Uncertainty Quantification and Reduction in Complex Earth System Models through Exploratory Data Analyses and Calibration

Z. JASON HOU

Pacific Northwest National Laboratory, Richland WA, USA
ICTP Workshop on UQ in Climate Modeling and Projection, Trieste, Italy
July 16 2015
Sources of Uncertainty

- Complex system (e.g., climate): multi-phase, multi-component, involves multiple discipline processes at multiple scales

- High-dimensional parameter space, inadequacy of knowledge, spatiotemporal variability and heterogeneity, resolution and scaling issues
Sources of Uncertainty (2)

- **Model (structural) uncertainty**
 - Model inadequacy, bias, discrepancy, simplifications, approximations, lack of knowledge of the physical processes and/or model initial/boundary conditions (exist even if the model parameters are perfectly known)

- **Parameter uncertainty**
 - Non-informative prior knowledge, non-measurable, measurement errors, under- or down-sampling, non-uniqueness (ill-posed problem), inaccurate calibration (sometimes ‘right answer for wrong reason’)
Sources of Uncertainty (3)

- **Data/forcing uncertainty**
 - Instrumental errors, consistency, gaps, resolution, scaling

- **Natural uncertainty/variability/heterogeneity**
 - Intrinsic quantities vary over time, over space, or across individuals in a population
 - Physical processes/mechanisms/features vary over space, time, and individuals
Exercise 1: How likely is it that the spinner will land on a blue space?
Given prior information, the probability mass function (pmf) is:

- \(P(\text{color}=\text{red}) = \frac{3}{12} \)
- \(P(\text{color}=\text{yellow}) = \frac{1}{12} \)
- \(P(\text{color}=\text{green}) = \frac{3}{12} \)
- \(P(\text{color}=\text{blue}) = \frac{5}{12} \)
Exercise 2: selection of wind farm sites given hourly averaged wind speed
To replace the subjective notion of confidence with a mathematically rigorous measure, honoring and committed to:

- **Hard/direct information:**
 - Experimental observations
 - Theoretical arguments
 - Expert opinions

- **Soft/indirect information**
 - Inverse methods (Inference, Calibration)
Expressions and Measures of Uncertainty

Summary

- Mean (bias/accuracy) and confidence intervals (precision)
- Possible summary statistics (skewness, kurtosis, median, mode, percentiles)
- Probability density/mass function (for continuous / discrete random variables, respectively), can fully describe accuracy/precision of a variable

- Entropy $H(S) = - \sum p_i \log_2 p_i$

- Kullback–Leibler divergence = relative entropy = information gain
 $$D_{KL}(P||Q) = \sum_i P(i) \ln \frac{P(i)}{Q(i)}.$$
An example UQ for Decision Making

Well quantified uncertainty → reliable decision making

Example:
- Input variable (parameter): the color of the block that the spinner will land on (uncertain outcome)
- Formula (forward model): Bet 1€, get 0€ on blue; 1€ on green; 2€ on red; 4€ on yellow.
- Return (model output): the return after 60 plays

Approach:
- Most likely estimate?
- Perturbation-based scenarios?
- Probability mass function?
 - Yes, go for it.
 - adequate number of plays required for validation
R code simulating the return for decision making verification (mathematical)

```r
N=120
return=sample(c(-1,0,1,3), N, replace = TRUE, prob = c(5/12,3/12,3/12,1/12))
cum.return=cumsum(return)
par(mfrow=c(2,1))
plot(return,type='l',lwd=2,xlab='round of bet',ylab='return(euro)')
plot(cum.return,type='l',lwd=2,xlab='round of bet',ylab='accumulated return(euro)')
```

Observe adequate number of plays for validation (actual)

Update the pmf based on the observations for more accurate prediction of return (e.g., the bottom blocks have higher odds, due to gravity effect?)
A convincing UQ study might involve, but is not limited to:

- Reliable quantification of a input uncertainty (parametric, forcing, natural variability, etc.)
- Exploratory experimental design (e.g., efficient sampling)
- Accurate forward model
- Updating the prior knowledge (e.g., pdfs) given observations
- Quantification and reduction of output uncertainty (accuracy & precision)

