ICTP Lectures
on Supersymmetry

Outline

e The hierarchy problem
e Bose-Fermi symmetry in quantum mechanics

e Weyl fermions
e Supersymmetry in free quantum field theory

e The Supersymmetry Algebra
e Superspace

e Chiral superfields

e Gauge superfields

The Hierarchy Problem
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Effective Field Theory

Effective theory = approximate description of physics valid
in a limited dynamical range.

Example: the Navier-Stokes equations describe fluids on
length scales large compared to atomic distances

Is the Standard Model an effective field theory? If so, at what
scale does it break down?




Until very recently, the theoretical description of weak inter-
actions required new physics at the TeV scale:

1930s: Fermi theory

n p
K o

14 e

= breaks down
for E> Gr /% ~TeVv

1980s: W, Z bosons, no Higgs
wy WL w Wi
92E2 5
W, W, W, w, Mw
2012: Standard Model with Higgs

Can be consistently extrapolated all the way to the Planck
scale. No guarantee of new physics!

The Standard Model many important phenomena unex-
plained = new physics beyond the Standard Model.

Experimental facts:

e Neutrino masses
e Dark matter

e Cosmological density perturbations
e Baryogenesis

Theoretically motivated:
¢ Grand unification
¢ Origin of fermion masses and mixing
e Naturalness of the electroweak scale

Only naturalness requires new physics at the TeV scale.
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Consider a coupling constant A with mass dimenson n
[Al=n A=M" M = mass scale

Treat A as a perturbation:

M n
A(E) ~ Ao(E) [1 + (—) +} E = physical energy scale
N—_——" E
=0(\° T
A9 _ o)
n > 0: perturbation theory breaks down at small E
relevant coupling

n < 0: perturbation theory breaks down at large E
irrelevant coupling

n = 0: perturbation theory good at all E?
marginal coupling

There are an infinite number of irrelevant couplings:

[p]=[Ad=1 [y]=3
1

AL= M64

(&¢)12D9¢14 4oee

Assume M > TeV = effects of irrelevant operators sup-
pressed at low energies.

This naturally occurs if these operators are generated by in-
tegrating out new physics (particles) with mass scale M >
TeV.

Effective theory at low energies parameterized by a finite
number of marginal and relevant couplings. [K. Wilson]
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The Standard Model is the most general effective Lagrangian
containing all relevant and marginal couplings of the ex-
perimentally observed elementary particles compatible with
Lorentz symmetry and gauge invariance.
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First Particle Data Grgup wallet card (1958)

This effective field theory has an amazing amount of predic-
tive power, and agrees with all experiments performed to
date.

e Weak decays

e Quark mixing, CP violation

e No flavor-changing neutral currents " = o o e

e Baryon and lepton number symmetry

Is the standard model the perfect effective field theory?

The Standard Model contains one relevant coupling:

Lsm=-mZHTH+ ... m2 <0

V =mZ2HH + A(HH)?

2
m
vi=-—_"H
A
m2 = —2m? = physical Higgs mass

Dimensional analysis suggests that m? ~ M? > TeV.

Is this really a problem?




X = any particle with mass My > TeV

finite large correction
to Higgs mass

Expect new physics at scales M > TeV:
M, ~101* GeV
Mgut ~ 106 GeV
Mp ~ 101 GeV

m? ~ —(88 GeV)? requires large unexplained cancellation
“hierarchy problem”

Possible explanations:

e Am?, forbidden by symmetry

¢ No new particles above TeV scale coupling to Higgs

but: quantum gravity!

e Higgs compositeness
e Antrhopic selection

¢ Relaxation models
Graham, Kaplan, Rajendran arXiv:1504.07551 uﬁm
N

Fermion masses do not suffer from this problem because
there is an additional chiral symmetry as my — O:
X
-- 2

= Amw ~ 1611'2 my

<My
But scalar mass term HH is invariant under all symmetries
. except SUSY!
H < H = Higgsino
= fermion partner of the Higgs
SUSY = mpy=my

Chiral symmetry = m; =0

= m? insensitive to UV scaleg

Bose-Fermi symmetry not observed in nature = SUSY broken
Nontrivial cancelations among diagrams:

............ Amz — 3}/3 I:_/\Z_m2|n/\+...:|
H H H™ 16m2 t

Lt
L) 3y?
.....::.-t'.' ..... 2 — t 2 2 DY
u . AmH_16n2 [/\ +mfln/\+ }
quadratic sensitivity to UV
f = stop scales cancels

= scalar partner of the top

3y?
Amz t
H™ " 16m2

m; < TeV = mild logarithmic sensitivity to UV scales.

(mZ —m2)InA+--.




Bose-Fermi Symmetry
in Quantum Mechanics

/i

The Supersymmetric Simple Harmonic Oscillator

The career of a young theoretical physicist consists of treat-
ing the harmonic oscillator in ever-increasing levels of ab-

straction. Sidney Coleman

Simplest example of supersymmetry in quantum mechanics:
Define in terms of creation/annihilation operators:

[Hb _ ﬁwbbfb]

b is for “boson”

5105111

States:
b|0) =0 [ln) =

(subtract 0-point energy)

1

m(bf)nm)] = (nlm) =épm

(Holn) = n(hwp)in) )
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Fermionic simple harmonic oscillator:

Hy = huwf'f H} = Hy

f is for “fermion”
U fr=1 11 =0
{A, B} = AB + BA = anticommutator
States:

(f1)?]0) =0 = 2-state system
(Pauli exclusion principle)

(Hsln) = n(hwpin] - n=0,1

Combine bosonic and fermionic oscillators:

[b,bT1=1 [b,bl=[bl,b'1=1
{f,f'Y=1 {.fr=4"f1=0
[b,f1=1[b,f11=[b"f1=[b",fT1=0

b|0) =f10) =0
In, 0) =L(bT)”I0) [ln,l) =fT|n,0)]
' v/n!

np = # of bosons=0,1, 2,...

Label states: |np, nf) ,
ng = # of fermions =0, 1

For wp = wy, this system has Bose-Fermi symmetry
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Spectrum of energy levels:

(HIns, nf) = (np +np)(A)Inb, ) |+ w0 = wp = wy

. {E

30— 13,0), 12,1) 13,0) <% 12,1)

20— [2,0), 11,1) 2,0) & 1,1)
w —— [1,0), 10,1) 11,0) %10, 1)
0 — |0, 0) = ground state Q[0,0)=0

=|0)
Note: zero point energy cancels...
Generator of symmetry:
(0=blr +1b)
Qlnp, ng) =|np—1,ng+ 1) % [np + 1, ng — 1)

Exercise: Check this using the identities

(definition of symmetry in QM)

[AB,C]=A[B,C]+[A C]B
=A{B,C} -{A,C}B
H = generator of time translation symmetry
l¢(t)) = e" ™ |¢(t = 0))
Q = supersymmetry generator
(@2 =b"b+£'F)
= (hw)™'H

Q is “square root” of H

Exercise: Show this.
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This example may seem trivial, but free field field theory is
equivalent to an infinite number of decoupled simple har-
monic oscillators, one for each g.

Questions:
e How can we understand this as a symmetry?
What are the transformations?

e Can we generalize supersymmetry to interesting theories?

-~

interacting QFT
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A simple supersymmetric theory:
L =W(iy o, — mW + 34 didupi — 2m2pi;
W = Dirac fermion
¢ = real scalar i=1,...,4
Note: same mass for fermion, boson.

Gives a spectrum with Bose-Fermi degeneracy: for each
P there are 4 fermionic and 4 bosonic states with energy

B+ me.

In fact, this theory has non-minimal (M = 2) supersymme-
try. To get theory with minimal supersymmetry need mini-
mal fermion: Weyl spinor.
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Weyl Fermions
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Note on conventions:
Nuy =diag(+1, -1, -1, -1)

Spinor conventions are those of the textbook by Peskin and
Schroeder.

Spinor index notation is that of Dreiner, Haber, Martin,
Phys. Rep. 464 (2010) (arXiv:0812.1594.) This should be
consulted for additional details and results.

These conventions are used by a majority of researchers in
SUSY phenomenology.

Conventions should be conventional.
—Markus Luty
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Weyl Fermions

Weyl fermions are the minimal spin % field in 4D. They are
the basic building blocks for all theories of fermions.

Start with Dirac representation:
vy =2n"
(
= THY = Z[yH, v¥1=S50(3, 1) generators

Defines Dirac spinor representation: under infinitesmal
Lorentz transformations

/\“V = 5”1/"‘&)“1/

[
SYU = _Ewwzﬂvw W = Dirac spinor
Dirac representation is universal: exists for all spacetime di-

mensions, any metric signature.
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Finite transformations:

Yoo e 2wy P = yty0 ., Petren

~——
=S(A) = [S(M17?
Index notation:
Ya — Sa, Yo Uy — Up(SHP,
a,b=1,...,4 =Dirac spinor index
Dirac matrices have index structure (y*)%

(YM)9 is an invariant tensor: it is invariant when trans-
formed according to its index structure.

