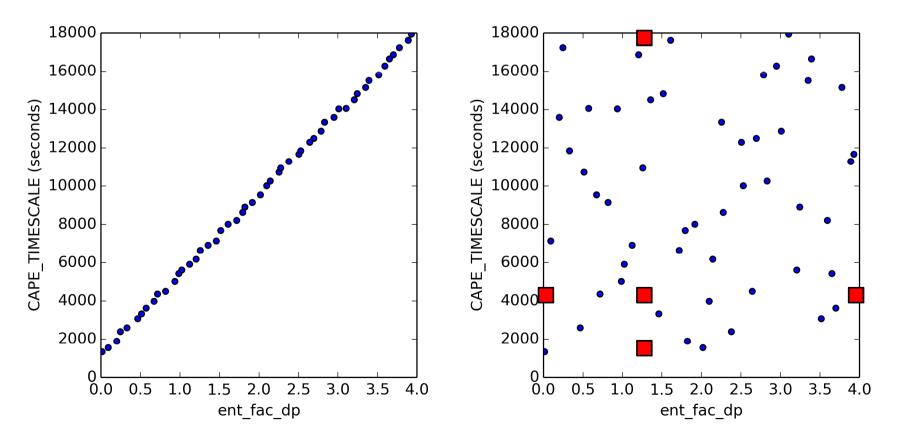
Mathematically rigorous synthesis of multiple lines of evidence from climate models and observations

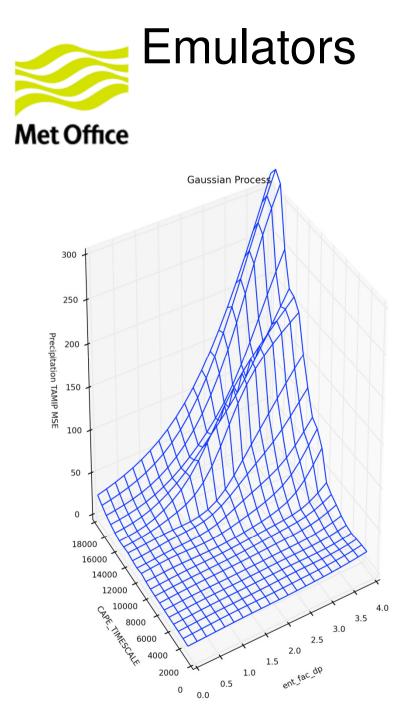
Aim is to construct joint probability distribution $p(X, m_h, m_f, y, o, d)$ of all uncertain objects in problem.

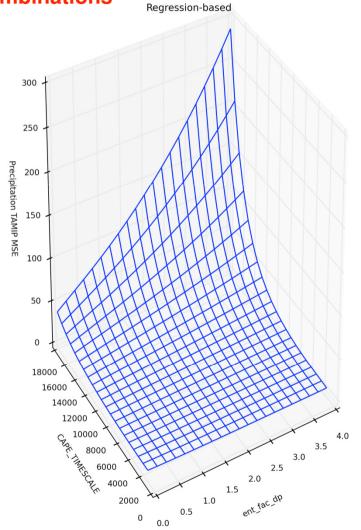
Model parameters (X) Historical and future model output (m_h, m_f) True climate (y_h, y_f) Observations (o) Model imperfections = discrepancy (d) Need to sample parameter space more thoroughly e.g. 1

million times rather than 280 times.

Main application of PPE: development of the UK national climate scenarios "UKCP09"

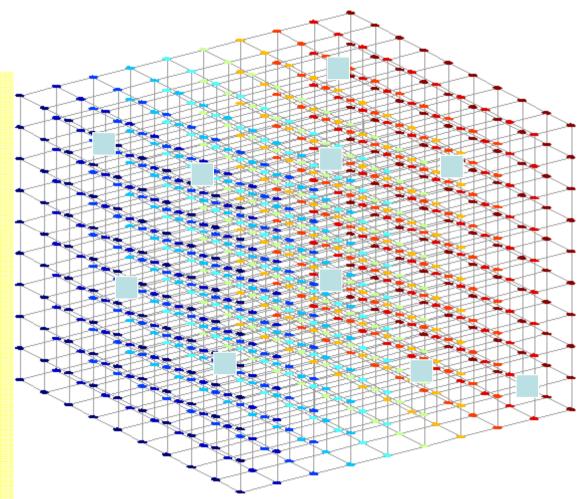


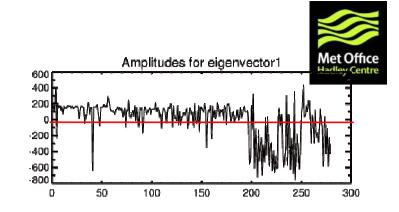

- Construct statistical model (emulator) for response as function of perturbed parameters (regression approach used).
- Compare predictions of historical climate with observations, estimate a likelihood weight for each sampled parameter set.
- Integrate over large sample of untried parameters, producing probabilistic projections, conditional on model and obs.
- Model not perfect, and has structural errors, which are estimated here by comparison with CMIP3. This can adjust PDF.