Focuses of this presentation

- Derivation of pdfs for exploratory experimental design (EED)
- Efficient sampling for EED
- Bayesian inversion
- Computational challenges and solutions
Derivation of pdfs

Summary statistics:
Min. 1st Qu. Median Mean 3rd Qu. Max.
2.0 10.8 11.5 11.3 12.0 14.1

[Q1 – 1.5×IQR Q3 + 1.5×IQR]: [9.1, 13.7]
Mean: 11.3
stdev: 1.0
99% CI: [8.8, 13.9], actual 97.8%

Discussion
- Normal distribution? Uniform?
- Most likely estimate for system risk analysis?
- Perturbation-based scenarios?
- Probability density function?
 - Yes, fully represented possibilities.
 - But how to derive the pdfs for sensitivity analysis and/or model calibration?
Derivation of pdfs

Other issues:

- Truncated distributions due to physical bounds
- Bimodal distributions
- Tailed distributions
- Parameter spanning several orders of magnitude
- Significant amount of zeroes in measurements
- No observations/measurements
R `fitdistrplus`:
- `require(fitdistrplus)`
- `set.seed(1)`
- `dat <- rnorm(50,0,1)`
- `f1 <- fitdist(dat,"norm")`
- `plotdist(dat,"norm",para=list(mean=f1$estimate[1],sd=f1$estimate[2]))`

Provides a closed formula for each of the following distributions:
- "normal", "lognormal", "Poisson", "exponential", "gamma", "nbinomial",
- "geometric", "beta", "uniform“, and "logistic“, and so on.
- Tailed (e.g., packages heavy/spd)
- Bimodal (e.g., mixtools)
- Truncated (e.g., gamlss.tr)
Pdf training/fitting

Empirical and theoretical densities

Q-Q plot

Theoretical quantiles

Empirical quantiles

Empirical and theoretical CDFs

P-P plot

Theoretical probabilities

Empirical probabilities
In practice, measurements might be missing.

Given statistical knowledge from literature/databases/experiences, close-form pdfs can be derived using minimum-relative-entropy (MRE) concept (Hou and Rubin 2005):

\[
f(x) = \frac{\sqrt{\frac{\gamma}{\pi}} \exp \left[-\gamma \left(x + \frac{\beta}{2\gamma} \right)^2 \right]}{\Phi \left[\sqrt{2\gamma \left(U + \frac{\beta}{2\gamma} \right)} \right] - \Phi \left[\sqrt{2\gamma \left(L + \frac{\beta}{2\gamma} \right)} \right]} \quad L \leq x \leq U
\]

\[
f(x) = \frac{\beta e^{-\beta x}}{e^{-\beta L} - e^{-\beta U}} \quad L \leq x \leq U
\]
What’s next?

- **Well quantified uncertainty → systematic ensemble design (with efficient sampling)**
 - Sampling the prior pdfs using Latin Hypercube Sampling (LHS) or Quasi Monte Carlo (QMC)
 - Applications:
 - Sensitivity analysis
 - Parameter ranking and screening
 - Parameter dimensionality reduction
 - Development of predictive models
 - Development of surrogates for model calibration
- **Sampling the posterior (e.g., MCMC) with observational data available**
 - Stochastic calibration
 - Improved parameter values → improve model predictive capability and reduced uncertainty → reliable risk assessment and decision making
 - Sampling with direct numerical simulator vs with surrogates
Ensemble design by sampling the pdf

Designs of $p = 4$ dimensional, $N = 81$ member ensembles. Depicted are scatterplots of the designs projected onto two-parameter subspaces. Lower left: Grid design. Upper right: Latin hypercube design. Note each point in grid scatterplots represents $32 = 9$ different ensemble points: due to a grid design's collapsing property, unique points in 4-dimensional parameter space can project onto identical points in a 2-dimensional subspace. (Urban et al 2010)
Ensemble design by sampling the pdf

