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Climate Scenario construction

. National Climate Change assessments
have been carried out by a number of
countries. Most are non-probabilistic.

Climate change projections

KNMI’

climate scenarios

Swiss Climate Change
Scenarios CH2011




Scenario and climate
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1950s — usage in military strategy and planning

1970s — usage in the energy business (Royal Dutch/Shell;
Van der Heijden, 1997).

1980 — first climate scenario (Wigley et al. 1980)
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ARTICLES

Scenario for a warm, high-CO, world

T. M. L. Wigley, P. D. Jones & P. M. Kelly

Climatic Research Unit, University of East Anglia, Norwich, UK

Plausible patterns for temperature and precipitation
changes accompanying a general global warming, such as
might occur due to a large increase in atmospheric carbon
dioxide levels, are presented. The patterns are determined
by comparing the five warmest years in the period 1925-74
with the five coldest in this period. Temperature increases
are indicated for most regions, with maximum warming
over northern Asia. A few isolated regions show cooling.
Precipitation changes are fairly evenly distributed between
increases and decreases ; the most important features being
an increase over India, and decreases in central and south-
central USA and over much of Europe and Russia. The
latter decreases, should they occur, could have considerable
agricultural impact.

MAN has upset the global carbon cycle by burning fossil fuels
and, probably, by deforestation and changing land use. The net

raesnlt Af thaca astixntiae ie tn inrraaca tha M. cantant af hath

Insights into a warm world

Two approaches may be used to derive a scenario for the pattern
of climatic changes which might result from a large increase in
atmospheric CO,. These are: numerical modelling using general
circulation models (GCMs}'®'?; and the use of past warm
periods as analogues of the future®®. The latter includes the
possibility of using recent instrumental data to determine the
characteristics of individual warm years which may then be used
as analogues of the future.

Both methods have their limitations. GCMs are restricted by
their present state of development; current computer power
dictates that these models simulate in detail only one part of the
atmosphere-hydrosphere~cryosphere system. Most models
only consider the atmosphere and use the hydrosphere and
cryosphere as externally specified boundary conditions'’.
GCMs do, however, simulate present-day climate reasonably
well; and, provided sea-surface temperatures and ice margins
are prescribed, they also appear to simulate ice-age climate in a
realistic way'"'>, For a high-CO, world we cannot accurately
prescribe sea-surface temperatures and should ideally use a
connled acean-atmosnhare madel. Althouoh snch models do



Scenarios and climate
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1950s — usage in military strategy and planning

1970s — usage in the energy business (Royal Dutch/Shell;
Van der Heijden, 1997).

1980 — first climate scenario paper (Wigley et al. 1980)

1980s-90s — scientific papers and policy documents use and
develop climate scenarios

1990s — first national climate scenarios published (UK)

2001 — IPCC TAR WG1 devotes a chapter to the science of
climate scenario construction (Mearns et al., 2001)

2009 — first probabilistic climate change projections published
(UK)

(Vs



A chronology of UK climate

scenarios

UK Climate Scenarios UK developments International developments

1989 Hadley Centre established

1990 IFCC FAR
CCIRG91 scenarios 1991 LINK Project established
1992 IPCC 1592 emissions scenarios
UN FCCC agreed
1993
1994 LN FCCC comes into force
1995
CCIRGY96 scenarios 1996 IPCC SAR
1997 UKCIP established Kyoto Protocol agreed
UKCIP98 scenarios 1998
1999
2000 UK climate change programme |IPCC SEES emissions scenaros
2001 IPCC TAR
UKCIP02 scenarios 2002
2003
2004
2005 Kyoto Protocol comes into force
2006 UK climate change programme
2007 IPCC AR4

TRCIPOS sTemanos. 2008



The Potential Effects of Climate
Change in the United Kingdom

The climate of the UK and recent trends

UK Climate Projections

Climate Change Scenarios
for the United Kingdom

Department of the Environment
Review of the
Potential Effects of

Climate Change in £
the United Kingdom

CCIR

HMSO

UK Climate Impacts Programme
Technical

Marine & coastal projections
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Climate Change Scenarios
for the United Kingdom
“The UKCIPO2 Briefing Report