Spacetime metric is the canonical example of this:
ntY = NNV onPe

~—_———
Lorentz transformation of ntY




For yH:
(Y*)% = A*,S% () a(S™ 1),

Lorentz transformation of (y*)%,

Y=, SyYsTE

= can form Lorentz tensors by contracting spinor indices:

@awa ma('Y“)abL"'b
1
()% = Eeuvpo(y“yvypya)ab = invariant tensor

= additional Lorentz tensors:

Wa(y2)9pWh Wy (yHyP)apwP
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Weyl basis for Dirac matrices:

0 o#
T
*=(3 9)
ot = (1, 5)
o =(1,-0)
ot 0

= block diagonal

0 = Pauli matrices
Note: o* # (o")f or (o¥)*

= Dirac representation is reducible

i _
oV = Z(o“av —ovad")

_ i _ _
oV = —(o"o0v -3"oH)
4 30

v (l/JL) ¢ = left-handed Weyl spinor

Yr Yr = right-handed Weyl spinor

[

oYL = —EwuquV‘pL
i different reps of SO(3, 1)

OYr = —Ewuvauv‘//R

Index notation:

(W)a a=1,2,=Weyl spinor index

(Yr)® & =1, 2, = dotted Weyl spinor index
i

S(YL)a = —Ewuv(auv)aﬁ(‘//L)ﬁ

87 = =2 () 5 (9r)
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Finite transformations:

(W) — (729%™} Byu)g

~~

= Scxﬁ(/\)

Wa) = (&390 )% syp)f

= 55N

Define transformation for general tensors with upper/lower
dotted/undotted Weyl spinor indices:
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Invariant tensors:

M Au YAV (S N6 .

~~

Lorentz transformation of Ugg

% = (5458 (57

Also:

[eaﬁ =€ =—ecap=—egp = (—01 é) ]

—_—

Lorentz transformation of €4

o = 5% 5P 78 etc.
€ S S ;€ &

Summarize: invariant tensors

u =HaB
UO{B o)
eaB eor,B edﬁ EGB

can be used to form invariants by contracting indices.

Proof of invariance identities follows from identities on 2 x 2
matrices. For example, invariance of €qg:

? i , l ,
0=20d€qp = —Ewuv(auu)aa €a'g — Ewuv(ouu)ﬁﬁ €ap’

— v v T
< 0=0*e +o0"Ve _(0 1)
o eotVel = —gHv -10

Follows from eote’ = (g¥)* Exercise: check this.
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Complex conjugation relates dotted/undotted spinor indices:
([0)8]" = @]
= makes sense to write

W) = (WNa etc.

Given L Weyl spinor ¢4, we can define a R spinor by complex
conjugation:

()% = % (yh),

¢ = complex conjugate spinor

Any spinor Lagrangian can be written entirely in terms of L
Wey!l spinors.
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Invariant Lagrangians (finally!)

Most general quadratic Lagrangian for a Weyl spinor ¢4:

[L = yLic"Poups — 3 (e®Pyayp + h.c.)]

The mass term is a Majorana mass term.
Note that it breaks any U(1) symmetry acting on ¢.

Nonzero mass term requires anticommuting spinor fields:
‘/jawﬁ = _wﬁwa

Canonical quantization: quantum fermion fields obey an-
ticommutation relations, h — 0 limit gives anticommuting
classical spinor fields.

eaﬁ — _eﬁa

Path integral quantization: fermion path integral is over an-

ticommuting fields.
36




Check £ = £ (needed for Hermitian quantum Hamiltonian)

To agree with Hermitian conjugation of operators, complex
conjugation of classical anticommuting spinors must be de-
fined to reverse the order of spinors:

Waxp)' = X305
With this rule, we have

(€Pyapp)t = ePylyl = —ePyly]

(no change of sign)

Whia" o) = ~iou, @) i
— a_uﬁ’o( (aﬂ)f — 5-!1
= +yLi0"* Yo
= Lt=L.
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Expressions look cleaner when spinor indices are implicit:
vha P yp = ytoty
asH VB — vyt
X OgX ™ =X07X

In general, omit summed indices

a, and 49
Example:
XY =X"Ya=€Pxpa =—e"PPaxp
——
= wﬁXﬁ = —G'B(Xl‘[la — _wﬁ
=+yx
Yo =e®yg Yo = €ap? etc.
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Exercise:

Consider theory of a single massless Weyl fermion ¢4 with
the Lagrangian given above.

(a) Show that the equation of motion is the Weyl equation
i6H%B3,45 =0

Multiply on the left by Y9, to show that the Weyl equation
implies the massless Klein-Gordon equation:

Dlp(x = 0
(b) Consider the most general plane wave solution
Yal(X) = ua(p)e™ P>

By going to the frame p# = (E, 0, 0, E), show that there is a
single solution.
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(c) The most general operator solution to the Weyl equation
is

~ d3p . _[,p.;/ pO = |ﬁ|
bal) = f G AP ]
+ 6 (Pua(p)e™]

Imposing the anticommutation relations
{a(p), a"(B")} = {b(P), b'(B")} = 6°(B — P")
{a(p), a(p")} = {b(P). b(P")} = {a(p), b'(F")} =0
compute the equal-time anticommutator
{da(t, %), i(t, 90}
You will need the identity
ua(p)u;;(p) = Ulol,ﬁpu (fixes normalization of uy(p))

which you can verify in the standard frame.




(d) Show that the canonical momentum is

(Remember that ¢4 is a classical anticommuting field.)

(e) Show that the anticommutation relation you derived

above is equivalent to the canonical anticommutation rela-
tion

{R9(t, %), Pp(t, P} = —i6%83(X — )

This exercise shows that a Weyl fermion has 2 propagating
degrees of freedom.

Note: many textbook treatments of the Dirac equation
change the sign of ¥ and the canonical anticommutation
relations to get the correct commutation relations for the
creation and annihilation operators.

Simplest theory with a chance of Bose-Fermi symmetry:
Yo = L Weyl fermion

¢ = complex scalar (2 degrees of freedom)

L£=yriotauyp+ o pTa,¢ m = 0 for now
Note this preserves U(1) symmetry

Ya—e®,  ¢—ef
Write most general SUSY transformation:

*op~y, 8¢~

e Lorentz/spinor indices match

e U(1) invariant
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6¢ = ; “ "
) Eil’_/ &Y = spinor “parameter
= ‘Sa‘pa
[01=1 Wl=3 = [El=-;
Yo =c(oHEN, o ¢ = constant (dimensionless)
— UZBETB
Compute 6L:
s(a4pTa,p) = aHpTa,(6¢) + h.c.

=oHpTEa ¥ + h.c.
depends on ET

44




s(ytiota, ) = sytioka, g +h.c.
=ic*a,¢'E0*5 o,y + h.c.
= —ic*3,0,¢"Ed T Y + h.c.
(integrate by parts)
Use identity

otoY +ovo" = 2nH1,
s(yticta,pp = —ic*Op’EY + h.c.
=ic*oHpTEa ¢ + h.c.

= 6L =0 forc=—i.

Summarize: [ Sp =&y s¢ = —ioHETa,¢ ]
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Noether current:
JE=(0"5"P)adve!
Check conservation:

aulty = (0¥ 0P ouPpav9" + (0¥ Pponave!
| S ~——

=0 - nuv5aﬁ
= oy, =0 (on classical solutions)

Noether charge:
Qu = \/Efd3xjg (normalization is conventional)

Qu=0 (on classical solutions)
46

Quantum theory:

. B d3p o o
Ya(x) = J(2n)3/2(2|ﬁ|)1/2 [a(p)ua(p)e

+ b (B)ua(P)etP™]

A d3p A —ipx 4 ~At(R ip-x
$a(x) = f G LCBe P+ 4 (et ]

= Qa =2 f d*p ua(B)[€'(B)a(R) + b'(B)A(P) |
0h=v2 f o p ul(P) [ (BIE) + &' (BYB(P)]

47

fermion particle: |¢(B)) = a'(p)|0)
fermion antiparticle: [¢(B)) = b'(3)|0)
scalar particle: |¢(p)) = ¢'(8)|0)
scalar antiparticle: |¢(p)) = d"(5)|0)

Oal¥(P)) = V2ua(B)9(B)) Oul¥(B)) = 0

Oal(P)) =0 0ald(P)) = V2ua(B)P(B))
v-20Sy

OLly(@)) =0 O e = V2ul(B)E(B))
Ot1o(B)) = v2ul (B)w(B)) Ol1g(p)) =0




Use the free-field representation to compute
(0, 031 =2 [ o Pqwa(BIw}(@)
x [{¢'(®)aP), a'@e@}
+{b(@)d(@), dT(Db@)}]
a, b =fermion
b, btYatd + [d, dT16th ¢, d = boson

{0, 0} =2 J Pp Wa(PYW(P) | &' (B)a(P) + -+ +d'(PA(P)]

—_—
_ u
= Ua[;pﬂ
= Zagﬁﬁu P, = 4-momentum operator

50

(€0, 01y =204, ]

Similarly,
(0n0y=0  t0L0lr=0]

This is the famous (N = 1) SUSY algebra.

Drop the hats from now on...

Consequences of SUSY Algebra:

PH =0 {0, Op}
PO =010, + 0,01 + 010, + 0,0}
For any state |¢)
(WIECLY) = 1O 1)1 + 10, 19) 1% + IO 19)IZ + 10, 1) I
>0
If SUSY is unbroken, the vacuum state is SUSY invariant:
Qal0)=0,  Oflo)y=0
= PH|0)=0
In particular, the vacuum energy vanishes.

A clue to the cosmological constant problem?

Requires supergravity... .




Massless 1-particle states:

1B, A) A =p-5 = helicity
Choose frame p# = (E, 0,0, E) E>0

{0,,01}=0

{Q,, Q} =4E

This is the algebra of one fermionic creation and annihilation
operator Qb, Q, [Q], Q, act trivially].

I:(?CXII5 'g] = [Oar Mlz] = _(alz)aBQB
[02,6-51=+30;  [Q},p-51=-308

= Q> (OE) acts as raising (lowering) operator for helicity.
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Irreducible 1-particle representations:

1B, A) cpr 1B, —A)

«—> = 1
1B, A+ 3) 1P, =2 = 3)

|B,0) CPT|P,0) « complex scalar
A=0: 1 .
5,3) 1B —3) — Weyl fermion

This is the chiral multiplet.

