Applications of Uncertainty Quantification (UQ) in Regional and Global Climate Modeling: Parametric Sensitivity Analysis and Calibration/Autotunng

Yun Qian

Pacific Northwest National Laboratory, Richland, WA, USA

Workshop on Uncertainty Quantification in Climate Modeling and Projection
The Abdus Salam International Center for Theoretical Physics, Trieste, Italy

1. Parametric sensitivity study based on CAM5 (forward modeling)
> Precipitation (including extremes and diurnal cycle)
> Structure error
> Short ensemble simulations strategy and process-level calibration
> Aerosol effects
2. Calibration and autotuning (inverse modeling)
> Global model CAM5 with a focus on convective precipitation ratio
> Regional model WRF and RegCM3 with a focus on convection parameterization schemes

Science Questions:

1. Are there parameters that can dramatically influence the precipitation in CAM5?
2. If yes, how does the parametric sensitivity vary with scale/region/season?
3. Does the parametric sensitivity change with the sampling method or accompanying parameters?
4. What is the relative contribution from individual parameters versus their interactions?

Answering these questions could help:

1. better understand the CAM5 model behavior and physical processes associated with the parameter uncertainties and external forcings
2. guide hand-on model tuning
3. calibrate and optimize model performance

CAM5 Sensitivity Analysis (SA)

CESM/CAM5 Uncertain Parameters of Interest (C-Ensemble)

\#	Parameter Name	Range			Description	Namelist Prefix	File Name (.F90)
		Low	Default	High			
1 2	rhminh rhminl	$\begin{aligned} & 0.65 \\ & 0.80 \end{aligned}$	$\begin{gathered} 0.80 \\ 0.8875 \end{gathered}$	$\begin{aligned} & 0.85 \\ & 0.99 \end{aligned}$	Threshold relative humidity for stratiform high clouds Threshold relative humidity for stratiform low clouds	cldfrc_ cldfrc_	cloud_fraction cloud_fraction
3 4 5 6 7 8 9 10 11 12 13 14	alfa cO_Ind cO_ocn dmpdz ke tau ai as cdnl dcs eii qcvar	$\begin{gathered} 0.05 \\ 1.0 \mathrm{e}-3 \\ 1.0 \mathrm{e}-3 \\ -2.0 \mathrm{e}-3 \\ 0.5 \mathrm{e}-6 \\ 1800.0 \\ 350.0 \\ 5.86 \\ 0.0 \\ 100 \mathrm{e}-6 \\ 0.001 \\ 0.5 \end{gathered}$	$\begin{gathered} 0.10 \\ 0.0059 \\ 0.045 \\ -1.0 \mathrm{e}-3 \\ 1.0 \mathrm{e}-6 \\ 3600.0 \\ 700.0 \\ 11.72 \\ 0.0 \\ 400 \mathrm{e}-6 \\ 0.1 \\ 2.0 \end{gathered}$	0.60 0.01 0.1 $-0.2 \mathrm{e}-3$ $10.0 \mathrm{e}-6$ 28800.0 1400.0 23.44 $1.0 \mathrm{e}+7$ $500 \mathrm{e}-6$ 1.0 5.0	Maximum cloud downdraft mass flux fraction Deep convection precipitation efficiency over land Deep convection precipitation efficiency over ocean Parcel fractional mass entrainment rate Evaporation efficiency of precipitation Time scale for consumption rate deep CAPE Fall speed parameter for cloud ice Fall speed parameter for snow Lower bound on droplet number Autoconversion size threshold for ice to snow Collection efficiency aggregation ice Inverse relative variance of sub-grid cloud water		zm_conv zm_conv zm_conv zm_conv zm_conv zm_conv cldwat2m_micro cldwat2m_micro cldwat2m_micro cldwat2m_micro cldwat $2 m$ micro cldwat $2 m _m i c r o ~$
15	a21	10.0	30.0	50.0	Moist entrainment enhancement parameter	no nml	eddy_diff
16 17 18 19	criqc kevp rkm rpen	$\begin{gathered} 0.5 \\ 1.0 \mathrm{e}-6 \\ 8.0 \\ 1.0 \end{gathered}$	$\begin{gathered} 0.7 \\ 2.0 \mathrm{e}-6 \\ 14.0 \\ 5.0 \end{gathered}$	$\begin{gathered} 1.5 \\ 20.0 \mathrm{e}-6 \\ 16.0 \\ 10.0 \end{gathered}$	Maximum updraft condensate Evaporative efficiency Updraft lateral mixing efficiency Penetrative updraft entrainment efficiency	nml/add nml/add nml/add uwshcu_	uwshcu uwshcu uwshcu uwshcu
$\begin{aligned} & 20 \\ & 21 \\ & 22 \end{aligned}$	e_dust wsubimax Wsubmin	$\begin{gathered} 0.21 \\ 0.1 \\ 0.0 \end{gathered}$	$\begin{gathered} 0.43 \\ 0.2 \\ 0.2 \end{gathered}$	$\begin{gathered} 0.86 \\ 1.0 \\ 1.0 \end{gathered}$	Dust emission tuning factor Maximum subgrid vertical velocity for ice nucl Minimum subgrid vertical velocity for liquid nucl	$\text { aerosol_} \begin{gathered} x \\ x \end{gathered}$	aerosol_intr^ microp_aero microp_aero