Design: Perturbing Parameters

- Adopt latin hypercube design for exploring parameter uncertainty (to maximise information gained from Climate Simulators)
- 2 examples of a 2D Latin Hypercube (one bad, one good)

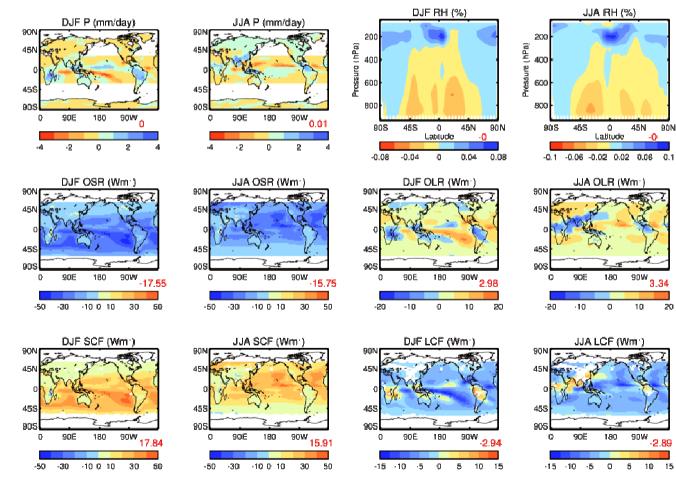
Emulators are statistical models, trained on ensemble runs, designed to predict a distribution of model output at untried parameter combinations




Emulator Schematic

Pragmatic choices

- Use regression trained on ensemble runs to estimate past and future variables, m, at any point of parameter space, x, (use transformed variables and take into account some nonlinearities)
- Note need to run models at some quite "remote" regions of parameter space and where response in parameter space is not smooth.