Projections of future daily climate for the UK
from the Weather Generator
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Demand for climate scenarios
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Early mainstreaming into planning (e.g., water resources in
late 1990s) now more diverse

Success of UKCIP (1997-)
Research demand (e.g., ARCC programme, 2007-17)

Climate Change Act (2008)

Adaptation Reporting Power (2009): “The UKCPO09 Projections are
likely to be a useful tool for some organisations in undertaking
assessments of their risks from climate change. They will allow
decision makers to consider a range of possible future climates, as
well as an estimate of the uncertainties surrounding those changes.”
(Defra, 2009, p. 8).

Climate change risk assessment (2012)



A chronology of selected

national climate scenarios

UK Australia USA Netherlands [Switzerland Europe International developments

1987 Greenhouse 1987
1988 IPCC established

EPA report to congress
1989 (Smith & Tirpak 1989)
1990 CSIRO (1990) IPCC FAR
1991 |CCIRG91 |CSIRO (1991)

IPCC 1S92 emissions scenarios

1992 CSIRO (1992) & UNFCCC agreed
1993
1994 Single institutes UNFCCC comes into force
1995 IPCC SAR
1996 |CCIRG96 |CSIRO (1996)
1997 Kyoto Protocol agreed
1998 | UKCIP98
1999

First US Climate
2000 Assessment ACACIA project IPCC SRES emissions scenarios
2001 CSIRO (2001) IPCCTAR
2002 [UKCPO2
2003 ATEAM project
2004

Kyoto Protocol comes into
2005 force
2006 KNMI'06
CH2050

2007 CCIA (2007) Scenarios IPCC AR4
2008

Second US Climate COP-15 in Copenhagen fails to
2009 [UKCPO9 Assessment ENSEMBLES project |agree a post 2012 regime
2010
2011 CH2011 ALARM project

Climate-ADAPT Map

2012 Viewer
2013 IPCC AR5 WG1
2014 NRM projections |Third US Clim Ass KNM'I14 IPCC AR5
2015 COP-21 in Paris




Europe

National climate projections in

reclip:century

Regional projections

(Walloon region)

CCI-HYDR & INBO

(Flamish region)

CH2011

Projekt VaV 2007-2011

Deutscher Klimaatlas
g9

Escenarios regional. de

cambio climatico

PNACC 2012

ACCLIM

Climat de la France ...

OMSZ 2008

C4l

KNMI'06,

Klimaateffectatlas

Klima i Norge 2100
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Ind.sim.

Ind.sim.

MMM
Ind.sim.; MMM,; sign-rob
% (15, 50, 85)

9 5 9
Ind.sim.; MMM

MMM

Ind.sim.
Ind.sim.
Ind.sim.; MMM
Best guess

Ind.sim.; MMM;
% (5, 50, 95)

MMM;% (0, 10, 50, 90, 100)

MMM:; % (10, 50, 90)

Ind.sim.

Ind.sim.; % (2.5,50,97.5)
Ind.sim.; % (25,50,75)
Ind. simulations

Ind.sim.; MMM,;
unc.rge (1 st.dev.)
% (0, 25, 50, 75, 100)
MMM; % (5, 95)

% (2.5, 97.5)

Unc. Range

Ind.sim.; MMM,;

% (10, 50, 90);
unc.rge (1 st.dev.)
MMM; PDF/CDF;
joint prob. plot

Ind.sim. — individual simulations; MMM — multi-model mean; % - percentiles; sign-rob — robustness of sign; unc.rge — uncertainty range
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UK Climate Projections
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Fossil-fuel emissions
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1850 1900 1950 2000 2050 2100

UKCIP02 presented climate change

projections from a single Climate Simulator,

for 4 different socio-economic scenarios.
No estimate of climate uncertainty was made

A

UKCIPO02 presented maps of change based
on projections from a single model (in this
case change in Summer rainfall 2080-
2100)
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Motivation to moving to probabilities

Figure 5: A schematic diagram showing the progression from UKCIP02

to UKCP09, using temperature as an example. The single estimate of
change in temperature from UKCIPO2 (left, for a given emissions scenario,
location, time period, etc.) gives no information about uncertainty. A
range of changes in temperature from different climate models (centre)
gives no information about which model to use, and only partly reflects
uncertainties. The PDF given in UKCP09 (right) shows the probability of
different outcomes, that is, different amounts of change in temperature.