> LLNL: C-Ensemble

- Latin Hypercube
- 22 parameters
- 1100 sample sets (forward simulations)
- Each simulation: 5yr
- Each parameters is sampled 1100 times

Surrogate Model: Generalized Linear Model (GLM)

GLM is a flexible generalization of ordinary linear regression that allows for response variables that have other than a normal distribution

$$
Y_{i}=\beta_{0}+\sum^{10} \beta_{j}^{*} p_{i, j}+\varepsilon_{i}, \quad \varepsilon_{i} \quad \stackrel{\text { iid }}{\sim} N\left(0, \sigma^{2}\right)
$$

GLM-fitted global precipitation versus the CAM5 simulations

Global mean Precip from CAM5 [mm/day]

Mean

95 ${ }^{\text {th }}$

Phase

Sensitivity of mean precipitation to C-Ensemble parameters

Sensitivity of $95^{\text {th }}$ precipitation to C-Ensemble parameters

CAPE consumption time scale (tau)

Relative contributions (\%) of individual parameter and their interactions (C-Ensemble)

Sensitivity of each parameter at different region/scale/season

> We investigated the sensitivity of precipitation characteristics to dozens of uncertain parameters mainly related to cloud processes in the CAM5.
> Most sensitive parameters to
Mean Precip: c0_Ind, rhminl, dcs, tau, dmpdz, and ke
Extreme Precip: tau (~50\% total variance), c0_Ind, dmpdz
Phase of Diurnal Cycle: ke, alfa and tau
*Precipitation not monotonically respond to tau (a turning point ~ 1.75 hours)
$>$ The influence of individual parameters does not depend on the sampling approach applied or concomitant parameters selected.
$>$ The total variance for precipitation is primarily contributed by the individual parameters (75-90\% in total), and their interactions contribute to the rest of total variance explained.
1100 C-Ensemble Variance

Pacific Northwest

Proudly Operated by Battelle Since 1965

Diurnal cycle and MCS propagation over central US

Land mean precipitation

Short ensemble simulations strategy and process-level calibration

Short (Few-day) Simulations for Efficient Model Evaluation, Tuning and Calibration

Process-level (e.g. cloud, convection) calibration

ACME Needs New, Efficient Strategies for Model Evaluation and Tuning

- High-resolution, multi-decade simulations are hugely expensive

Previous Successes

Fast processes, especially those related to clouds, are a major source of biases in current climate models

CAPT and Transpose-AMIP

SciDAC Multiscale

Total Cloud Fraction Difference, CAM5
4-min minus 30-min Time Step

Wan et al. (2014)

Short Simulations Task

- Explore few-day simulations for model tuning and sensitivity studies
- Two-phase investigation
- Parametric sensitivity experiments
- Automatic parameter tuning
- Extensive use of UQ techniques
- Sensitivity analysis

Qian et al. (2015), Guo et al. $(2014,2015)$,
Zhao et al. (2013)

- Model calibration and auto-tuning Yang et al. (2012, 2013, 2014), Zou et al. (2014)

Preliminary results:

- A framework for short-ensemble-based parametric sensitivity experiments
- 31×128 CAPT hindcasts for July 2008
- 1 degree resolution (ne30)
- Using the multi-instance capability for simulation bundling
- Finished within 3 days(!) on Titan
- Parametric sensitivity analysis
- 6 uncertain parameters related to turbulence and shallow convection
- Quasi Monte Carlo method for sampling parameter space
- Surrogate model for parametric sensitivity analysis

Parametric Sensitivity of Shortwave Cloud Forching ${ }^{\text {Gest }}$
 NATIONAL LABORATORY

Proudly Operated by Battelle Since 1965

Dependence of Model Sensitivity on Cloud Regime

Atmosphere Group, Short Simulations Task Team

Liquid Water Content (LWC) for day 5

Observation

Model Ensemble Mean

(b) Ensemble mean

Posterior joint 2D marginal distribution (uwshcu_rpen vs. r1shdet)

The joint 2D marginal PDFs are the results of integration across the other 4 dimensions of parameters.