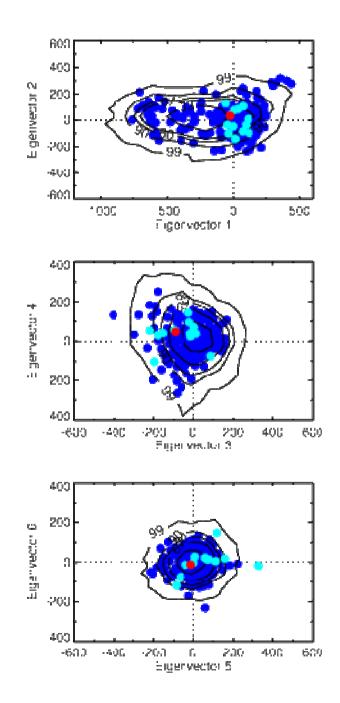


90N

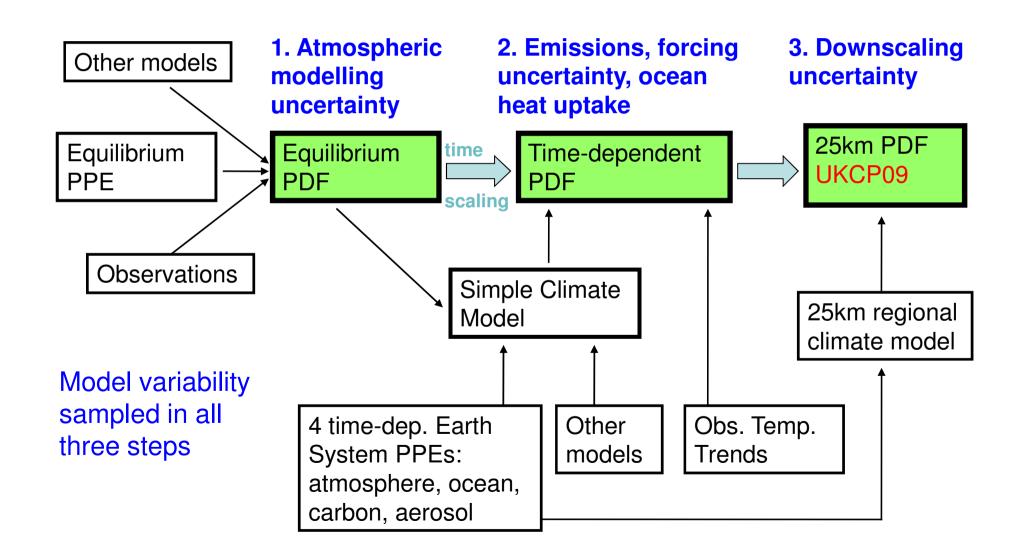
3.34

2.89

20

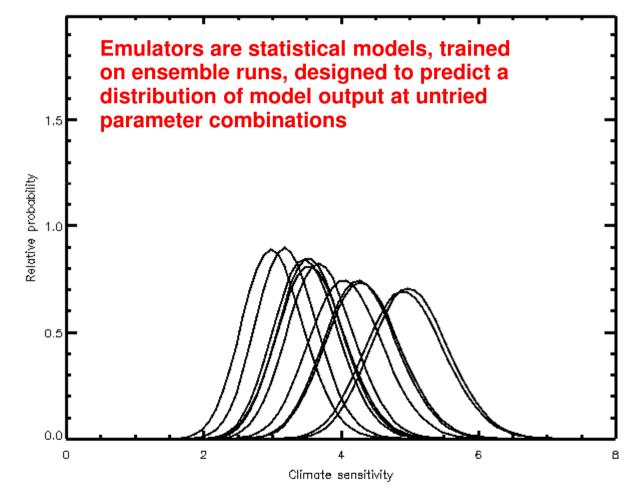


First of six metrics used in Sexton et al (2012) and **UKCP09**

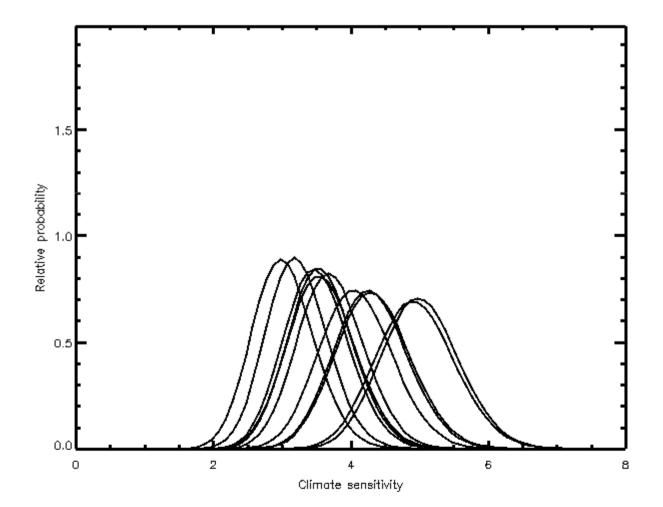

I Importance of spanning the observations

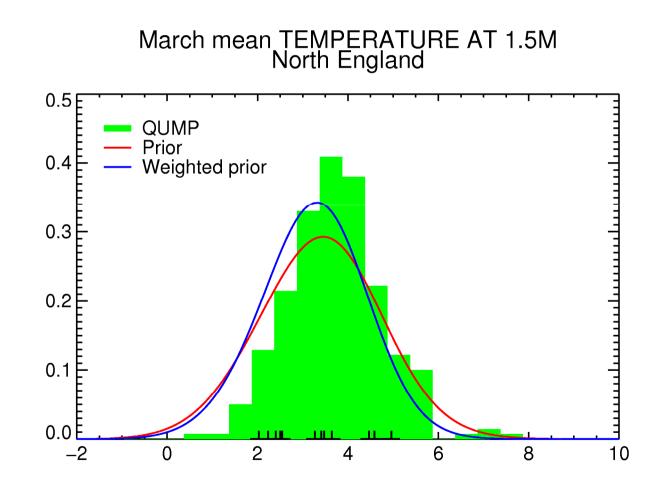
- I These are six metrics used to constrain probabilistic projections in UKCP09. They are six leading eigenvectors of a climate state vector
- Dark blue dots are 280 QUMP members
- Black lines are joint probability density of emulated points
- Light blue dots are multimodel ensemble members
- Red dot is observed value

Three steps in production of UKCP09 predictions



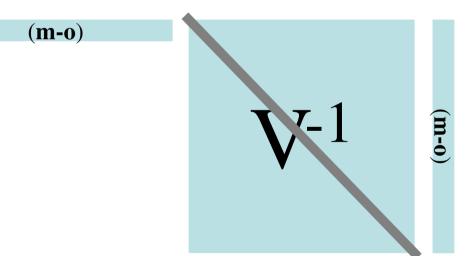
Example of what emulator produces


 An example of 10 randomly chosen combinations of parameter values - emulator gives 10 distributions


Weighting different model variants

• Weight prediction towards higher quality parts of parameter space

Weighted PDF



Estimating Likelihood

$$\log L_o(\mathbf{m}) = -c - \frac{n}{2} \log |\mathbf{V}| - \frac{1}{2} (\mathbf{m} - \mathbf{o})^T \mathbf{V}^{-1} (\mathbf{m} - \mathbf{o})$$

V = obs uncertainty + emulator error + discrepancy

 $\log L_0(\mathbf{m}) \sim$

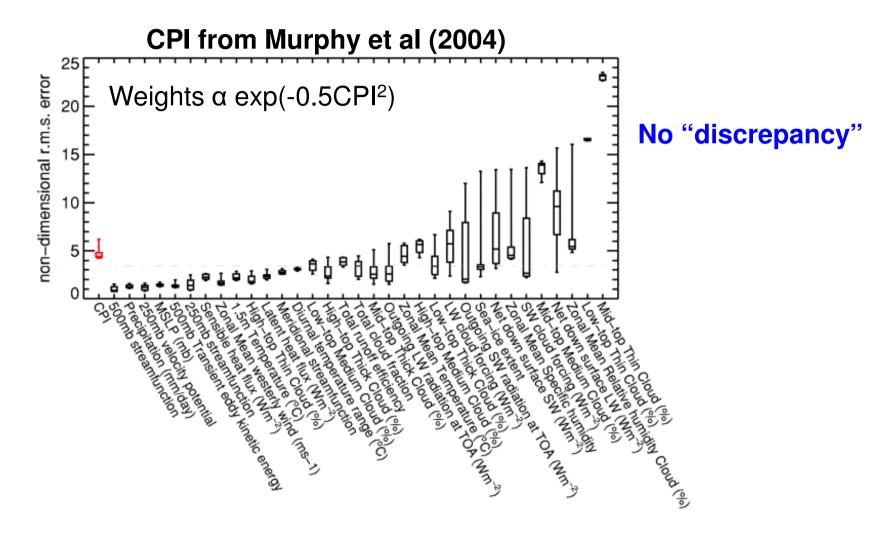
V is calculated from the perturbed physics and multi-model runs