1 .
N1, 1B, %) 1B, —5) — Weyl fermion
’ |5, 1) 1B, —1) «— massless gauge field
This is the massless vector multiplet.

These are the multiplets that describe massless particles of
spin < 1.
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A good pedagogical discussion for this subject:

D. Bertonini, J. Thaler, Z. Thomas, “Super-tricks for Super-
space” (TASI 2012 lectures), arXiv:1302.6229.

Warning: although this uses the same spinor conventions as
we do, but uses a non-conventional definition of the SUSY
generators. It is easy to translate between them:

(them) _ _ A~(us)
ch - Qa

P(them) — _P(us)
M M

56




Lorentz transformations act naturally on spacetime:
xH — AH xVY

SUSY acts naturally on superspace.
superspace = {(x, 69, 6%)}

6%, 6% = anticommuting “coordinates”

89 = gt — (gt
{69, 6} =0 (6%, 6%} =0

= 0lol =6262 =0, etc.

The natural variables for SUSY quantum field theory are
therefore superfields = functions of superspace.
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Superfields are defined by Taylor expanding in 6, 6.
6, 6 anticommute = expansion contains finitely many terms.

Function of one real anticommuting variable 6:
f(8)=a+ b6 62=0

Superfield = function of 6, 69:
Highest component = 61626167
Simplify expansion using identities

0463 = 2 x 2 antisymmetric matrix « €qp

— (. — .
[Gd B=%€a399] [9“9‘3=—%e“569] 66 = 6,6
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General (scalar) superfield:

[ S(x, 6,8) = A(X) + 6%Ya(x) + Bak¥(X)

+ 66B(x) + 66C(x)

+ 0018V, (x)

+(88)6°Aa(x) + (86)847(X)
+(66)(66)D(x)

. J

S «— (AI ()Ual )?or, BI CI V,Ul Aal ﬁa, D)

6%, 6% = algebraic placeholders

59

Analogy: complex numbers:
z=x+ly i?=-1
Z—(x,y) (= placeholder
Z1+ 22 = (X1+ X2, y1+Yy2)
Z122 <= (X1X2 — Y1Y2, X1Y2 + X2Y1)
Superfields naturally add and multiply together:
51(x, 0,6)+52(x,6,0) = A1+ Az + 6% (Y10 + Y2a) + -
51452 = (A1 +A2, Y1a+Y2q, --.)
S1(x,6,60)S2(x, 6,0) =A1A2 + 0%(A1¢20 + A21a) + -+

5152 = (A1A2, A1¢2a +A2¢14q, .. .)
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Spacetime translations generated by derivative operator:

$(x) — B(x — a) = €9Pug(x)

5¢(x) = ia"Pup(x)

Define SUSY transformation of superfields:

[5S(x, 8, 8) = i(a"Py + E%Qu + E50™)S(x, 6, é)]

Qa, Q% = derivative operators

(E%Qq)t = E4Q"

6l

0
Derivative operators: in addition to o, = —,

IxH
d 0
define —, — :

009 964
0 0 _

— 0B =¢5.5 —6,=0

[aea ’ ] 269 P

0 _ . 0

004 904

Careful about signs:

0 0
5 (WPOY) = — (—07YP) = 5%,y

006%
0
Anticommute spinors to the left before acting with Py
. 0 d
Exercise: Show that — = —¢%F—
- 0604 d0F
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Define SUSY generators acting on superfields:

( )

. o . =
[Q(x = ﬁ + l(oue)aa”

—4 3] .

iQ” = — +i(6"0)%,,
O

. J

Check that they satisfy SUSY algebra:

{Qa, Qp} = 2i0, 40,

Remember P, = (9,
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SUSY covariant derivatives:
S =superfield = 98,5 = superfield?
Does 9,,S transform like a superfield?

8(3uS) = 9u(8S) = 3, [i(EQ + EQ)S]

= i(EQ +£Q)3,S
Works because [8y, Qal =[dy, Qal=0
& [Py, Qal =[Py, Qs] =0

On the other hand,

d
——S # superfield
395 # sup

(-85} #0

64




Define SUSY covariant derivatives that anticommute with D4S = superfield:

8(DaS) = Da(85) = Da [i(§Q +EQ)S]

B . o = __
Da = 755 ~ {(0"0)ad Qa = Jga T 10"0)ad = +(EQ + EQ)D4S
6 F) . — b) . : By — £y _
Da =— - l(aue)aau [Oa = — 4 1(5“9)0’6“ + sign because {Dq, & } {Da, Eﬁ} 0
a a

r

0 5}
— (EReY"Y= ——(QYEBY = —§Y EB
i — e.g. — -(EP6Y) = ——(07E°) = ~87aE

s
~ _ . u

0= {Dqg, Dg} = {Dg, Dy} J

65 66

. : _ iy 3 5
Chiral superfields: %= 2 _iateye—_ .
SUSY covariant derivative allows us to construct simpler su- 964 ox
perfields with fewer component fields. 9 + oyt o i 5“9)‘*% 9
Define chiral superfield ® by condition 90q 964 oYM xE oy
y— o — SV
[5d<I>(x, 6,0) = o] s =ic"e) =0
— . - 204
= & is independent of something?
_ _ ) 2
Change variables in superspace: (x4, 8, 8) — (y*, 6, 8) Do = 309 ( “9)0(
H=xH4i05"0 =[e]1=-1% a oy o ayY a
’ S e onimT =065 T aga oyn (IO G
= —00H6 . yue yY
— = -0 =5V
Work out Dy, Dg in terms of new variables: ( Ja 0%y

3 2045} 3
=— —2i(0"8)g—
909 Y ayH
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Summarize:

s 5 _ _ 9
D =— Da=——2[(0u9)a—
69@ 00% ay“

Dy® =0 = & = function of (y, 8) (independent of 6)

Component fields: “chiral representation”

[<I>(y, ) = ¢(y) + V26%u(y) + 66F(y)] /

® — (9, Ya,F)

Can expand to write as function of (x, 6, 6):

o(y) = d(x) + id,0(x)60"0 + - --
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Dsd" =0 = &" = chiral superfield
In fact, for any function f($)
Daf()=0 = f(®) = chiral superfield

To get a chiral superfield, f(®) cannot depend on &.
That is, f(®) must be a holomorphic function of .
This has far-reaching implications, as we will see below.

Note that
Dad"=0
Superfields satisfying this constraint are called anti-chiral.

The properties of anti-chiral superfields can be worked out
by complex conjugating the results for chiral superfields.
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Can use Dgy, Dy to define component fields by projection:

¢= ‘P‘e,é:o = 9|

1 9 1 :
tra terms vanish
Yo = ®| = —Dqg?d| ex 1S
T V2000 T 2 7 for 6,6 =0
0 O
F 7€ 393 aeﬁq)l 7DD9|

Use algebra of derivative operators to compute SUSY trans-
formation of component fields:

5¢ = i(EQ +EQ)%|
_ 1
=(ED+ED)®| = —

V2

—
because we defined Qq = \/Efd-jxlg
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&Y

[ __
6 a = = Da¢
Y 1/5(50+ EQ)Da?|

i __
= —Dg4 o
73 (EQ +EQ)9|

1 __
i (ED +&ED)9%|

1., -
== [~184DD®| — 2{(08)ady?]

= \/2EaF — iV 2(08)adut
Similarly,

6F = —iv/2EG o, (exercise)
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Summarize:

¢ =9
Y
lﬂa—ﬁ a
F=—2DD9|
( 5 j 1 '
¢ = ﬁ&/f
8o =V 2EaF — iv/2(08)ady0
8F = —iv/2Ec" 3,y

L J
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Write SUSY invariant Lagrangians using Dq, Dg:

1
[CD — 1_6D2D2K|] K = K" = real superfield = EB =Lp

Here we use shorthand
D? = DD = DD, D’ =DD=DyD%  etc.
Lp is called a “D-term.” Reason:

K=---4+6%6°Dx Dk = highest component field of K

50% of the symbols in SUSY are some form of the letter D...

[Lp]=4 = [K]=2
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i _> .
6Lp = 1—6D2D (EQ + EQ)K|
i £AVM2 D2
= —(EQ + EQ)D“DK]|
16
1 -~ —~ . .
= E(ED + ED)D?D?K| = total derivative
Reason: DgD?=0

D4D?D?*K = [Dg, D?]1 D?K
;v_/

X 9y

[[50,, D?] = -4io} D%,  [Daq, D?] = 4io} D%, ]

Exercise: Show that if K is a chiral superfield, then £p is a
total derivative.
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Can use similar ideas to construct SUSY invariant from a
chiral superfield:

1, W = chiral superfield
LF=—-—D*W|+ h.c. _
4 = ...QZQZFW “F term”

T —
= L=L,

5 =~ DX(EQ+EQIWI
= - (E0+EQIDW]

1 __
= —Z(ED + ED)D?W| = total derivative
DuD?=0  DgD?W = [Dg, D?]W x 3,
[Fl=4 = [W]=3
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In the literature, it is common to use the notation
/;D=Jd49K £F=Jd26W+ h.c.

This arises because integration and differentiation are iden-
tical for anticommuting variables:

G}
Jde(a+b6) =b= %(CH_ bo)

We will use this notation with the understanding that it is
defined by

1 1
Jd49K=—D2D2K| Jd29W=——D2W|
16 4
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We now have all the tools we need to write interacting SUSY
invariant Lagrangians!

® = chiral superfield

= ¢(y) + 6¢(y) + 6%F(y)
[p1=1 = [y]1=3, [F1=2
= [¢]=1

Write the most general SUSY invariant Lagrangian with di-
mensionless couplings:

A
L= Jd“eqﬁ@ + Ud26§¢3 + h.c.)