Aerosol Effects

A New Approach to Modeling Aerosol Effects on East Asian Climate: Parametric Uncertainties Associated with Emissions, Cloud Microphysics and Their Interactions

Control Sensitivity

CESM/CAM5 Uncertain Parameters of Interest (A-Ensemble)

\#	Parameter Name	Range			Description	Namelist Prefix	File Name (.F90)	Pacific	verated by Batielle Since 1965
		Low	Default	High					
1	ai	350.0	700.0	1400.0	Fall speed parameter for cloud ice	cldwatmi	cldwat2m_micro	M	
2	as	5.86	11.72	23.44	Fall speed parameter for snow	cldwatmi	cldwat2m_micro	M	
3	cdnl	0.0	0.0	10.0e+6	Cloud droplet number limiter	cldwatmi	cldwat2m_micro	LGE	
4	dcs	100.0e-6	400.0e-6	$\begin{gathered} 500.0 \mathrm{e}- \\ 6 \end{gathered}$	Autoconversion size threshold for ice to snow	cldwatmi	cldwat2m_micro	M	
5	wsubmin	0.0	0.2	1.0	Minimum sub-grid vertical velocity	micropa_	microp_aero	LGE	
6	e_dust	0.21	0.35	0.86	Dust emission tuning factor		aerosol_intr	LGE	
7	e_sst	0.5	1.0	2.0	Sea salt emission tuning factor		progsseasalt_intr	LGE	
8	e_soag	0.5	1.5	2.0	SOA (g) emission scaling factor		emission file	LGE	
9	e_acnum	0.3	1.0	5.0	Number emission scaling factor for fossil fuel aerosol		emission file	LGE	
10	sol_factic	0.2	0.4	0.8	Solubility factor for the removal of interstitial aerosols in convective clouds		mz_aerosols_intr	LGE	
11	sol_facti	0.5	1	1	Solubility factor for cloud-borne aerosols in stratiform clouds		mz_aerosols_intr	LGE	
12	ref_dust	0.001	0.005	0.01	Visible imag refractive index for dust		```modal_aero_init_da ta```	LGE	
13	e_so2	0	1	2	emission tuning factor for SO 2				
14	e_bc	0	1	3	emission tuning factor for BC				
15	e_pom	0	1	3	emission tuning factor for POM		$\begin{aligned} & \text { modal_aero_init_da } \\ & \text { ta } \end{aligned}$	LGE	
16	e_so4f	0	0.025	0.05	emission tuning factor for sulfate		```modal_aero_init_da ta```	LGE	

> PNNL: A-Ensemble

- Quasi Monte Carlo
- 16 parameters
- 256 sample sets (forward simulations)
- Each simulation: 5-yr
- Each parameters is sampled 256 times

Response to SO2 emission increase based on 256

 simulations

Fractional contributions of the 16 perturbed parameters

2. Convective Precipitation Calibration: CAM5 ZM scheme

Observation

(e) mean $=2.77$

(f) bias $=0.71$
$\mathrm{rmse}=1.42$
$\mathrm{r}=0.87$

	1		\mid		\mid	\mid	
1	2	3	4	6	9	12	$\mathrm{~mm} \mathrm{day}^{-1}$

Annual mean deep convective (top), stratiform (middle) and total (bottom) precipitation for 2001-2010 from TRMM/GPCP observation (left) and standard CAM5 (right)

Parameters in ZM scheme: Default, minimum and maximum values

Parameter	Default	Minimum	Maximum	Description[units]
C0_Ind	0.0059	0.001	0.045	Deep convective precipitation efficiency over land [m^{-1}]
C0_ocn	0.045	0.001	0.045	Deep convective precipitation efficiency over ocean [m^{-1}]
K_{e}	$1.0 \mathrm{E}-06$	0.5E-06	10E-06	Evaporation efficiency of precipitation $\left[\left(\mathrm{kg} \mathrm{m}^{-2} \mathrm{~s}^{-1}\right)^{-1 / 2} \mathrm{~s}^{-1}\right]$
$\boldsymbol{\alpha}$	0.1	0.05		Maximum cloud downdraft mass flux fraction [fraction]
CAPE_{0}	70	20	200	Threshold value of CAPE for deep convection [$\mathrm{m}^{2} \mathrm{~s}^{-2}$]
PE_Ind	-1.0E-03	-2.0E-3	0	Parcel fractional mass entrainment rate over land [m^{-1}]
PE_ocn	-1.0E-03	$-2.0 \mathrm{E}-3$	0	Parcel fractional mass entrainment rate over ocean $\left[\mathrm{m}^{-1}\right]$
τ	3600	1800	28800	CAPE consumption time scale [s]
$\mathrm{D}_{\text {ice }}$	25	10		Radius of detrained ice from deep convection [$\mu \mathrm{m}$]

