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What are sustainable, scientifically sound, 

technologically feasible, economically efficient, and 

ethically defensible strategies for managing the risks 

associated with climate change?

2



3

!
!
!
"##$##%&'!!
()%*+,$!-%#.!
*+&+'$*$&,!
#,-+,$'%$#!
-$/0%-$#!,1$!
+&+)2#%#!34!
(3*5)$6!
#2#,$*#!7%,1!
&3&,-%8%+)!
%&,$-+(93&#!
+&:!$*$-'%&'!
5-35$-9$#;!!

<=!

!"
#$
%&
'(
')
*+
*(
,%-(
#,.
/+
*(
,#

01'2,',"3(

4'.53(
6*7/*#,.',"3(

8.**(93/#*%
8'#%:+"##"3(#%
&",")',"3(%

8*3*()"(**."()
;9"<9
6,.',*)=

>

:<3(3+"<%?/,2/,4@"+',*%-+2'<,#

4@"+',*%49'()*

8A8%43(<*(,.',"3(#

8A8%:+"##"3(#

B'@/*#%C/,"@",=D%.35/#,(*##D%.*@"'5"@",=D%E/#,
"<*D%#

/#,'
"('5

"@",=
D%FF
FG

H(<*.,'"(,"*#%C#*(#","I","*#D%,"+
*J#<

'@*#
D%FFF
G+

+

+

+

+

+

+

>1+,!+-$!(1+))$&'$#?!



provides INSIGHTS for refinementprovides METHODS forprovides INPUT to

Uncertainty Quantification 
Bayesian data-model fusion 

model emulation 
parameter estimation

Technology Assessment 
fossil fuels, renewables, 

carbon sequestration, geoengineering, 
adaptation

Trade-Off Analysis 
cost-benefit/expected utility, robust 

decisionmaking, precautionary 
principle, scenario discovery

Integrated Assessment  
DICE, RICE, FUND, Phoenix, GCAM, 

iESM, and new models

Computational Methods 
& Cyber Tools 

high-performance computation, 
sensitivity analysis, optimization

Earth System Modeling 
& Analysis 

simple climate models, ice sheet  
models, GCMs, Earth system models

Coupled Ethical-
Epistemic Analysis 
ethical analysis, justice, value 

judgments in science and society

Stakeholders & 
Decisionmakers 
objectives, preferences, 

constraints, mental models
Research 

Interactions
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Our workshop has focused on these three issues with attention being given to 
these other parts of the decision making process.
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Integrated 
Assessment 
Model (IAM)

Earth 
System 

Model (ESM)

Impacts, Adaptation 
and Vulnerabilities 

Model (IAVM)

Scenarios 
Sensitivities 
Time Scales

Climatic 
Changes

Climatic 
Changes

Adaptation 
Impacts 

Vulnerabilities
Scenarios?

Social Cost 
of Carbon

Adaptation 
Strategy

Scenarios 
Sensitivities 
Time Scales
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This brings us back to some of the tools and 
techniques being discussed here… 



Fundamental uncertainties exist for  
projections of future climate

The uncertainties fall into a few broad categories: 
- observational uncertainty 
- forcing or scenario uncertainty 
- model uncertainty ! structural, parametric (i.e., right physics, right settings) 
- natural/internal variability 
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Goals  
1. Can we separate uncertainties between Global v. Regional response? 
2. How do we compare ensemble approaches? MME v. PPE v. ICE 
3. How does structural uncertainty in regional changes assessed?



global mean temperature projections in CMIP3 and CMIP5
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global mean temperature projections in CMIP3 and CMIP5
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At global scales, IPCC archives provide a set of possible futures 
with specific models and forcing scenarios. 

These can be used for regional impacts & adaptation. 



The Pattern Scaling approach:  
A Method for Regional Model Predictions 

P (x, y, z, t) = T (t)p(x, y, z)

Tebaldi & Arblaster (2014, Climatic Change)

RCP:   2.6                                 4.5                                   8.5



The Problem: Model Predictions have 
multiple sources of uncertainty… 

" Epistemic uncertainty:  
getting the model right 
(the right model physics & 
right structure)

Example Work at Penn State: 
Developing Global Teleconnection Operators (GTOs) 

to estimate structural uncertainty in regional response  
to global Sea Surface Temperature patterns 

Li, Forest, & Barsugli (2012, J. Geophys. Res.)  
Comparing two methods to estimate the sensitivity  

of regional climate simulations to tropical SST anomalies 

Tsai, Forest, & Wagener (2014, Clim. Dynamics)  
Estimating the regional climate responses over river basins  

to changes in tropical sea surface temperature patterns



! Controls on:  
" Long-term warming!
" Delay by ocean                

.!
" Net forcing!