Structural Model Uncertainty

© Crown copyright Met Office

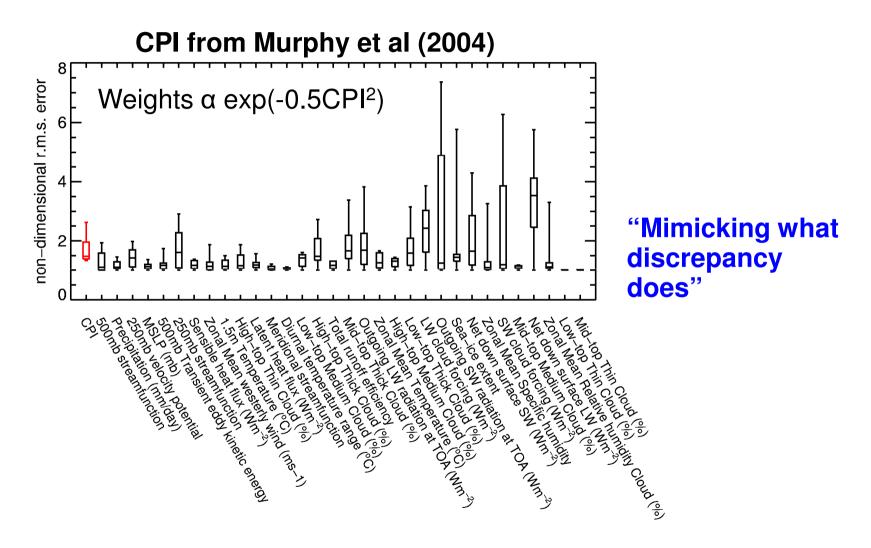
Use multimodel ensemble from IPCC AR4 and CFMIP

For each multimodel ensemble member, find point in HadCM3 parameter space that is closest to that member


There is a distance between climates of this multimodel ensemble member and this point in parameter space i.e. effect of processes not explored by perturbed physics ensemble

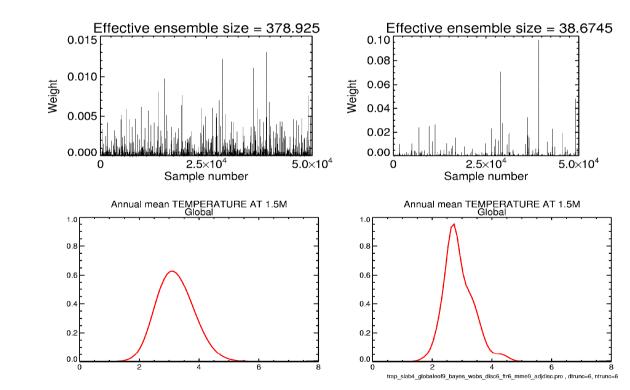
Pool these distances over all multimodel ensemble members

Uses model data from the past and the future



Discrepancy – a schematic of what it does

Discrepancy – a schematic of what it does



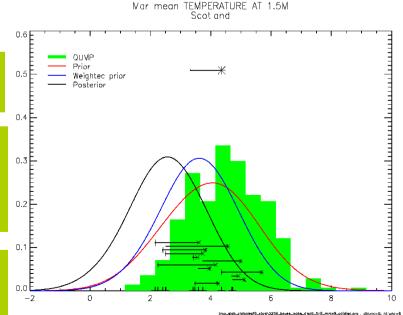
Effect of historical discrepancy on weighting