Evaluation Metric: Cost Function

$$
E(\boldsymbol{m})=\log \left[\frac{\left(\sigma_{\text {obs }} / \sigma_{\text {mod }}+\sigma_{\text {mod }} / \sigma_{\text {obs }}\right)^{2}\left(1+R_{0}\right)^{k}}{4(1+R)^{k}}\right]
$$

MVFSA: Multiple Very Fast Simulated Annealing (a stochastic importance sampling algorithm)

$$
m_{i}^{k+1}=m_{i}^{k}+y_{i}\left(m_{i}^{\max }-m_{i}^{\min }\right)
$$

Optimized Results

Annual mean deep convective (top), stratiform (middle) and total (bottom) precipitation simulated by CAM5 with the optimized parameters.
(a) bias $=0.61 \quad$ rmse $=0.99 \quad r=0.89$

Meridional distributions of the ratios of deep convective vs. total precipitation from the observation (black) and two model simulations over four regions.

Frequency distributions of daily precipitation as a function of

 rain rates. The rain rates at $95^{\text {th }}$ percentile are also given

Impact on Circulation

South Asia

Eastern Pacific

Calibrating the Convective Precipitation for the
 Community Atmosphere Model (CAM5)

Objective

- Calibrate the convective precipitation in the global climate model CAM5 and study the subsequent impact of improved convection.

Approach

- Applied an Uncertainty Quantification (UQ) technique to improve Zhang-McFarlane (ZM) deep convection scheme in CAM5.
- Examined the sensitivity of precipitation and circulation to key parameters in the ZM scheme in CAM5, using a stochastic importance-sampling algorithm.
- Evaluated the subsequent impact of improved deep convection on the global circulation and climate.

Frequency distributions of daily precipitation as a function of rain rates observed and simulated with the standard and optimized parameters over four regions. The numbers denote the rain rates at the 95th percentile.

Impact

- Simulated convective precipitation is most sensitive to the parameters of Convective Available Potential Energy (CAPE) consumption timescale, parcel fractional mass entrainment rate, and maximum downdraft mass flux fraction.
- As the optimal parameters are used, positive impacts on some aspects of the atmospheric circulation and climate are found, including mitigated double ITCZ problem, improved East Asian monsoon precipitation, and annual cycles of the cross-equatorial jets.

A regional model study on K-F convection scheme in WRF model

Illustration of Cumulus Processes

1. Pd: Downdraft Mass Flux Rate
2. Pe: Environmental Air Entrainment Rate
3. Pt: maximum TKE in sub-cloud layer
4. Ph: starting height of downdraft above cloud base
5. Pc: average consumption time of CAPE

$$
\begin{aligned}
& D M F / U M F=2 \times(1-R H) \times 2^{P d}, P d \in(-1,1) \\
& \delta M_{e} / M_{u 0}=\frac{-0.03 \cdot \delta p}{R} \times 2^{P e}, P e \in(-1,1)
\end{aligned}
$$

Parameter	Default	Minimum	Maximum	Description
Pd	0	-1	1	Coefficient related to the downdraft mass flux rate Coefficient related to
Pe	0	-1	1	Entrainment mass flux rate maximum TKE in sub-cloud layer $\left(\mathrm{m}^{2} \mathrm{~s}^{-2}\right)$
Pt	5	3	12	starting height of downdraft above cloud base (hPa)
Ph	150	50	350	averaged consumption rate of CAPE (s)

Model configuration and experiment design

- South Great Plain ($25^{\circ} \mathrm{N}-44^{\circ} \mathrm{N}, 112^{\circ} \mathrm{W}-90^{\circ} \mathrm{W}$)
- Resolution: 25 KM
- Simulation period: May 1 to July 1, 2007
- Analysis: June 2007
- UW 1/8-degree gridded daily data (P, T, Wind)
 Each simulation:3-day

- Microphysics: Morrison vs. WSM6
- Radiation: RRTMG vs. CAM
- Planetary boundary layer: MYJ
- Surface physics: Noah Scheme
- Cumulus parameterization: New K-F cumulus scheme

Transferability of sensitivity and parameter tuning across phycrimalthust

processes, spatial scales, and climatic regimes (Yan et a., 2013)

Uncertainty quantification and parameter tuni study of convective parameterization in WRF

Objective

- Use observational data to calibrate input parameters in convection scheme and validate results of WRF
- Explore UQ and parameter tuning across physical processes, spatial scales and climatic regimes

Research

- Focus on five key input parameters in Kain-Fritsch used in WRF
- Use MVFSA, a stochastic importance sampling algorithm, to minimize model errors
- Apply optimized parameters for precipitation simulation to another spatial resolution and to another region with a different climate regime.