Probability of change

® —000— 00080000 0

Change in temperature Change in temperature Change in temperature

UKCIP02 gave a Using many models UKCP09 gives the
single estimate would give a range of probability of different
of change in different changes in amounts of change in
temperature temperature, but temperature

no information on

which to use



UKCPO09: Probabilistic Projections
2002 2009

UKCPO9 represents our first Probabilistic Climate Change Projections.
The probabilities provide a context to see previous projections that relied
on a single Climate Simulator

UKCIP02 Single UKCPO9
projection Very unlikely to entral $ Very unlikely; to
be less than ' estimate be more than
“(OD (10%) (50%) 3‘ (900/0)" \Wf?‘
X :
QV
S
= £
(4] oy
i £
3 A
S A
1 2 | a A
I : . | .;i?.,ﬁ_,éf“ T
=70 -50 -30 -10 0 10 30 50 LU, ; fﬂwj

Change in precipitation (%)



Climate Projections:
Ingredients

Ensemble of Climate Simulators used to
explore the modelling uncertainty.

Statistical tools (emulators) to extend this to
explore relationship between parameters and
climate simulations.

Observations to down weight less plausible
models (using Baysian approach)

Other climate models (CMIP3) to estimate
Structural uncertainties
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Climate Model Simulations




Multiple realisations of equilibrium climate
response

Vary 31 parameters
of HadCM3, to

explore range of
climate response

due to uncertainty
in unresolved
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Pragmatic choices: Why perturbed parameter
ensembles?

« To assess risk, need to quantify modelling uncertainties
- single-model studies can’t do this.

« Could use CMIP3/5 ensembles (National Scenarios released by Australia
and Netherlands in 2014 both use processed CMIP5 projections).

Multi-model Ensembles (do sample a variety of model structures):

e Models inter-dependant due to common components (sample sizes even
smaller than one thinks). Is uncertainty comprehensively sampled?

e Difficult to identify what drives variations across ensemble: is it resolution,
low/high top, aerosol chemistry, convection and cloud schemes, microphysics,
etc...

e Performance is unequal across ensemble.

Perturbed Parameter Ensembles (only single model structure sampled)

» Designed experiments, with comprehensive sampling, and control over what causes
variation in response.

» Can construct statistical models (emulators) to understand, and predict response.

» Allowed us to

- use very large samples - apply a formal statistical framework

- constrain by observations - make probabilistic projections

- make easy sensitivity analyses - provide more robust projections

© Crown Copyright



Relotive Frequency

Climate Modelling framework

Met Office

HadSM3 Ensemble 2xC0Z2—1xC0OZ: Glekal, annual
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Comparison of MME and
PPE responses

Met Office
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Comparison of MME and
PPE responses

Met Office

Winter
Precipitation
Change at
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UKCP09 made in three stages

0.8 T T 7
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Bayesian prediction
(Goldstein and Rougier 2004)

Mathematically rigorous synthesis of multiple lines of
evidence from climate models and observations

Aim is to construct joint probability distribution p(X, m, , m;,
y, 0, d) of all uncertain objects in problem.
Model parameters (X)
Historical and future model output (m,,,m;)
True climate (y,,y;)

Observations (0)
Model imperfections = discrepancy (d)

Need to sample parameter space more thoroughly e.g. 1
million times rather than 280 times.

Met Office
Hadley Centre




Main application of PPE: development of the UK national
climate scenarios “UKCP09”

JJA mean TEMPERATURE AT 1.5M
southern_england

04 ‘ ‘ ‘
Raw model data
- —— Posterior PDF

Step 1: ]
Equilibrium i
Response

0.0.

Construct statistical model (emulator) for response as function of
perturbed parameters (regression approach used).

Compare predictions of historical climate with observations, estimate
a likelihood weight for each sampled parameter set.

Integrate over large sample of untried parameters, producing
probabilistic projections, conditional on model and obs.