[d*0] =2, [d?6]=1
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1 1 _
d*0et® = —p?2D2(&1®)| = —D?2[(D2dN)d
f TgD?D* (@) = —D?[(D?eNe]]

1 -
= —[D?D%e!| 9|
16
+2D%D? &1 | Dy 3|

+52<I>|D2<I>|]

D2D%e!| = [D?,D°18" = 1600t [ (D2 D% =160

DaD?8!| = [Dg, D2]9T| = 4v/2(0 3,4 1)a

jd“e Td = —(Op")¢ + yiota, ¢t + F'F

Ud“e o' = oHoTa,0 + ylio"a P + FTF]
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Evaluate F term for general function of &:

1

sze W(e) = —ZDZW(¢)|
_ L W’ (®)D%® + W (®)D%®D,d
“Z[ ()D?® + W”'(®) a®]|

=W/ (¢)F — W (¢)yy

Udze W(®) =W ($)F - %W"(cb)lﬂlﬂ]

W(®) = superpotential
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For our theory,

A
L= Jd“eqﬁ@ + Udze§¢3 + h.c.)

= oHota,¢ + yticka,u + FTF
+AP2F — SAPYY + h.c.
We recognize kinetic terms for ¢, ¢ and Yukawa coupling.

Note no derivatives act on F, and L is quadratic on F. We say
that F is an auxiliary field.

The significance of this is that we can integrate out F exactly:
IFT + A9?%|% = FTF + (A$2F + h.c.) + [A¢?|?
L= pta,¢ +ylic"a,y
—2(AYP +h.c)+IFT +Ap?|2 — |Ap??

8l

Write functional integral:
z= J [d] [dy] [dF] e/~

Integral over F is trivial:

f[dF] el JIF+20%17 f[d)q e x=Fi g2t

This change of variables is a simple shift, and therefore has
trivial Jacobian.

The functional integral over F is therefore independent of
other fields, and does not affect correlation functions.

= integrating out F gives
L£—aHota,p + ylicha,y
—iyy+h.c)-
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scalar potential!

|)\¢2|2 /

SUSY relates the Yukawa coupling and the quartic scalar cou-
pling!
Schematically,
¢ 9

. =\ = A2

¢ ¢ - s ¢T
This is exactly the structure we described in the first lecture
for the Higgs-top/stop couplings.
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Consider a general theory with N chiral superfields

cpa Cl=1,...,N

[C = fd“e o1 o+ Ucﬁe W(®) + h.c.)}

After integrating out auxiliary fields F9

. C1?W(P) o, [OW Taw
T 2 a¢aagP _(W) g7

The most general renormalizable superpotential is

[ W(®) = Kq®® + 3Map®28° + $Aqp 298P 8C ]

(W]l=3 [d]=1
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Note that integrating out F? is equivalent to imposing its
equation of motion

oW (¢)
apa

We can therefore write the F-term potential as

Fl =
a
VF=F!Fq

Note that Vr > 0, and unbroken SUSY requires

(F9Y =0 for all a
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Non-renormalization theorem:

The UV divergences of SUSY theories are very constrained.
We will show that the coupling constants in the superpoten-
tial are not renormalized.

The UV divervences of a QFT can be parameterized by lo-
cal terms in the 1Pl effective action that are relevant or
marginal:

M[&] = 1Pl effective action = fd“x Lipi[®]
Lip = Jd49 (5Z)ab¢'z¢b
+ sze (6Ka®7 + 56mMapd?®P + 36Aapc 290 C)
+ h.c.

+ finite (and non-local)
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N\ = UV cutoff

6Z ~InA\

Sk ~N° +Am+kInA
dm~AN+minA

oA ~InA

The UV divergent terms must respect the symmetries of the
original theory.

This is true as long as the UV regulator that preserves the
symmetries in question.

In the present class of theories we can use e.g. Pauli-Villars
or higher derivative regulator to regulate the theory while
preserving SUSY.
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A very powerful technique is to promote the couplings k, m, A
to background chiral superfields that transform under SUSY.

This generalized Lagrangian is SUSY invariant as long as we
keep kK, m, A inside the superspace integrals.

Lint = sze (Ka® + 3Map®?®P + 3Aapc299P9C) + h.c.
The Lagrangian is also invariant under a U(N) symmetry
% U9, b
Ka = (U™1)Pakp
Mab — (U1 a(U™ 1) mcq
Aabe = (U™1)9(U™ )8 (U™1Y cAger
That is, all quantities transform according to their index

structure.
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The coefficients 6Z, 6k, dm, dA must be functions of k, m, A
that respect this U(N) symmetry.

SUSY also requires the coefficients 6k, ém, 6\ to be holomor-
phic functions of k, m, A (i.e. independent of kT, mT, AT).

Claim: most general allowed form is
OAabc = CaAabc INA
6Map =Cm Mgap INA
0Kg = CxKglnA
Cx, Cm, Cx = independent of couplings

Note there are no couplings with upper U(N) indices we can
use to contract indices. If not for holomorphy, we could use
KTa' m‘rab' )\‘rabc

[For N = 1, this follows from U(1) symmetry, since kK, m, A
have different charges.]
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Also, we cannot have divergent term such as mgp X KgKp
because of dimensional analysis.

[Ka] =2, [mab] =1, [Aabc] =0

Because 6k, dm, 6k are linear in the couplings, they can be
computed in perturbation theory. But all loop diagrams have
at least 2 powers of the couplings.

Lint = )\abcd)alﬂblllc + h.c.
2.

= CKI le C)\ = 0
= 0K, 6m, oA =0 QED

b bac 2
Ka+ Mab®” + Aaqpcd™ ¢

This is a symmetry argument
= valid beyond perturbation theory.
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The coefficient 6Z is nonzero:
6Z% = cz AN\ pgIn A+ 0O\
y\,_J

1 ~ (ATA)? by U(N) invariance
Cz=-—
4T

6Z cannot depend on k or m by dimensional analysis.

Treat A dependence using standard renormalization theory.

For simplicity, focus on the case of one chiral superfield ¢:
L= Jd“e 3T

+ fdze (k®+3m®? + 3A83) +h.c.
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Cancel A dependence in the 1PI effective action by adding a
counterterm to the Lagrangian:

A
ALct = fd“e |:—Cz)\T)\ In—+0(\%)| &'®
]

This eliminates the dependence on A, at the price of intro-
ducing dependence on the renormalization scale u.

Renormalized Lagrangian:

;C = ;CR + Aﬁct
LR = Jd“GZR(u)th@
+ sze (k& +3ma2+1183) +h.c.

d
Heo InZr = —czATA+ O(\%) wavefunction RG equation
u

92




Define canonically normalized fields
&= [Zr(W)] V%
Note Zr ~ 1 + AtA # chiral superfield

= & is a chiral superfield only in the case where A is a
constant (independent of x, 6, 6).

For this case, we can write
L= f 06T
+ sze [Kr(u)® + 3mr(u)®2 + 3Ar(L)E3] +h.c.
kr(U) = [Zr()]~ Y2k

mg(u) = [Zr(u)]™tm
AR(W) = [Zr(L)]73/2A
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We see that the physical couplings are multiplicatively renor-
malized:

9 r= ~LepAZg 4+ OO

'ud/JKR_ 5CZARKR ( R)

—dm = —czA2mr+0(\%) (AR = real)
udu R= —CZARMR R R=

d
Ho = —3czA2+0(A)

One implication of this is that if a superpotential coupling
is set to zero at some scale, it remains zero at all scales,
whether or not there is an enhanced symmetry.
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SUSY Gauge Theory

Guiding princple: gauge invariance

Suppose ¢, ¢ are components of a chiral superfield & with
charge g under a U(1) gauge group:

Ya(x) — 9% y4(x) Pa(x) — e 99Xy (x)
a(x) = gauge transformation parameter
g = charge (e.g. £1)

Generalize to superspace:

Transformed superfield = chiral = Q = chiral superfield
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Kinetic term is not invariant:
f d*0&Td — Jd“e ed9(Q+0" gty

(Qf = —Q = Q = independent of x.)

Make kinetic term gauge invariant by introducing a real
superfield V transforming as

[V-—»V—%(Q+QT)] vt=v

= Jd“e $1e29V$ = gauge invariant
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Define components by projection:

~

-
C=V|
Xa =DqaV/|

B = D?V|

i
—_ _mMABrm. —
AH = 2 [D&, Dg]V| AL =A,
1 n2
)\(X - _ZD DaVI

D=i{D2 D?}V| Dt =D
32 ’ -

. J

Compute gauge transformation of these components.
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Define components of Q:
w+ ia=Q| w, 6 =real
Na = DaQ|
E = D2Q)|
Gauge transformation:

6C=-3(Q+QN=-w

8Xa =Da[-3(Q+QN]| = -3Na

{_ n—
SAH = Za““ﬁodoﬁ [-3@+ah]|+h.c.
= oHa «—— conventional gauge transformation!

1_2 1
Aa==7D Da[-3(Q+QN]|=0
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To understand 6A, and A4, note that
DaDp(Q+ Q") = DgDpQ

= {Dg, Dg}Q
= 2i0540,0
D DaDp(Q+ Q) = 2i0%;0,0°Q =0
Summarize:
5C=-w SXa=—3Na  6B=E
5Ay =30  SAg=0 §D =0

We can use gauge freedom in w, Nq, E to fix
C=0 Xa=0 B=0

(Wess-Zumino gauge)
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In Wess-Zumino gauge, the gauge-invariant kinetic term is

Jd46 ®Te?9V® = DH¢'D ¢ + ytich D,y + FTF
~V2q (¢"Ag +h.c.) +qoteD
where

Du¢ = (o — iqAL)® Duy = (0 — gAY

The form of the kinetic terms is dictated by the residual
gauge invariance

¢ — eiq0{¢ ‘p — eiqaw F e[qu
We see that A, is a conventional gauge field.