[^0]
(Top) The response of model performance (quantified as E) to five input parameters. (Middle) The frequency distributions of "good" experiments as a function of each parameter. (Bottom) The marginal probability density functions (PDF) for the five input parameters derived by kernel density estimation.

Impact

- Precipitation bias in model significantly reduced when using five optimal parameters identified by MVFSA
- Identified benefits of optimal parameters that are transferable across processes, scales and climatic regimes.

Parameter Tuning and Calibration of RegCM3 with MIT-Emanuel Cumulus Parameterization Scheme over CORDEX East Asia Domain (Zou et al., 2014)

Parameter	Default	Minimum	Maximum	Description
RHC	-	0.4	0.9	Convection is activated when the RH averaged from the cloud top to the cloud base is larger than a critical value (RHC). In the default setting, the convection is driven by the buoyancy, and effects of the large-seale environment are not considered.
$C_{\text {axc_land }}$	0.4	0.2	0.8	Autoconversion scale factor over ocean
$C_{\text {axeovean }}$	0.4	0.2	0.8	Autoconversion scale factor over ocean
$\mathrm{RH}_{\text {min_land }}$	0.8	0.6	1.0	Gridbox RH threshold for cloudiness over land
$\mathrm{RH}_{\text {min_oces }}$	0.9	0.6	1.0	Gridbox RH threshold for cloudiness over ocean
α	0.2	0.0002	0.8	Rate at which the cloud base upward mass flux is relaxed to steady state
$l o$	0.0011	0.0001	005	Amount of cloud water available for precipitation conversion

Parameter Tuning and Calibration of RegCM3 with MIT-

 Emanuel Cumulus Parameterization Scheme over
CORDEX East Asia Domain (Zou et al., 2014)

70E 80E 90E 100E 110E 120E 130E 140E 150E 160E (b) Default
 (c) Optimal

1. Uncertainty Quantification (UQ) methods, such as forward and inverse modeling, can be useful tools for
$>$ better understanding the model behavior and physical processes to help model development
$>$ guiding hand-on model tuning and calibrating
$>$ quantifying the impact of anthropogenic forcing (e.g. aerosol) in a more robust way
2. Process-level calibration (e.g. cloud, convection) is critical for getting right response (e.g. P, T) for right physical reason.
3. Transferability of sensitivity and parameter tuning across physical processes, spatial scales, and climatic regimes need to be further investigated.
4. More efficient strategies for model evaluation and tuning need to be further explored (e.g. short simulations, nudging simulations, surnogate model)

Global, decadal mean surface air temperature

Uncertainty in Global, ANN decadal mean precipitation

Yellow = internal variability
Green = scenario uncertainty
Blue = model uncertainty
$\boldsymbol{\Delta}=\bmod$ params $+\bmod$ struct. error + obs uncert.

Reducing the uncertainty of climate modeling and projection is difficult, if not impossible

Model agreement with observations improves, but future spread is not decreasing.

Relating present day climate to future changes (Telbaldi et al., 2012)
\square Reality in climate modeling
\square Difficulties in reducing uncertainty
\square Need for impact and adaptation community
\square Strategic and political rationale

IPCC AR4, 2007

1. Sensitivity Analysis (SA)

Response of climate to uncertain input parameters
2. Surrogate models

Climate model emulators for UQ and optimization
GLM, GPM (Gaussian Process Models), RF (Random Forests)
3. Model calibration

Tuning of uncertain parameters using observations
(validation, verification, optimization, observation data uncertainty)
4. Forward UQ

Characterize predictive accuracy from UQ (constructing ensembles, uncertainty propagation, present-future extrapolation)

Sensitivity of phase of PDC to C-Ensemble parameters

[^0]: Yang B, Qian Y, Lin G, Leung R, and Zhang Y. 2012. "Some Issues in Uncertainty Quantification and Parameter Tuning: A Case Study of Convective Parameterization Scheme in the WRF Regional Climate Model," Atmospheric Chemistry and Physics, 12, 2409-2427, doi: 10.5194/acp-12-2409-2012.