Model not perfect, and has structural errors, which are estimated here
by comparison with CMIP3. This can adjust PDF.

© Crown Copyright



Design: Perturbing Parameters

Adopt latin hypercube design for exploring parameter
uncertainty (to maximise information gained from Climate
Simulators)

2 examples of a 2D Latin Hypercube (one bad, one good)
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E m u Iato rS Emulators are statistical

models, trained on ensemble
runs, designed to predict a

distribution of model output at
Met Office untried parameter
Gaussian Proces combl natlons Regression-based
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Emulator Schematic
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some quite “remote

Met Office

» Use regression trained on

 Pragmatic choices



Leading variation of

control climate across
slab PPE
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| Importance of spanning the s
observations ]
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Three steps in production of UKCP09
predictions

1. Atmospheric 2. Emissions, forcing 3. Downscaling
modelling uncertainty, ocean uncertainty

\uncertalnty heat uptake
Equilibrium Equilibrium Time- dependent 25km PDF
PPE / PDF :> PDF UKCP09

Other models

Observations Simple Cllmate
Model 25km regional
climate model
Model variability I X |
sampled in all 4 time-dep. Earth Other Obs. Temp.
three steps System PPEs: models | | Trends
atmosphere, ocean,
carbon, aerosol




Example of what emulator produces

= An example of 10 randomly chosen combinations of parameter
values - emulator gives 10 distributions

Emulators are statistical models, trained
on ensemble runs, designed to predict a
distribution of model output at untried -
15 parameter combinations -

Ralative probability
=
|
|

05

0.0

Climate sensitivity
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Weighting different model variants

=  Weight prediction towards higher quality parts of parameter space

1.5- —

1.|:|- —

Ralative probability

0.5

0.0




Weighted PDF

March mean TEMPERATURE AT 1.5M
North England

05 E ) ) ' ! ’ ’ i I T T T T T T T T T T T I r r r
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F — Prior ]
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Estimating Likelihood

Met Office

log L (m)= —c—glog 'V | —%(m-O)TVl(m-o)

V = obs uncertainty + emulator error + discrepancy

(m-o0)

log L,(m) ~ -1

(0-uw)

V is calculated from the perturbed physics and multi-model runs
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Structural Model Uncertainty




Estimating discrepancy

Met Office

Use multimodel ensemble from IPCC AR4 and CFMIP

For each multimodel ensemble member, find point in HadCM3
parameter space that is closest to that member

There is a distance between climates of this multimodel
ensemble member and this point in parameter space i.e. effect of
processes not explored by perturbed physics ensemble

Pool these distances over all multimodel ensemble members

Uses model data from the past and the future
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Effect of historical discrepancy
on weighting

Discrepancy included excluded

5Eh‘ective ensemb]e size = 378.925 (!Effective ensemble size = 38.6745
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Examples of Discrepancy and [
Projections

March mean TEMPERATURE AT 1.5M
North England

0.5

0.4

0.3

P4 == QUMP

— Posterior
’ — Weighted prior
’ - - Weighted prior
I No future discrepancy

Mar mean TEMPERATURE AT 1.5M
Scot and

audp
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Posterior
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Example of structural uncertainty, and the potential

benefits of higher resolution

Winter

0.30 T T T T T T
= ERA40 57-01

= PPE50-88

0.25

0.20

0.15

0.10

Large-scale blocking frequency

0.05 |

90w 45w 0 45E 90E 135E 180E 135W gow
Longitude

» Winter anti-cyclonic blocking frequency for
17 HadCMS transient coupled-ocean
atmosphere PPE members as a function of
longitude.

» Winter blocking frequency over UK is
underestimated by 16 out of 17 members.

© Crown Copyright

Scaife et al, GRL 2011

Winter meon Large—sc
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Observations Higher Res
0.15 |
X
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Longitude

» Moving to higher resolution
can improve simulation of
aspects of variability (such
as blocking).
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Pragmatic choices: thoughts on [z
discrepancy

->All methods for model weighting should account for model
imperfection.

=>This is not the only possible method for specifying discrepancy.
More effort needed in understanding model imperfection and what it
means for how model projections are used.