[A]=1 [A1=3 [D] =2
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Ay = gauge field
A = propagating spin % field

= superpartner of gauge particle
D = auxiliary field

We can get conventional form of the Lagrangian by rescaling
V — gV, where g is the gauge coupling:

( )
Jd“e ®1e299V¢ = DH¢'D ¢ + YTic" Dy + FTF
~v/2qg (¢"™Aa” +h.c.)
+qg9T¢D

Du¢ = (0, —iqgAu)¢ Duy =8y —iqgAY
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To write gauge kinetic term, use superfield whose lowest
component is Aq4:

1_
[Wa = —ZDZDO,V] = gauge invariant

DgWa =0 i.e. Wy = chiral
W4 has nothing to do with superpotential W (sorry!)
[Wal =%

= we can write dimension-4 gauge- and SUSY-invariant term
1 {
sze WaWa = —EFIJVFIJV + ZequTvaFpT

- 2AtigHa A + D?
Fuv == apAV - avA”
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(1 e
ﬁgauge= d 9 4_92— 3211:2 w Wa+hc
1 v © VoT

1 1
+—Atiotaun + ﬁDZ
g g

g = gauge coupling
eHYPTF, Fpr = total derivative
© =vacuum angle

O term is a total derivative, and does not give any observ-
able effects for a U(1) gauge theory.

It plays an important role in non-abelian gauge theories.
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To get canonically normalized kinetic terms, write
(neglecting © term)

( )

Egauge = sze %WaWa + h.C.

1 _
=~ P Fu + Aticha A + 3D?

. J

1_
Wy = —ZDzoav
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D-term Potential

The component field D appears quadratically in £ and with-
out derivatives. It is therefore an auxiliary field and can be
integrated out exactly.

Consider a general theory with N chiral superfields and one
U(1) gauge group:
$2 — 9902 pa a=1,...,N

We have rescaled V — gV so that gauge fields are canoni-
cally normalized.
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L= Jd“e D 812990V g0
a
+ sze%wawa +h.c.
+Jd29 W(®) + h.c.
=gD ) qad!¢° + 3D? + independent of D
a
=1 (D +99a9197)° - 397 (Z qa¢2¢“)2 o

Integrating out D generates potential

2
[VD =39° (Z qa¢2¢°) ]
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Integrating out D is equivalent to imposing its equation of
motion

D= g; qadi o,

We can therefore write the D-term potential as
Vr = 2D?

Note that Vp > 0, and unbroken SUSY requires

(D)y=0
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Exercise: Consider SUSY QED, a U(1) SUSY gauge theory
with 2 chiral superfields &1 with gauge charge +1.

The superpotential is

W=mo&,d_
Work out the scalar potential for this model.
Show that the only minimum of the potential is at

(¢+) =(¢-)=0.

Exercise: Consider the same theory with the addition of a
chiral superfield S that is neutral under the gauge group.

The superpotential is
K
W=ASd,d_+ §53

Show that this theory has a minimum of the potential for any

value of (S).
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Non-Abelian Gauge Theory

The formulation of SUSY non-Abelian gauge theory follows
the same steps as Abelian gauge theory, with some techni-
cal complications.

® = chiral superfield in fundamental representation
of SU(N) gauge group

ab=1,...,N

(Ta)% = SU(N) generator
A=1,...,N>-1

tr(TaTg) = 3648

&9 — (eQATA)abq:’b

Kinetic term is not gauge invariant:

fd49 (I)T(P — fd49 q)TeQ;TA eQATAcI)
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Introduce one gauge superfield for each gauge generator:
V =VaTa VIi=Va

Invariant kinetic term:
fd“e éTe?® = gauge invariant

e2V e—QTezve—Q Q=QxTa

=> VAHVA—%(QA+Q;)+"'
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To define components with simple gauge transformation
properties, note that

— — T _of -
e=2VDge?V — eQe2Ve p, (e o2V e0
=e?%(e72VDye?V)e ™ + eDye
Looks like spinor version of
Al—l — eieATAAue—ieATA + eieATA aue_ieATA
Define component fields

i

AH = g5“"5[)(-,(e—2VDO{eZV)| +h.c.
1_

)\O{ — _ZDZ(e—ZVDanV)l

1 _
D= aD"Dz(e—z‘/Do,ez‘/)| +h.c.

Other components vanish in Wess-Zumino gauge.

Work out gauge invariant kinetic term in terms of component
fields:

fd“e oTe?V®d = DH¢'D ¢ + YTic" Dy + FTF

+ V200 Taral + h.C.) + Dad Tad

Du¢ = au¢ - iAuATA(P
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To write gauge kinetic term, note that
52(6_2VD0{62V) — 6052(8_2\/[)0(62\/)6_0

+e?D?Dgye™2

N—_————

x d,Dse™ =0

1_
[Wa = _§D2(e—2VDae2V)] = chiral superfield

Wa — eQ Wae_Q

Wq =WaaTa
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Write invariant Lagrangian:

5 1 I[C] o
L=1d0 4—92—32n2 WAWaA‘I‘h.C.

+ fd“G@TeZVATAcp

i
“agr ™A Furn = g FinaFors
1., 1
+ ?AAIU (DIJA)A + z—gzDADA
+DH¢™Dyd + ¢Tic" Dy + FIF + Dad Tag
(DuA)a = opAa + faBcAusAc

[Ta, Tg]l = ifaBcTc
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Integrate out auxiliary fields Da:

= | VWp= g;(z ¢TTA¢)2

A

If there are chiral superfields &, i=1,...,n, we have

Exercise: Consider SU(N) SUSY QCD with one flavor. This is
the theory of two chiral superfields Q and @ transforming in
the fundamental and antifundamental representation.

Ta = generators of fundamental representation

—Tz = generators of antifundamental representation

Write the gauge invariant kinetic term for Q and @ and work
out the D-term potential.
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SUSY in a
Black Box




Can understand the rest of the lectures treating the super-
field formalism as a black box.

Chiral superfields: & = (¢, yq, F)
U(1) gauge superfields: V = (Aq, Ay, D) (WZ gauge)

W (@) 3°W(¢9)
Fa
a9 d¢pagP

sze W(e) = peyP

Jd“e oTe?9Ve = DH¢'D ¢ + YTic"Dyy + FTF
+vV29(¢TTaraW + h.C.) + Dad'Tad

Wg = —3D?DaV

fdze FWOWq = —ZFHYFp + ATi0H Dy + 5D?
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Supersymmetry
Breaking
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If SUSY exists in nature, it must be broken.

SUSY is a spacetime symmetry, so it is gauged when we
include gravity (supergravity).

Because of this, SUSY must be broken spontaneously.

This means we must look for a SUSY invariant Lagrangian
whose ground state breaks SUSY.

From the SUSY algebra, we know that SUSY is broken if and
only if the vacuum energy is nonzero.

SUSY < (0|H|0) >0
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Classical potential:
— gt 1
V= FaFa + fDADA
QW)
a a¢a
Ta = gauge generators/charges

gz
Da = Z104(Ta) 59"

ga depends on A for product gauge group

We see that SUSY breaking requires nonzero VEVs for some
of the axiliary fields F@ and Da.
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Polonyi Model:

Simplest model of SUSY breaking.

L= Jd46<I>T<I>+ Udzel«u h.c.)

1' aW " H n
FT = g =K#0 F-type breaking

Nonzero vacuum energy, but is SUSY really broken?
L= pta,¢ +ytic s,y
= free field theory with SUSY spectrum

(¢) = undetermined...
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Can turn this into a theory with real SUSY breaking by gen-
eralizing Kahler potential:

1
L= Jd“e [@be - W(qﬂcp)z] + Udzexcu h.c.)

Potential terms (no spacetime derivatives):
1
L=FF- W¢T¢FTF+ (kF+h.c.)

Integrate out F =
|k|?
T 1 - ¢te/M2
Minimizing potential fixes (¢) =0
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Can show:

2
L

Mo =Mz

m¢=0

Massless fermion is the Goldstino = Goldstone fermion
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The Goldstino

When a global symmetry is spontaneously broken, the the-
ory contains a massless Nambu-Goldstone excitation with
the quantum numbers of the broken symmetry generator.
So it is not surprising that spontaneously broken SUSY leads
to a massless neutral Weyl fermion, the Goldstino.

Qq broken = massless Goldstino xq

This can be proven in great generality.

We will content ourselves with showing it in the simplest pos-
sible case of a theory with only chiral superfields.
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(aVV)T'aVV
V= — | —
3¢pa ) g

aV awT a2w
0= =
agb (8¢a) dpaapP
ow

?wW ,
= has a zero eigenvalue
PP

fermion mass matrix
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When a gauge theory is spontaneously broken, the Nambu-
Goldstone excitation becomes the longitudinal polarization
of a massive gauge particle. So it is not surprising that in
supergravity the Goldstino becomes the longitudinal mode
of the gravitino, the spin % superpartner of the graviton.

massless gravity multiplet = massless spin 2

+ massless spin 3

2

F) (F) = SWBY VEV

ms, = gravitino mass ~ —
Mp)

Note that for (F) < Mr2>| the gravitino is a light particle with
possible consequences for phenomenology and cosmology.
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If SUSY solves the naturalness problem of the Standard
Model, then the superpartners of the observed particles
must have masses at the TeV scale.*

It would be very exciting if SUSY were spontaneously broken
at the TeV scale by a “super Higgs” sector whose particles
have masses at the TeV scale. Unfortunately, this idea does
not work.