- Effective selection of a subset of individuals from within a statistical population to estimate characteristics of the whole population
 - Representative of the parameter space
 - Avoid clumping and gaps (space filling without redundancy)
 - Avoid extrapolations
Sampling to fill the probability space

32 samples for a 2D probability space
Sampling to fill the probability space

256 samples for a 2D probability space
Sampling with hierarchical mixed parameters

- Hierarchical parameters: hyper-parameter or scenarios (e.g., RCP for CMIP5)
- Mixed types (discrete vs continuous, Normal vs Uniform vs other distribution types, independent vs correlated subset parameters)
- Sampling with hierarchical mixed parameter types can be done? Sure thing!
 - Generate samples in the probability space (uniform)
 - Projection to parameter space via inverse CDF (quantile) function
 - Apply Cholesky decomposition onto subset of samples where appropriate for correlated subset parameters
Uncertainty quantification/reduction framework – land surface modeling

Parameterization
- Candidate parameters of interest

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>f_{max}</td>
<td>Max fractional saturated area, from DEM</td>
</tr>
<tr>
<td>C_s</td>
<td>Shape parameter of the topographic index distribution</td>
</tr>
<tr>
<td>f_{over}</td>
<td>Decay factor (m$^{-1}$) for fisat</td>
</tr>
<tr>
<td>b</td>
<td>Clapp and Homberger exponent</td>
</tr>
<tr>
<td>K_s</td>
<td>Hydraulic conductivity (mm s$^{-1}$)</td>
</tr>
<tr>
<td>θ_s</td>
<td>Porosity</td>
</tr>
<tr>
<td>Ψ_s</td>
<td>Saturated soil matrix potential (mm)</td>
</tr>
<tr>
<td>d_{drain}</td>
<td>Decay factor (m$^{-1}$) drainage</td>
</tr>
<tr>
<td>$q_{\text{drain,max}}$</td>
<td>Max drainage (kg m$^{-2}$ s$^{-1}$)</td>
</tr>
<tr>
<td>S_y</td>
<td>Average specific yield</td>
</tr>
</tbody>
</table>

Prior information (mean, variance, bounds)

Entropy method
Minimum Relative Entropy (MRE)

$$f_{\text{MRE}}(m|I) = \prod_{j=1}^{p} \frac{\beta_j e^{-\beta_j m_j}}{e^{-\beta_j l_j} - e^{-\beta_j u_j}}$$

Quasi Monte Carlo sampling

Realizations of parameter sets

CLM forward modeling

Output responses:
- Latent heat fluxes (LH)
- Sensible heat fluxes (SH)
- Total runoff

Output statistics:
1. Natural variability of LH/SH/runoff
2. Propagation of uncertainty of input parameters

Multi-variate generalized linear model analysis and significance statistical tests:
1. Rank of significance of input parameters
2. Relationships between LH/SH/runoff and inputs

Model reduction and adaptive sampling
Application: UQ in Land Surface Modeling
Application of UQ in Land Modeling
Application of UQ in Land Modeling

Graphs showing LH and SH values over different months for US-SO2.
Sensitivity analyses

- ANOVA/MARS/Sobol’s sensitivity index
- Model selection of nonlinear regression models
 - $R^2 = \frac{FSS}{TSS} = 1 - \frac{RSS}{TSS}$
 - Akaike Information Criterion
 \[AIC = 2k - 2 \cdot \ln L \]
 AIC not only rewards goodness of fit but also includes a penalty that is an increasing function of the number of estimated parameters
 - Bayesian Information Criterion
 \[BIC = -2 \cdot \ln L + k \ln (n) \]
 Prefers a model with fewer explanatory variables, or better fits, or both
Parameter Dimensionality Reduction

- Parameter dimensionality reduction can help reduce over-fitting and make inverse problems less ill-posed.
- Parameter dimensionality reduction by evaluating parameter identifiability, which may include
 - Observability
 \[R_{o,i} = \frac{FSS_i}{TSS} \]
 - Differentiability
 \[R_{d,i} = \frac{FSS_i}{FSS_i + \sum_{j \neq i} FSS_{ij}} \]
 - (non)-linearity/simplicity
 \[R_{s,i} = \frac{FSS^{(1)}_i}{\sum_k FSS^{(k)}_i} \]

\[FSS_i = \sum_k FSS^{(k)}_i, \text{ } k \text{ is the order of the explanatory variable } p_i. \]
System classification