! Uncertainties in:  
" Climate Sensitivity!
" Rate of Ocean Heat 

Uptake!
" Forcing by: Aerosols, 

Carbon-cycle, Land-
use, Natural GHG 
Emissions, etc.

What matters for long-term climate 
prediction?
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Climate Sensitivity is the equilibrium 
response of the climate to a constant forcing
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Figure 9.1 from 
IPCC AR3 (2001)

Green:  EBM 
response 

Red:  GFDL R15a 
response 

T2x = ECS = 
Equilibrium 

Climate 
Sensitivity 

TCR =  Transient 
Climate 

Response



Major Climate Projection Uncertainties
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Consider the energy balance equation for the change in 
global-mean surface temperature (!T) from equilibrium: 

Change in global 
mean heat content 

Future 
Forcings

Net 
Feedbacks  
! =  1/S

Flux of heat 
into deep-

ocean
Conceptually:  This is a good framework for organizing where the 
uncertainty exists.   
In practice:  For state-of-the-art models, each uncertainty is an 
aggregate quantity and cannot be identified with any one specific model 
component or process. 



Uncertainty in Atmospheric Model 
Feedbacks
" Uncertainty in Planck, Water Vapor, Lapse Rate, Cloud, Albedo, 

and ALL Combined

17

(IPCC WG1 AR5 Figure 9.43)



Uncertainty in  
Equilibrium  
Climate Sensitivity

" IPCC Range:  1.5-4.5 ºC!
" Box 12.2 Figure 1!
" Multiple approaches 

based on di#erent 
methodologies and 
observational data/
proxies. 
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Work by our groups:



!How are the marginal PDFs 
impacted? 

!Extending model 
diagnostics with the new 
model

All Diagnostics start in 1941 

Diagnostics end in 1990 
Diagnostics end in 2000 
Diagnostics end in 2010

p(Seff): Extending Diagnostic
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Libardoni, Forest, & Sokolov (In prep)



p(Seff): Paramater Probability Distribution
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(Libardoni & Forest, 2013) 

Both use Same 
Diagnostics

!How are the marginal PDFs 
impacted? 

!Changing the model and 
forcings
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Libardoni, Forest, & Sokolov (In prep)



So this begins to address global scale 
uncertainties…

" How do we start assessing uncertainties at regional 
scales?

21



What are Drivers of Regional Extremes? 
Example: Polar Vortex in January 2014

SST patterns are a primary driver with land surface 
and sea-ice potentially being as important. 
Implies that regional changes require better 

estimates of ocean variability. 22



Can we quantify structural uncertainty in 
model response at regional scales?  

" Alternatively, how can we go beyond the IPCC/CMIP 
multi-model ensemble to assess climate risk?!

" How: Create idealized experiments with “known” 
forcings to provide metrics (or framework) for 
comparing model response at regional scales!

" Purpose: Estimate the teleconnection response that 
adds to the mean climate response pattern.!

" NB: According to the physics community, 
teleconnections are second-order cumulant stats.



Example:  
Teleconnection

! Response to 
Nino4  

! Seasonal Mean 
Temperature on 
850hPa surface 

DJF

JJA

NINO4

NINO4

24



Global Teleconnection Operator: GTO  "
Estimate the ensemble-mean response, Rj, to 
the ΔSST forcing, Fi

Estimate Global Teleconnection Operator, Kij, from: !
 !

Repeat this estimate for all SST anomaly locations in tropics!
Patch Method: Barsugli and Sardeshmukh (2002, J. Climate)!
Random Patch Method: Li, Forest, & Barsugli (2012, JGR-A) 25



GTO Experiments  
(X = complete, O = in progress)

Models
Resolution NCAR CAM GFDL 

AM2
HadAM3 
(CPDN)CAM3.1 CAM3.5 CAM4 CAM5

T31 X
T42 X
T85 X

FV0.9x1.25 X
FV1.9x2.5 X X X X X* O* 

FV4x5 X
HOMME_N30 X

*GFDL AM2 (2.0x2.5),  
HadAM3 (2.5x3.75)

NOTE2:  GTO for HadAM3:  a new ClimatePrediction.net experiment, >10k simulations
26

NOTE1: Ensemble size with n=400 is typically sufficient.