The reason is that renormalizable SUSY theories do not con-
tain a Yukawa coupling of the form
¢ = scalar from chiral multiplet

AA
¢ A = gaugino

This means there is no way to generate a mass for the gaug-
inos at tree level.

* We'll discuss some fine print later.
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Some possibilities:
e Strong SUSY breaking at the TeV scale

e Superpartner masses from loop effects
e.g. gauge mediation or anomaly mediation

e Hidden sector SUSY breaking
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Hidden Sector SUSY Breaking

Assume SUSY is broken in a hidden sector that is coupled
via higher-dimension operators to the visible sector, which
contains the Standard Model fields. These higher-dimension
operators can arise from new physics at high scales, for ex-
ample new heavy particles or string theory.

Assume that the hidden sector breaks SUSY through the F
term of a chiral superfield X:

(Fx) #0 X = hidden sector chiral superfield

Assume (X) = 0 without loss of generality (shift field if nec-
essary).

(X) = Fx6? Fx # 0
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Now consider higher-dimension couplings between X and
the visible sector fields.

Explore this with a toy hidden sector consisting of a single
chiral superfield & and a gauge superfield V, with

A 3
w(e)=2¢

Possible couplings:

20X wew, +he = Farthe smy~ X
— .C. = — .C. ~ —
M a M AT M
2
1 Fx|? Fx
4 vyt td = |2 T =>m2~ -
Jdeszxqw ‘M oo : (M)

= gaugino and scalar masses ~ Fx/M
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But wait, there’s more!

X F
sze M¢3 +h.c.= ﬁxdﬁ +h.c. = cubic scalar couplings

X F
Jd“e(ﬁ + h.c.) oto = VXF;dJ +h.c.

To see what this does, integrate out Fy:

L=FLF,+ [For¢? +h.c.]
t

2
F! + o2 +F—X
¢ M

2

FL
- A2+ =9t
'¢ ®

Fx|? Fx
= AVr=|-| ¢f +(—)\ 3+h.c.)
F= ¢'d Y [0}

Note: all SUSY breaking mass parameters ~ Fx/M!
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Higher order terms give smaller effects...

Summary: Hidden sector SUSY breaking models can natu-
rally give gaugino masses, scalar masses, and cubic scalar
couplings all of the same order of magnitude.

Fx
— ~TeV
M

Note that if the particles in the hidden sector have masses
large compared to the TeV scale, then the only observable
effect of the hidden sector is the VEV Fyx.

This looks just like explicit breaking...
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Soft SUSY Breaking

A more phenomenological approach: break SUSY explicitly,
with all mass parameters chosen to be ~ TeV.

We must ensure that this explicit breaking does not give rise
to quadratic sensitivity to UV physics. That is, the breaking
must be soft.

To explore this, consider again our toy visible sector, but now
allow the most general renormalizable superpotential:

L= deGSW“WQ +h.c.
+Jd4ez¢f<1>

+ sze [k®+3u®? +5A8%] +h.c.
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Note we have written the couplings as superfields and in-
cluded an arbitrary normalization for the chiral superfield ki-
netic term:

1
S =—=+..-=chiral superfield
292
Z=1+---=real superfield

K, 4, A = chiral superfield

The SUSY non-renormalization theorem guarantees that this
theory has only logarithmic renormalization of Z and S.

Logarithmic UV divergences < logarithmic sensitivity to UV
physics. We want to preserve this feature wen we include
SUSY breaking.
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A simple way to do this is to break SUSY by turning on 62
and 6262 components of the coupling superfields.

Z—1+(6’B+h.c.)+6%6%(-m; +|B|?)
1 g2 M2
292 g?

K—>I3(1+GZBK)
u—a(1+6%By)

A—X(1+6%By)
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The UV divergent terms in the effective action can be written
in terms of superfields, and the fact that the higher compo-
nents of the superfield couplings are nonvanishing does not
change the log divergent terms. For example,

ALip) ~ Jd“e(zﬂ/\ x InN)dTd

There is one subtle point in this argument: there is an addi-
tional allowed UV divergence:

(P = Aﬁlpl~Jd4e(,\mx|n/\)cx>+h.c.

This term is a total derivative in the SUSY limit, but a contri-
bution to the linear term in the scalar potential when SUSY
breaking is turned on.

Note: allowed only if ® is a gauge singlet...
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We can write an arbitrary breaking term using superfield
spurions, but all other terms are higher-dimension operators
in superspace, and therefore give rise to power divergences.

For example, a non-holomorphic cubic coupling:
AL = fd49X<I>T<I>2 +h.c. X=6%6*h [h]l=1

=h¢Tep? +h.c.

Even though the coupling h has positive mass dimension,
the breaking is not soft: there is a counterterm

ALip) ~ Jd46/\2X<I> +h.c. ~A%h¢ + h.c.
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Summarize: softly broken SUSY is equivalent to turning on
higher components of superfield couplings.

These are also the effects that we expect if SUSY is broken
in a hidden sector.

This is a good starting point for a phenomenological treat-
ment of models with broken SUSY.
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The Minimal Supersymmetric
Standard Model

MAINE SCHOOL OF SCIENCE AND MATHEMATICS
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An excellent reference with many more details:

S. Martin, “A Supersymmetry Primer,” arXiv:9709356 (v6).

But note: uses n,y =diag(-1,1,1,1)...
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Start by writing the Standard Model in terms of L Weyl
fermions:

SUB3)c  SUQ)w U(1)y
q 3 2 2
uc 3 -2
3
d¢ 3 1 1 > X3
3
1
£ 1 2 -3
e 1 1 1 )
1
h 1 2 5
Notation:
Ja = qLa (U = €qpul® = €qp(ud)!
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To embed this in a SUSY model, each fermion multiplet must
be part of a chiral superfield. This means that we are intro-
ducing a complex scalar superpartner for each Weyl fermion.

Denote the superfield by a capital letter and the scalar part-
ners with a tilde, e.g.

Q(x, 0, é) =q(x)+ \/Eeaqa(x) +oe

It is traditional to name the scalar superpartners of fermions
by adding an “s” in front of the name, e.qg.

quark < squark

lepton « slepton

top < stop

The SU(3) x SU(2) x U(1) gauge fields of the Standard Model
must embedded in gauge superfields. This means that we

are introducing a Weyl fermion superpartner for each gauge
boson.

It is traditional to name the fermion superpartners of gauge
by adding an “ino” to the end of the name, e.qg.

gauge boson < gaugino
gluon < gluino

W boson « wino

photon <« photino
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What about the Higgs doublet?

It has the same quantum numbers as a left-handed slepton*
if we complex conjugate it. We could therefore think about

identifying it with a linear combination of left-handed slep-
tons.

But this is a really bad idea, since the Higgs VEV would then
break lepton number.

We therefore embed the Higgs in its own chiral superfield.

H=h+V26%g+---

* the scalar partner of £

144




Now let us write the most general allowed couplings of these
fields in the SUSY limit.

The gauge boson (and gaugino) couplings are dictated by
gauge invariance and SUSY.

The most general superpotential has the form

W = QHU® + U°DD® + QLD + LLE“ +LH

e The last 4 terms violate baryon number, lepton number, or
both.

e There is no Yukawa coupling of the Higgs to d¢ or e€.
Note that holomorphy of the superpotential does not allow

us to write a term QHTDC or LHTEC.
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We could choo§e to embed the Higgs scalar doublet in a chi-
ral superfield H with hypercharge —%. Then we could write

W = QHD® + LHE® + U°DD¢ + QLD® + LLE®
Now we don’t have Yukawa couplings of the Higgs to u¢.

To have Yukawa couplings to all standard model fermions,
we need two Higgs superfields, traditionally called H, and
Hg instead of H and H.

This is the (super)field content of the minimal supersymmet-
ric standard model, the MSSM.

The allowed superpotential terms are now
W = QH U + QHyD® + LH4E  + HyHq4
+ UDD® + QLD + LLE“ + LHy4
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The MSSM wallet card:

SUB3)c  SUR)w U(1)y

Q 3 2 =

ue 3 1 -2

D¢ 3 1 1 ¢ %3
L 1 2 -3

E¢ 1 1 1

He 1 2 :

He 1 2 —
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We will assume for now that the terms that violate
baryon/lepton number are absent.

(For reasons we will explain later, these are commonly re-
ferred to as “R-parity violating terms.”)

As we will see, this has far-reaching implications, and we will
revisit it later.

With this assumption, the superpotential is given by

W = (yu)iiQ'HuUY + (ya)jQ'HaD + (ye )L H4E

[,j=1,2,3=generation index
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How “minimal” is the MSSM?

Although the number of degrees of freedom is (slightly more
than) double that of the Standard Model, the extra degrees
of freedom are related by a symmetry.

We need an additional Higgs superfield, and we need to sup-
press the interactions that violate baryon/lepton number.
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Soft SUSY Breaking

We take a phenomenological approach to breaking SUSY in

the MSSM, and break SUSY softly.

e Gaugino mass terms

[AE = —M1BB — MoWWq —M3GaGa + h.c.]

B = bino a=1,2,3=SU(2)w adjoint index
W4 = wino
Ga=gluino A=1,..., 8 = SU(3)c adjoint index
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e Non-holomorphic scalar mass terms

s )
AV = (m2);§1d + (m2); actad + (m2,); dctad

+ (M ETH + (m2,) & e

2 gt 2 gt
+ mHuHuHu + deHde

. J

Note | am using H,, 4 for scalar fields instead of hy 4...