Sensitivity of LH

Sensitivity of runoff

(Ren et al 2015)
Parameter sensitivity analysis and classification show that we can group the watersheds into different classes, within each the parameter dimensionality can be reduced in the same way. And the reduced dimensionality makes the inverse problems less ill-posed.
Sampling the posterior -- inversion

Ensemble simulations based parameter ranking/screening

- Reduced parameter dimensionality
- Direct inversion with reduced unknowns and parallel computing

- Surrogates
- Surrogate-based inversion with all inversion tools
- Surrogate validated
Entropy-Bayesian Inversion

- **Bayesian updating:**
 \[f(m|d,l) \propto f(d|m,l)^* f(m|l) \]

- **Prior pdf**
 \[f_{M|I}(m|l) = \prod_{j=1}^{p} \frac{\sqrt{\gamma_j}}{\pi} \exp \left[-\gamma_j (m_j + \frac{\beta_j}{2 \gamma_j})^2 \right] \]

- **Likelihood function**
 \[f_{D|M,\Sigma,I}(d^*|m,\sigma,I) = \prod_{i=1}^{K} \prod_{j=1}^{N_i} \frac{1}{\sqrt{2 \pi \sigma_{ij}}} \exp \left\{ -\frac{1}{2 \sigma_{ij}^2} \left[d_{ij}^* - g_{ij}(m) \right]^2 \right\} \]

- **Posterior pdf from entropy-Bayesian inversion**
 \[f_{M|D,I}(m|d^*,l) \propto \frac{f_{M(m)} \prod_{i=1}^{K} \prod_{j=1}^{N_i} \exp\left(-\frac{1}{2 \sigma_{ij}^2} \left(d_{ij}^* - g_{ij}(m) \right)^2 \right)}{\int_m f_{M(m)} \prod_{i=1}^{K} \prod_{j=1}^{N_i} \exp\left(-\frac{1}{2 \sigma_{ij}^2} \left(d_{ij}^* - g_{ij}(m) \right)^2 \right) dm} \]
MCMC-Bayesian Inversion

Metropolis-Hasting sampling

a) Initialize a random vector \(\mathbf{m} \) from the prior distributions \(\{m_i^{(0)}, i = 1, \ldots, p\} \), where \(p \) is the number of parameters;

b) Generate a random variable \(m_i^*, i = 1, \ldots, p \) from the proposal distributions, and calculate the following ratio (note the probabilities in the formula are calculated using equation 2):

\[
\alpha = \min \left(p_{ra}, \frac{\text{prob}(m_i^* \mid m_{i-1}^{(1)}, m_{i+1}^{(1)}, \ldots, m_{i+2}^{(0)}, m_{i}^{(0)}, m_{i+1}^{(0)}, m_{i+2}^{(0)}, \ldots, m_p^{(0)})}{\text{prob}(m_i^{(0)} \mid m_{i-1}^{(1)}, m_{i+1}^{(1)}, \ldots, m_{i+2}^{(0)}, m_{i}^{(0)}, m_{i+1}^{(0)}, m_{i+2}^{(0)}, \ldots, m_p^{(0)})} \right),
\]

where \(p_{ra} \) is reference acceptance probability;

c) Generate a random value \(u \) uniformly from interval \((0,1)\);

d) If \(\alpha > u \), let \(m_i^{(1)} = m_i^* \); otherwise, let \(m_i^{(1)} = m_i^{(0)} \).

Repeating steps (b) to (d) by replacing index \((k)\) with index \((k+1)\), we can obtain many samples as follows: \(\{m_i^{(k)} : i = 1, \ldots, p, k = 0, 1, \ldots, n\} \), where \(n \) is the number of sample sets.
DR and AM

- **Delaying rejection (DR)**
 - a way of modifying the standard Metropolis-Hastings algorithm (MH) to improve efficiency of the resulting MCMC estimates
 - Upon rejection in a MH, a second stage move is proposed and therefore allows partial adaptation of the proposal within each step of the Markov chain.