->Needs to be thought about in terms of many variables rather than
one variable at a time. Similar in this respect to way climate models
are tuned because tuning is a compromise across many
variables, not an optimisation on one variable.

=>But this method for specifying discrepancy means
probability distributions will not be able to account for structural
uncertainties that are related to systematic errors common to

all models used.
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Sensitivity to prior — climate
sensitivity

Met Office
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Sensitivity to prior — %AUK
summer rainfall

Met Office
Before observational After observational
constraint constraint
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Effect of model selection on parameter distributions

Met Office

Hadley Centre
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Most important parameters
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Most important parameter at each grid point
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UK Probabilistic Climate

Projections




UKCPO09: Probabilistic Projections
2002 2009

UKCPO9 represents our first Probabilistic Climate Change Projections.
The probabilities provide a context to see previous projections that relied
on a single Climate Simulator
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| Improving evidence

« UKCPO09 assessment of current evidence so
subject to errors common to all current models.
Evidence will change in future due to
improvements in methods, observations, climate
models, and initialisation with observations.

« But sensitivity tests and inclusion of major N
sources of spread in climate projections = 9B
demonstrate a robustness of this assessment of
current evidence. T £Pp.
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" Probabilistic projections in response to A1B emissions

Met Office

Hadley Centre
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Changes in temperature and precipitation for future 20 year periods,
relative to 1961-90, at 300km scale.

TUSCANY, JJA, 2000-2020

Changein T, .. (°C)

Tuscany, summer

SAINT_PETERSBURG, DJF, 2000-2020
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St Petersburg, winter
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TUSCANY, Annual, 2040-2060
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Societal impact illustration: durum wheat =
(pasta) yield in Tuscany 2040-2060 s

Response surface for
current yield, including
CO, fertilization

— 86% risk of a
reduction in yield

Thanks to:

Roberto Ferrise, Marco Moriondo, Marco Bindi
Departmentof Agronomy and Land Management

S5 =’////A University of Florence
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Examples of user reception
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aeme Example Users: Natural England

“Natural England’s work on climate
change is shaped by its wider remit for
the protection and improvement of the
natural environment. Climate change
is @ major threat to the natural
environment, its biodiversity and the
services it provides, and adaptation is
essential to reduce risks, as well as
take advantage of any opportunities
that arise”

Quote from Summary of Evidence:

Climate Change (EIN005)

Information used:

e Qualitative

e Narrative (warmer, wetter,
longer seasons, etc)




Example Users: TE2100 Project

Information used:
Quantitative

Risk adversed (need information on
what is possible from high end
changes, as well as what is more
probable)
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Thames Barrier Flood Defence Closures by Year
Last updated 27th March 2015
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Courtesy of Tim Reeder,
Environment Agency. Met Office

Hadley Centre
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new TE2100 likely range H++ range extreme
| Om | im | 2m | 3m 4m |

Improve Thames Barrier & raise d/s defences
—F

Over-rotate Thames

Barrier and restore Flood storage, improve Thames
interim defences Barrier, raise u/s & d/s defences
S

Existing system

v

Raise defences Flood storge, over-rotate Thames
Barrier, raise u/s & d/s defences

T
v 1 1‘
Flood storage, restore
interim defences

Environment Agency.

1
[ |
I
1
1
|
i
1
1
1
1
[
[
1
1
Courtesy of Tim Reeder,
i
1
1
I
1
1
1
1
i
1
I
1
1
i
1
I
ey New barrier, retain Thames Barrier, raise defences
| F

—3 New barrier, raise defences

3 New barrage

Key: == =" Predicted max water level under each scenario
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Example Users: Flood modellers

Nnttngharf/;
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Information used:
Quantitative

/j (V Flood risks dependent on (often small

scale) extreme rainfall events and
durations of dry/wet days preceding
rainfall.

This information best provided by
physically coherent realisations of
potential future rainfall changes, such
as provided by Regional Climate
model simulations

Statistical downscaling approaches
can often struggle to capture the
spatial and temporal coherent
changes that are associated with
flood risks.

Spatially and temporally coherent realisations of rainfall

required to drive river flow models



able to make use of projections
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