Important: scalar masses depend on flavor in general.

e Holomorphic cubic scalar couplings (“A terms”)

[ AV = (Au)UfliHuaCj + (Ad)Uflinacj(Ae)[jZinéCj + h.CJ

More flavor dependence...
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e Holomorphic mass term (“Bu term”)

[ AV =BHyHq+ h.c. }

HuHg4 = eangHg

a,b=1,2=5SU(2)w fundamental index

0 1
eab: _1 o

152




There are other more exotic soft terms that do not arise from
higher components of superfield couplings. These are un-
likely to arise from complete models of SUSY breaking, so
we will neglect them.

In any case, we have plenty to deal with already...
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The Higgs Potential

The main motivation for SUSY is to explain the naturalness
of the light Higgs, so begin exploration of the MSSM phe-
nomenology with the Higgs potential.

We will assume that the squarks and sleptons have positive
mass-square terms and vanishing VEVs. This means we can
consider the scalar potential with these scalar fields set to
zero. The only scalar fields we need to consider are then Hy
and Hg.

In the absence of SUSY breaking, the only contributions to
the Higgs potential come from the superpotential term

W = puHyHqg

and the D-term potential from the SU(2)w x U(1l)y gauge

interactions.
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[ Ve = ul?(HIH + HLHO,)]

g2 3 ) ) 2 g7 » - )
= Y Z (HuTaHu + HdTaHd) + o (7HuHu - fHde)
Simplify Vp using

i(T vk _ 1 (si sk _ Llgisk Ta=%Ta
(Ta)(Ta) s = 5 (8465 — 566%1)

2 2 2
g°+g g
[VD= A (HLHU—HLHd)2+7{HLHd|2]

This is a 2 Higgs doublet model with positive quadratic and
quartic terms. We see that electroweak symmetry is unbro-
ken in the SUSY limit.

155

Now add soft SUSY breaking terms involving H, and Hg:

[Vsoft =m}, H1H, +m} HyHy + (BHuHa + h.c.)]

The mass terms m2 and mﬁd can be negative, so elec-
u

troweak symmetry can be broken.

Note we can rephase hy, hg to make B real and positive.

The full Higgs potential is now given by

Vhiggs = mI%I effHLHu + m ffHIIHd + (BHuHq+ h.c.)
9% +g” g )
+ T(HLHU —HLHg)? + 7}HZHd|
2 _ 2 2 _ 2 2
M} e = Mp, +ul Mgt = Mpy T IHI
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Make SU(2)w x U(1)y gauge transformation to choose VEV

1 /o
=2 (2)

Most general form of Hy VEV is then
e® [ vgcoss
(Ha) = —= ( ¢ )

vgellsiné

Minimizing the potential with respect to the angles 6, §, and
n can be shown to require that they vanish.

1 Vd)
Hg) = —
(Ha) ﬁ(o

= U(1)em unbroken.

v5+v§=v2 v =246 GeV
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It is conventional to define

Vv
AVU

Vd
The minimization conditions can be written

Vu
tanf = —
Vd

The important point is that the mass terms must be of order
mz if we want to avoid large cancelations.

This arises because SUSY fixes the quartic to be proportional
to g% +g’2.

2
my

_92 + g/2

V2 ~

2 2 1 472Y/2 2
= my~(9°+g9“)v-~m;
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( 2 2 '
My et T M eff
2sin(2p)
2 2
m -m
Hy,eff Hg,eff| 2 2 2
' cos(26) = Miett t Mhgerr T Mz
L J
We have written the quartic coupling in terms of mz:
2m?2
z
9°+9"%=—
1%
158
H* 1 .
Ho=| 1 u — (Vg +H3+iA)

, Hg =
v +H2 +iA%) V2

H?, HY = CP even neutral scalars
A%, A9 = CP odd neutral scalars
HZ, H% = charged scalars

Mass eigenstates:

3 linear combinations of
A%, A9 H, H

are Nambu-Goldstone bosons that become the lonigutudinal
polarizations of the Z, W*,
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Physical scalar Higgs mass eigenstates:
h°, H® = CP even Mpo < Mo

A% =CP even

H* = charged

Mass eigenvalues:

( )
2 _ 2 2
Mo =My et T My eff

2 _ 2 2
mHi—on+mW

1
2 _ T2 2
Mio o = 5 [on +ms

T \/(mf\o —m3%)? +4mZm3, sin2(2,B)J

. J
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Identify h® with the Higgs boson observed at the LHC
= mpo = 125 GeV.

mpo is @ monotonically increasing function of myo. Taking
the myo — oo limit, we obtain

mpo < mzcos(2fB) <91 GeV
This was already ruled out in the 1990s by LEP.

The root of the problem is the fact that SUSY fixes the Higgs
quartic couplings to be proportional to g2 + g’2:
m? ~(g?+g"?)v? ~m3

We need some additional contribution to the Higgs quartic.
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In fact, such contributions exist within the MSSM itself:
loops!

Consider the 1-loop contributions from the particles with the
largest coupling to the Higgs: the top and stops.

t .
top: g3 = (bLL) ug3 = eaﬁ(t’g)T

N t vz 3
stops: §3 = (EL) a3 =1t
L

After electroweak symmetry breaking, £, and tz have the
same quantum numbers, and therefore mix.

Simplify the discussion by neglecting stop mixing and as-
suming that all stops have the same mass.
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AW = ytQ3H U = AVE=y2H Hu(G71G° + aTa)

Hus -t
L 2
= RS ~Yi
Hu ‘ Z’
H o
u K Hy Hy, t Hy
+ * ¥
," ~~‘ H ‘o' ‘s___,' ’.l H
Hy - “Hy u u
3y4  m?
t f
= Ay~ > [ -
16m my

Note: must go to zero when mz = my.

AmZ, ~ Ay V2
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Formula including all factors:

2 2
3yt mi
—Iln—xvVv
8m? mf

Am?, = > Assumes h0 ~ h? (optimistic)

To get muo =125 GeV, need m; ~ 880 GeV.

But higher loop corrections are very important for this es-

timate. For example, the QCD correction to the top mass
gives

v 4 g2
mtz)L|:1+ S +...:|

J2 3472
ytv .
= — =163 GeV instead of 173 GeV
V2

Including this correction, we find that in order to reproduce
the Higgs mass we need m; ~ 1.3 TeV.
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Full result, including stop mixing:

20r T T T T T T T T

t

m- (TeV)

At/mt-
m; ~ 10 TeV (no stop mixing)
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Because the stop mass is heavy, we have to worry about

contributions to the Higgs mass parameter. Putting in all the
factors, this is

2

3y N
Am?2 =——Lt(m?-m?)In—
Hy 47-[2 t t m?

/\2

Assuming In —~ 1 (opmistic!)
my

Am?
2H ~ 103
my

= obtaining the observed Higgs mass requires a fine-tuning
of on part in 1073,
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Large stop mixing helps a bit:

201 T T T T

m- (TeV)

t

A,/m;
m;s ~ 2 TeV for A ~ £5 TeV
2

y A
2 _ >t 2 2 ~ 102 2
Am? = —8n2(2mE+At)In—E 102 x m?

Problem is worse for high-scale SUSY breaking (A > TeV)
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Note that eliminating the quadratic sensitivity of the Higgs
mass to heavy masses was the motivation for SUSY!

This motivates extensions of the MSSM that can generate a
larger Higgs quartic.

Example: next-to-minimal supersymmetric standard model

Add to MSSM gauge singlet chiral superfield S

K
AW = ASHyHq + 553

oW AH Hg + kS?
pu— | K.
35 ulfld

AVE = |[AHuHq + kS?|* = A2|HuHal? +

169

The SUSY Spectrum

What is the expected spectrum of superpartners?

A strong hint: flavor dependence of general soft breaking
terms:

Vsoft = (mg)ij Clj + (m c),u Ta9 + (m )l dddcj + -
There is no a priori reason that these matrices should be

diagonal in the same basis as quark mass matrix = new
sources of flavor mixing.
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Example: K9%-K° mixing

S d
g* m2 _
SM: w w A,Ceff"'m 2
d 5 My
s gxd d
G ALert~ 755 ( 5d)(ds)
d— & 8 5 n MSUSY
at &t
2
m=. M
= —% <1073 (—)
MSUSY TeV

Man_y other entiies have constraints at the level of 1072 from
B%-B% and D%-D% mixing.
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Suggests a simple Ansatz:
(m2)j=mZs;  (mg.)j=~mZ.é

This form is invariant under the field rotations that diago-
nalize the quark and lepton mass matrices = no new flavor
violation.

A terms:
Aj=Aulyddi  (Ad)ij=AdYa)ij

= A terms also diagonal in flavor basis.
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Reduced soft SUSY breaking parameter space:

. 2 2 2 2 2
scalar masses: mg, Mge, My, Mi, Mg,
2 2
mHu' de
gaugino masses: Mj, My, M3
Aterms: Ay Ad, Ae

and don’t forget: u, B

This is still a lot of parameter space.
Look at some simple theory ideas...
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High Scale SUSY Breaking

Assume SUSY broken at high scales in a hidden sector by

(Fx) #0:

4 XX X +
AL~ |6 W-'-M-i-h.c. QQ

X
+fd26MW°‘Wa+ h.c.

+Jd46 XTX+X
M2 M

scalar masses,
A terms

gaugino masses

T
—) HyHq+ h.c. u, B terms

All required SUSY breaking generated with size ~ Fx/M, in-

cluding u and B terms!