Discrepancy included

excluded

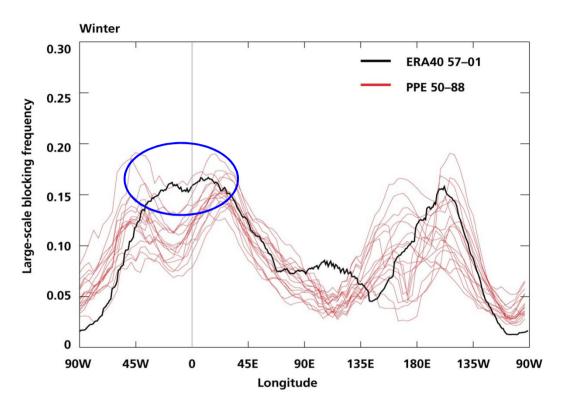
I Estimated from sample size of 50000

Examples of Discrepancy and Projections

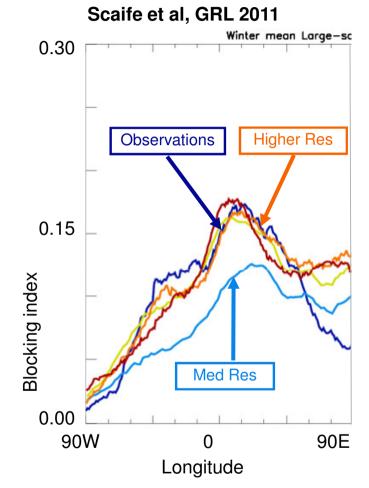

March mean TEMPERATURE AT 1.5M North England 0.5F QUMP Posterior 0.4 Weighted prior Weighted prior No future discrepancy 0.3 0.2F 0.1 0.0 -2 Λ 2 6 8 10

For most regions, variables and projection periods, the discrepancy estimated from the multi-model ensemble tends to broaden the PDF, but does not systematically change the mean estimate.

There are some cases where stronger structural errors lead the the discrepancy term doing much more work.


Scotland keeps snow too long in the present day spring (a bias), in future climates, this melts leading to large unrealistic temperature change (not seen in other Climate Models)

> In this case, the Discrepancy acts to shift the PDF as well as broaden.



Example of structural uncertainty, and the potential benefits of higher resolution

- Winter anti-cyclonic blocking frequency for 17 HadCM3 transient coupled-ocean atmosphere PPE members as a function of longitude.
- Winter blocking frequency over UK is underestimated by 16 out of 17 members.

• Moving to higher resolution can improve simulation of aspects of variability (such as blocking).

Pragmatic choices: thoughts on discrepancy

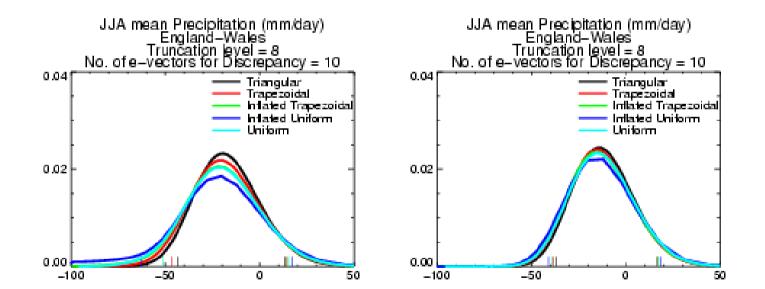
→All methods for model weighting should account for model imperfection.

→This is not the only possible method for specifying discrepancy. More effort needed in understanding model imperfection and what it means for how model projections are used.

→Needs to be thought about in terms of many variables rather than one variable at a time. Similar in this respect to way climate models are tuned because tuning is a compromise across many variables, not an optimisation on one variable.

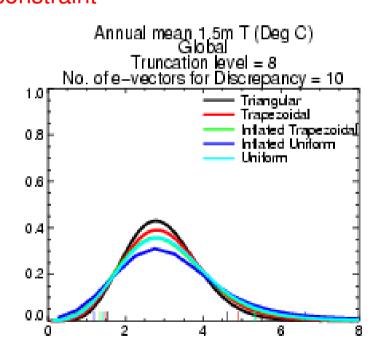
→But this method for specifying discrepancy means probability distributions will not be able to account for structural uncertainties that are related to systematic errors common to all models used.