Testing for Structural Uncertainty 
GTO: Sensitivity Maps (!"#)

CAM3.5

CAM3.1

GFDL
AM2.1

CAM5

CAM4

Rj: Central North 
America  

Midwest Agriculture  
JJA  Precip

Comparing 
Physics

All use FV1.9x2.5 27



Testing for Structural Uncertainty 
GTO: Sensitivity Maps (Kij)

CAM5 
HOMME
ne30

CAM5 
FV1.9x2.5

CAM5 
T31Rj: Central 

North America  

Midwest 
Agriculture 

JJA  Precip

Comparing 
DyCore



Application to Mississippi River Basin (JJA)

29

T850

Precip

Work by Judy Tsai (PSU) and Thorsten Wagener (Bristol)



Application to Amazon River and Huang He 
Reconstruct T and Precipitation based on Green’s 
function response to observed SST: R(t) = Kij*SST(t,xi)

Work by Judy Tsai (PSU) and Thorsten Wagener (Bristol)



Running CESM ensembles for decision relevant problems

31

Goal:  To add additional information on 
initial condition uncertainties 



Running CESM ensembles for decision relevant problems

!
!
!
!
Figure 1.  Map of the analysis regions considered in this study (highlighted by white 
boxes): Northern hemisphere (Region 1), United States (Region 2), Midwestern United 
States (Region 3), and central Illinois (Region 4). 
!
!
! !

Longitude

La
tit
ud
e
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Goal:  To add additional information on 
initial condition uncertainties 

Focus on representing climate information at regional scales

1
2

3,4

Sriver et al. (2015, GRL)



Running CESM ensembles for decision relevant problems

!
!
!
Figure 2.  Time series of summer average temperature anomalies, averaged over the 
different regions highlighted in Figure 1, for the CESM ensemble (A-C) and 34 different 
CMIP5 models (D-F).  Blue and red curves represent individual simulations from the 
CESM and CMIP5 ensembles, respectively.  Gray curves indicate ensemble means, and 
black curves represent observational surface temperature from HadCRUT3 (Brohan et al., 
2006).  The Mean RMSE is the average of the root mean squared error between the 
model simulations and the observational time series for overlapping periods.  Projections 
are based on RCP8.5 forcing scenario.  All anomalies are referenced to the period 1986-
2005. 
 
  

Mean RMSE=0.18 C

Mean RMSE=0.41 C

Mean RMSE=1.06 C

Mean RMSE=0.20 C

Mean RMSE=0.43 C

Mean RMSE=1.22 C

A.

B.

C.

D.

E.

F.

CESM CMIP5
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1.50 Member Initial Condition Ensemble:  1850-2100 
2.Based on unique initial condition from 5000 yr control 
3.Total Simulation years: 17,500 (150 h

PSU CESM Ensemble IPCC CMIP5

Sriver et al. (2015, GRL)



there are fundamental uncertainties about  
projections of future climate

The uncertainties fall into a few broad categories: 
- observational uncertainty 
- forcing or scenario uncertainty 
- model uncertainty ! structural, parametric 
- natural/internal variability 

The magnitudes of the projection uncertainties vary in space and time; smaller 
spatial and temporal scales ! greater uncertainties. 

Climate projections may also exhibit systematic biases. 

Failing to account for biases and the full range of uncertainties can lead to 
overconfident (and unhelpful) projections.    

We are working to incorporate all these into decision-making frameworks 

Next: How do we assess uncertainty at regional scales directly? 
34



Running CESM ensembles for decision relevant problems
!

!

!
!
Figure 4.  Survival function (1-cumulative frequency) of summer block maxima of daily 
surface temperature anomalies (1956-2005) for the CESM ensemble (A-C) and CMIP5 
models (D-F), averaged over different spatial areas shown in Figure 1: United States 
(Region 2), the Midwest (Region 3), and central Illinois (Region 4).  Blue curves (A-C) 
represent individual CESM simulations (50 total), and red curves indicate individual 
simulations from different CMIP5 models (34 total).  Black circles represent gridded 
observations (Maurer et al., 2002).  Temperature fields from all CMIP5 models and 
gridded observations are interpolated to the CESM model resolution. 
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35Sriver et al. (2015, GRL)



Summary
Goals  
1. Can we separate uncertainties between Global v. Regional response? 
— Pattern scaling approaches suggest yes but formal assessment is needed. 

2. How do we compare ensemble approaches? MME v. PPE v. ICE 
— Multiple estimates with similar results. Does each have a place? 

3. How does structural uncertainty in regional changes assessed? 
— Proposing metrics for this uncertainty is difficult. 
— Teleconnections (aka second-order cumulant statistics) are one option. 
— The GTO estimates the first-order linear response to SST patterns and can be 
used for emulations. 



Thank you!  
mailto:ceforest@psu.edu

Questions?

mailto:ceforest@psu.edu