- **Adaptive Metropolis (AM)**
 - Adaptively tuning the proposal distribution in a MH based on the past sample path of the chain.

- **DRAM**: combining the above two.
MCMC-Bayesian example

An example problem using MCMC DRAM inversion
MCMC-Bayesian example

- MCMC-Bayesian inversion for estimating hydrological parameters using latent heat fluxes, runoff, and other metrics
Time-frequency decomposition of simulation errors

Model simulation errors

Wavelet analysis of simulation errors

a) simulation errors

b) simulation error Wavelet Power Spectrum

c) Global Wavelet Spectrum

d) average variance of yearly component

Model simulation errors

Wavelet analysis of simulation errors

a) simulation errors

b) simulation error Wavelet Power Spectrum

c) Global Wavelet Spectrum

d) average variance of yearly component
Time-frequency decomposition of ensemble errors

[Graphs showing wavelet power over scale (days) for different classes]
Decomposition of posterior ensemble errors

Power spectrum of simulation errors before parameter inversion

Power spectrum of simulation errors after parameter inversion

[Graphs showing wavelet power against scale (days)]
It is possible to identify model structural errors by quantifying input parameter uncertainty and fully exploring the input parameter space.

(Ensemble) model simulation errors provide information about the processes (and/or parameters) with major contributions to the errors.

Assuming no systematic errors in the conceptual models and observational data, the model structural errors can possibly be separated after parametric uncertainty is reduced.

The remaining errors would provide guidance on further model improvement, e.g., by modifying the physical models or parameterizations that numerically affect the errors at the major spatial-temporal scales.
MCMC-Bayesian Inversion

- Practical implementations of MCMC-Bayesian to complex earth system modeling (e.g., CLM)
 - Surrogate model validation
 - Filtering of unreasonable parameter sets with support vector machine (SVM)
 - Kriged model for discrepancy
 - Correlated errors/misfits
 - Scalable adaptive chain ensemble sampling (SACHeS)
MCMC-Bayesian Inversion

- Demonstrated using various classic inverse problems as well as CLM, oil/gas exploration, and environmental remediation problems
- Evaluated the sensitivity of inversion results to initial values of parameter, data resolution, data worth/redundancy, climate and soil conditions, acceptance probability, width of proposal distributions, multi-chain calculations, and Bayesian model averaging
Software to be released

Other than the standard packages such as LHS/QMC/ANOVA/MARS, our unique capabilities include:

- Prior pdf derivation and sampling software (MREQMC)
- Scalable calibration enabling multi-chain parallel computing (SACHES)
Parameter dimensionality can be reduced through parameter screening based on efficient sampling, response surface analysis.

Complex system can be classified into simpler ones by clustering based on parameter identifiability/transferability.

Reduced dimensionality helps to evaluate impacts of most significant parameters/factors, and make inverse/calibration problems less ill-posed.

Scalable chain-ensemble sampling has the potential to calibrate complex climate models that are computationally demanding.
Discussion topics

- Importance of and approaches for stochastically representing uncertainties
- Fitting probability density functions (pdfs) with direct measurements
- Derivation of probabilistic distributions in explicit forms
- Statistical tests on checking necessity of parameter transformations
- Effects of reliable pdfs on surrogate development, SA, and calibration
- Efficient sampling of joint pdfs of hierarchical mixed parameters or factors
Pdf provides a better measure of uncertainty compared to other summary statistics.

Perturbation method or one-factor-a-time sensitivity analysis usually is not meaningful.

Compared to ANOVA/MARS, random forest approach can be used to develop localized surrogates, which might require fewer numerical simulations to achieve reliable response surfaces.

Adaptive sampling (response surface gradient -based) is another way to reduce required numerical simulations.

Questions? mailto:zhangshuan.hou@pnnl.gov