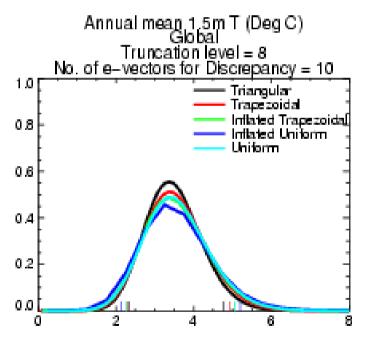
Sensitivity tests


© Crown copyright Met Office

Sensitivity to prior – climate sensitivity

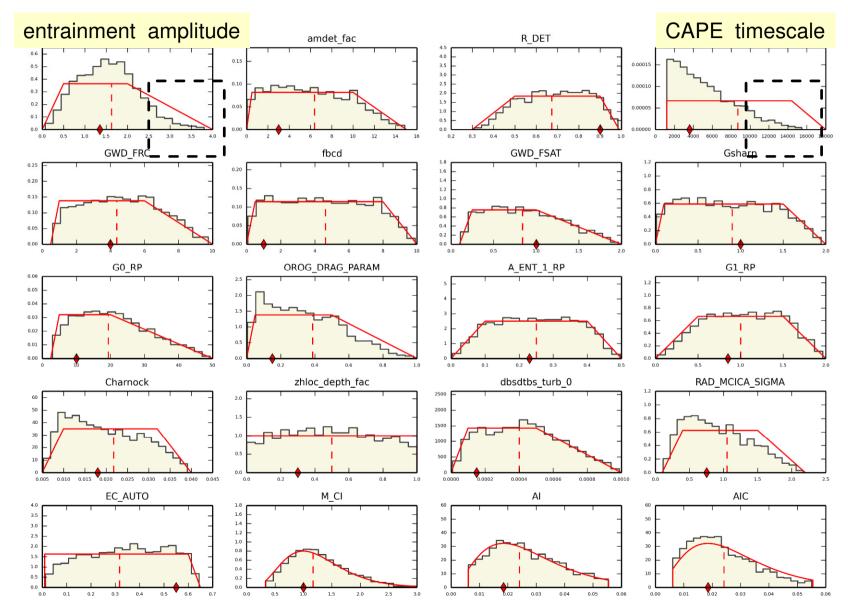
Before observational constraint


After observational constraint

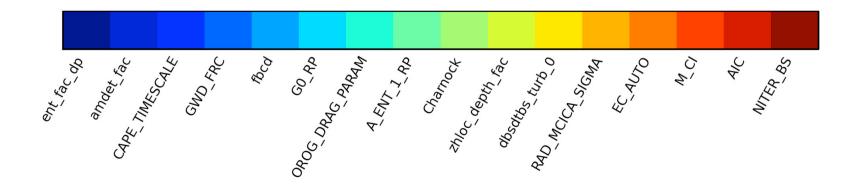


Sensitivity to prior – %ΔUK summer rainfall

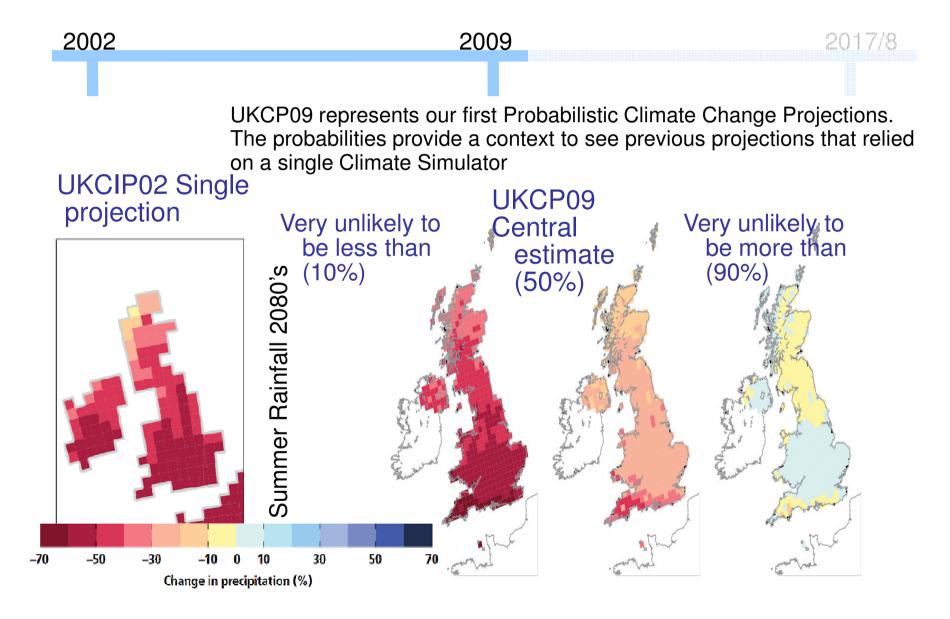
Before observational constraint



After observational constraint

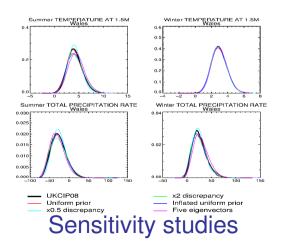

Effect of model selection on parameter distributions

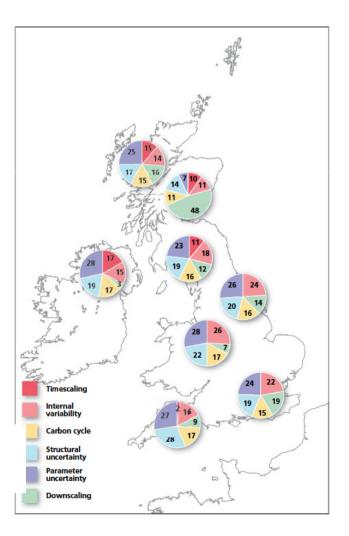
© Crown Copyright



UK Probabilistic Climate Projections

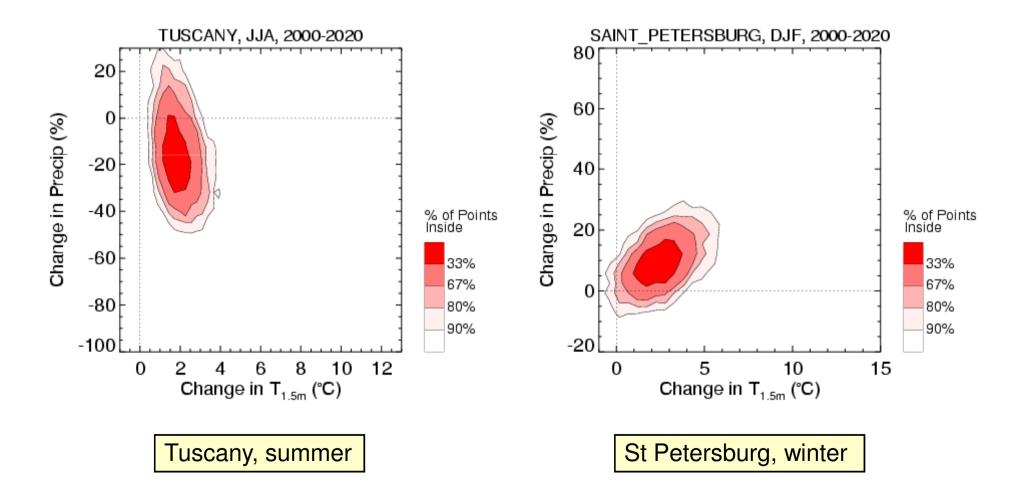
© Crown copyright Met Office


UKCP09: Probabilistic Projections

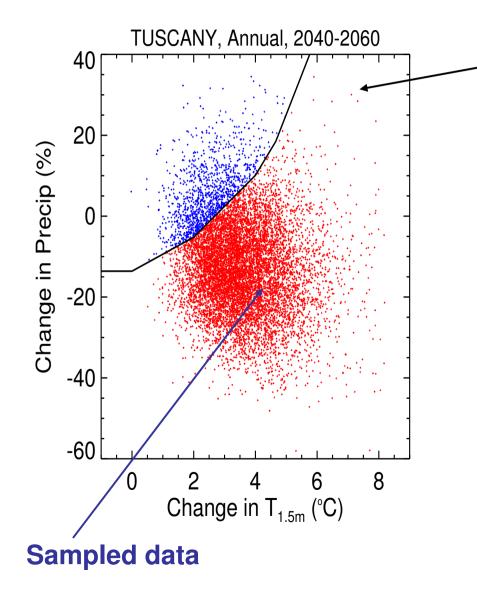

I Improving evidence

- UKCP09 assessment of current evidence so subject to errors common to all current models. Evidence will change in future due to improvements in methods, observations, climate models, and initialisation with observations.
- But sensitivity tests and inclusion of major sources of spread in climate projections demonstrate a robustness of this assessment of current evidence.

Relative contributions to range of climate response



Probabilistic projections in response to A1B emissions



Changes in temperature and precipitation for future 20 year periods, relative to 1961-90, at 300km scale.

 Response surface for current yield, including CO₂ fertilization

 \Rightarrow 86% risk of a reduction in yield

Thanks to:

Roberto Ferrise, Marco Moriondo, Marco Bindi Department of Agronomy and Land Management University of Florence

Examples of user reception

© Crown copyright Met Office

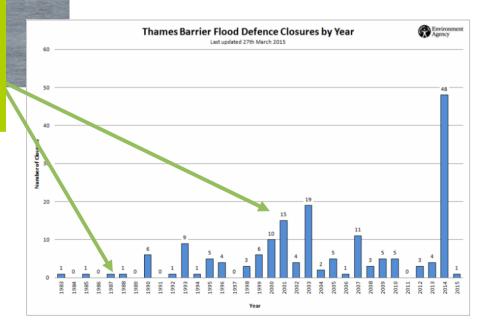
Example Users: Natural England

"Natural England's work on climate change is shaped by its wider remit for the protection and improvement of the natural environment. Climate change is a major threat to the natural environment, its biodiversity and the services it provides, and adaptation is essential to reduce risks, as well as take advantage of any opportunities that arise"

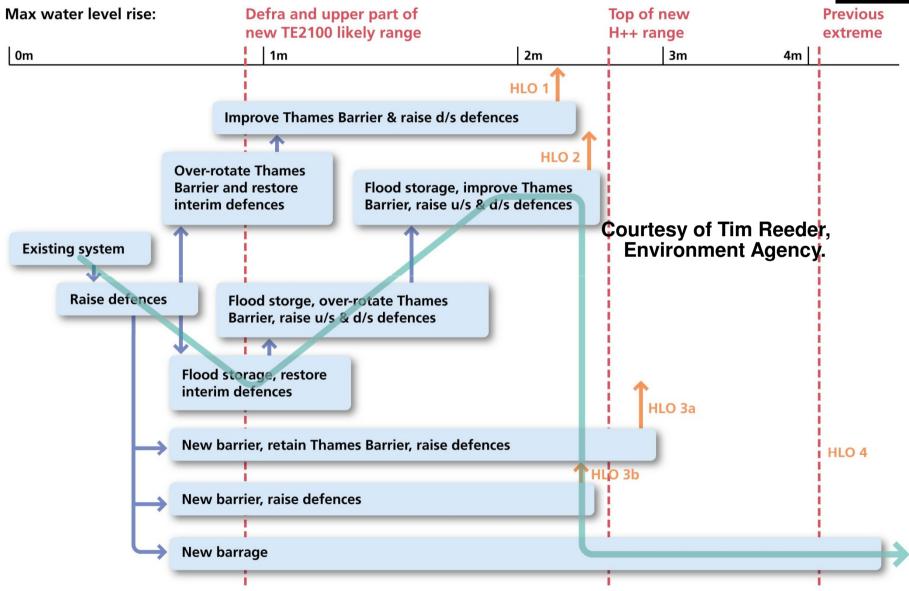
> Quote from Summary of Evidence: Climate Change (EIN005)

Information used:

- Qualitative
- Narrative (warmer, wetter, longer seasons, etc)

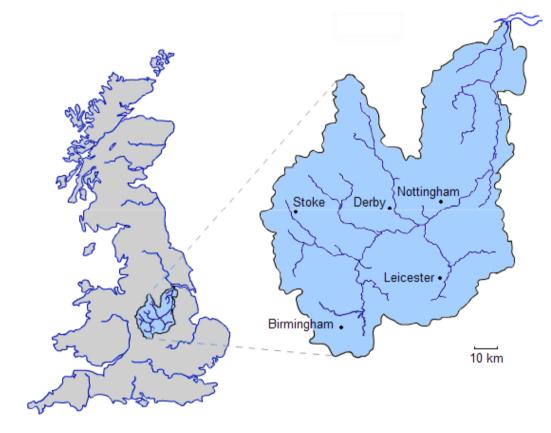

Example Users: TE2100 Project

Initially used only once every couple of years, the barrier is now used more frequently – raising questions about whether changing climate will require new infrastructure to keep London dry.


> Information used: Quantitative Risk adversed (need information on what is possible from high end changes, as well as what is more probable)

London has a barrier to prevent high tides and river flows causing flooding in the city (negative impacts estimated to be in the £trillion range)

Courtesy of Tim Reeder, Environment Agency.



Key: --- Predicted max water level under each scenario

Measures for managing flood risk indicating effective range against water level

Example Users: Flood modellers^I

Flood risks dependent on (often small scale) extreme rainfall events and durations of dry/wet days preceding rainfall.

This information best provided by physically coherent realisations of potential future rainfall changes, such as provided by Regional Climate model simulations Statistical downscaling approaches can often struggle to capture the spatial and temporal coherent changes that are associated with flood risks.

Information used: Quantitative Spatially and temporally coherent realisations of rainfall required to drive river flow models

Examples of how different users are able to make use of projections

	Type of Projections	Conservation	Thames Barrier	Flood modellers
UKCIP02	Single projection	Easy to use/narrative	No estimate of risk of high end changes	Able to use. Limited by ensemble size, spatial scale of information
UKCP09	Full probabilistic	Not able to use quantitative data	Quantitative data. Used high end estimate plus expert judgement	Quantitative data. Needs ensembles of regional models.

Generally findings: With a single projection, users do not need to know their exposure to climate variability/change. With probabilistic information, users need to understand their exposure **before** confronting the data.

Need to work with users to understand their requirements for climate change information

References

Murphy, J. M., Sexton, D. M. H., Jenkins, G. J., Booth, B. B. B., Brown, C. C., Clark, R. T., ... & Wood, R. A. (2009). UK climate projections science report: climate change projections. http://ukclimateprojections.metoffice.gov.uk/22530

Murphy JM, Booth BB, Collins M, Harris GR, Sexton DM, Webb MJ. (2007) A methodology for probabilistic predictions of regional climate change from perturbed physics ensembles, Philos Trans A Math Phys Eng Sci, volume 365

Harris GR, Sexton DMH, Booth BBB, Collins M, Murphy JM. (2013) Probabilistic projections of transient climate change, Climate Dynamics, pages 1-36

Lambert FH, Harris GR, Collins M, Murphy JM, Sexton DMH, Booth BBB. (2013) Interactions between perturbations to different Earth system components simulated by a fully-coupled climate model, Climate Dynamics, volume 41, no. 11-12, pages 3055-3072, DOI:10.1007/s00382-012-1618-3

Sexton DMH, Murphy JM, Collins M, Webb MJ. (2012) Multivariate probabilistic projections using imperfect climate models part I: outline of methodology, CLIMATE DYNAMICS, volume 38

Sexton, David MH, and James M. Murphy. "Multivariate probabilistic projections using imperfect climate models. Part II: robustness of methodological choices and consequences for climate sensitivity." Climate dynamics 38.11-12 (2012): 2543-2558.

Collins M, Booth BBB, Bhaskaran B, Harris GR, Murphy JM, Sexton DMH, Webb MJ. (2011) Climate model errors, feedbacks and forcings: a comparison of perturbed physics and multi-model ensembles, CLIMATE DYNAMICS, volume 36

Harris GR, Collins M, Sexton DMH, Murphy JM, Booth BBB. (2010) Probabilistic projections for 21st century European climate, NATURAL HAZARDS AND EARTH SYSTEM SCIENCES, volume 10

Booth BBB, Jones CD, Collins M, Totterdell IJ, Cox PM, Sitch S, Huntingford C, Betts RA, Harris GR, Lloyd J. (2012) High sensitivity of future global warming to land carbon cycle processes, Environmental Research Letters, volume 7