Very compelling...
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Grand Unification

Further support for extrapolating the MSSM to high scales
comes from grand unification:

60 ————————————————
50¢ e e
40F S * :
o130 / T

20F 3

O 1 1 1 1 1 1 1 1
8 10 12 14 16 18
Log,,(Q/GeV)

Mgut ~ 2 x 1016 GevVv
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Unification suggests that at the GUT scale M1 = M, = M3.

d

RG equations: u—Mg=
du

M,
= — =
g1
At TeV scale: M7 : M3 : M3

Scalar masses:

ba
8m?
M, Ms
% o5
~5:2:1

92Mg  bg=(32, 1, -3)

[\/[%.}....]

d 1
o2~ [_16 2
H “ma—gnz[ 393
= mg ~ M3 at TeV scale
d , 1
—m =

= m,24 ~ m?Z at TeV scale
" i

it ey

Uh oh...
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“MSUGRA"” boundary conditions at Mgyr:

22 —iim? — 2 —m2
me=mg=---=my =mp =mg

My =Mz =M3=m1,

1500—

1000

Mass [GeV]

500

n n n 1 n 1 n n n
2 4 6 8 10 12 14 16 18
Log,,(Q/1 GeV)
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(Too) many other possibilities...

=
S

I dpap HOAD % -
i indn

M €Rr

=

H‘ ‘-)7

R Parity

Recall that we had to suppress the baryon and lepton num-
ber violating superpotential terms

AW = UDD® + QLD + LLE® + LHq4

There is a striking consequence of forbidding these terms:

there is a Z symmetry under which
g, ac, d¢, I, & =odd

q, u, d<, I, e =even

H,, Hg=even H,, Hyg=odd

~~ ~~

SM particles “supersymmetric
+ Higgs particles”
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This “R-parity” symmetry has the important consequence
that the lightest supersymmetric particle (LSP) is absolutely
stable.

If this particle is electrically neutral, it is a candidate for the
dark matter particle.

Well-motivated possibilities:
e neutralino = mixture of B, W3, Flg, Flg.

e gravitino

F F
msp~—<KL—~TeV forM<«< M
3/2 M) v Pl
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Generic SUSY signal (R parity conserved):
e Supersymmetric particles produced in pairs

e Each supersymmetric particle decays to ordinary
particles plus LSP

e LSP |leads to missing transverse energy

BT,miss = —ZﬁT,i ET miss = |ﬁT,miss|
i

Example:

o LS

------- N1 = lightest neutralino

= 4 jets + missing Er
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Many possibilities = look everywhere.

[{e]

Search reach determined by rate: need 10-100 events to
see signal, depending on backgrounds.

6.’.

[
fam)
U

16 \ ) | l |

Cralpb)
S=8TeV

200 Yoo oo 80O looo

GeV

Figure from N. Craig, arXiv:1309.0528
(excellent overview of LHC8 searches)

183

ATLAS SUSY Searches* - 95% CL Lower Limits ATLAS Preliminary
Status: Feb 2015 Vs=7,8TeV
Model ST,y Jets EY™ [radn™) Mass limit Reference
T
0 26jets  Yes 203 |@E 17TeV  migl=miz) 14057875
0 26kt Yes 203 [d 850 GeV. (T30 eV, m(1* gen d)=m2 gen. ) 14057875
2 1y 0tjet  Yes 203 |a 250 GeV ) mie) 1411.1589
0 26jets  Yes 203 |E 1.33TeV. 14057875
g ey 3-6jets  Yes 20 |& 12TeV 1501.03565
8| = 2ep  03jes - 20 |k 1327TeV. 150103555
©  GMSB(INLSP) 1274040 02fels Yes 203 |E 16TeV. 14070603
g GGM (bino NLSP) 2 - Yes 203 |& 1.28TeV ATLAS.CONF-2014-001
3 ATLAS.CONF2012-144
£ i

v )
GGM (wino NLSP) Teusy - Yes 48 e
Cvamannsy 5 e s E i P
a5 aewn oshs e o8 i s 52

Gravitino LSP. 0 monojet Yes 203 |FViscas 865 GeV. MG 10° oY, m(@)=m(g)=1 5 TeV.
—r o 36 Yes 201 |& 125Tev 14070600
8 it 0 Td0jes Yes 203 |E 11Tev. 1308 1841
E Otep 3b Yes 201 |& 134TeV 1407.0600
o Olep 36 Yes 201 |& 13Tev 1407.0600
3 Yes 201 B 100620 GeV 12082691
204(88) 035 Yes 203 |5 275440 Gev 14042500
12ep t2b  Yes 47 | A[HOHGHGEV | 230460 Gev! 12002102, 1407.0583
2eq 026t Yes 203 [h 90191Gev 215530 Gev 1403.4859, 14124742
Oten 12b Vs 20 i 210640 GoV. 1407.0585.1406.1122
0 monojetic-tagYes 203 | 90240 Gev 14070608
2e4 b Yes 203 | 150-580 GV 14035222
3en@ b Yes 203 |h 290-600 GV 14035222
2en 0 ves 208 |7 90-325 Gev 1403 5294
2o 0 s 203 | 140465 GeV 1403 5294
- - s 208 |F 100-350 GeV 1407.0350
Ses 0 Yes 203 [EE 700Gev. 14027020
23ep o2jels Yo 208 [EE 420GoV. 14035294, 14027029
b WWer /vy «.p.y 025 Yes 203 |Eib 250 Gev 160107110
0 Ye 203 |Wy 620 Gev 1405.5086
Direct ¥17; prod. long hved)(, oupp Tt e 203 % 270Gev. 13103675
§ Stable, stopped ¢ R-hadror 15jets  Yes 279 |& 832 GeV. 13106584
2 % Stable & R-hadron - -1 & 127Tev. 14116795
2§ GMSB.stable 7 T1r(e, v '2)4 - - oter [ 537 GeV. 14116795
58 S s 203 |® 435.GeV.
T msm oo~ - 23 |a 10Tev ATLASCONF 2013092

I w221z
S 035 ves 203 |ak 1.35Tev 14042500
[ S ves 203 [ 750Gov 14055086
Yes 208 |E 450 Gev
0 e7js 203 |& 916.Gev ATLAS CONF-2013.091
Foiit, i—bs 2eu(8S) 08h Yes 203 [ 850 GeV.
Other Scalar charm, st} 0 2¢ Yes 203 |& 490 GeV. m(i?)<200 GeV 1501.01325

=8TeV =
- - V!flll em: 107! 1 Mass scale [TeV]

*Only a selection of the available mass limits on new states or phenomena is shown. Al limits quoted are observed minus 1o theoretical signal cross section uncertainty.
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In the absence of any signal, how natural is SUSY?
Supersymmetric particles most directly connected to natu-
ralness:

. , ) 2 — m?2
Higgsino mass: meeff = mHU'd

U = Higgsino mass

u -2
tuning ~ 20% (—200 G V)
e

+ |u?

Top mass:

tuning ~ 20% (

Gluino mass: lJ— =

du

mx -2
tuning ~ 20% (—G)
900 GeV
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600 GeV)
2

212

37 >93M3 +

Stop Searches

t-t production

'—500 rrrryrrrryrrrryrrrr[rrrr[rrrr|rrrrr
> F L I I I I
s E CMS I5reI|m|nary
§ 450 F F \/g 8 TeV —— Observed
E 400F SUSY 2013 - - - Expected
% E —— SUS-13-004 0-lep+1-lep (Razor) 19.3 fb™! (f— li‘:)

350 E = SUS-13-011 1-lep (leptonic stop)19.5 fb ™' (— ti:)

300 ; —— SUS-13-011 1-lep (leptonic stop)19.5 fb ™' (f— b’i:, x=0.25)

250

200

150

100

50

0 100 200 300 400 500 600 700 800

NI A

1lll1111lllllll111lllllllllllllllllllllllllllll

stop mass [GeV]
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Gluino Searches

0-0 production, g—tt ;”(0

; \\\\‘\\\\\\\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\\\:
8 900f éMS Prellmlnary —— SUS-12-024 0-lep (B+H;) 19.4 fb"—]
7 === SUS-13-004 0+1-lep (razor) 19.3 fb" =
§ 8007 s=8TeV — SUS-13.007 -ep (n,_ = 6) 194 16 ]
£ SUSY 2013 —— SUS-13-013 2-lep (SS+b) 19.5fb™" |
o — Observed = SUS-13-008 3-lep (31+b) 19.5 fb™!
% 700 Observed -1 305" op (31b)
- - - Expected Q\
600

500

400

300 = .

ik
T R SRR AR A Ll g

0 '
600 700 800 900 1000 1100 1200 1300 1400 1500
gluino mass [GeV]

M3 > 1300 GeV = tuning < 10%
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Electroweakino Searches

[GeV]

M_o

CMS Preliminary ls=8TeV,L =9.21fb"

“‘{‘
L pp—>')20~' 95%C L. CLs NLO Exclusions |
N # Observed 212j +3/ = 1 "™
L =0 0 « Expecteded 2/2j +3] =10 _|
200k %, 2%, nEXP / °
C — - Observed 3/ only
L == 70 - - - Observed 2/2j onl i
- X1 - WX1 / Y |
150 =
1001~ : Mo
501 =
L 2 : i
‘Hm.f‘m““J_L.all B R
900 150 200 250 300 350 400
m_.=m_, [GeV]
1 %y

188

lllHl

1

1

10°
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Stop Searches at 14 TeV

m_ [GeV]

400

300

200

CMS Preliminary
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Gluino Searches at 14 TeV

CMS Preliminary
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Electroweakino Searches at 14 TeV

CMS Preliminary
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Final Thoughts
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G. Altarelli: “The train of SUSY is late.” (1990’s)
SUSY needs either tuning or non-minimal structure.

But: only one tuning.

m? <<mf2 = recover SM
u y'ZT, 4
’ a“ H ; ap
Occam’s Razor: “Entities must not ST

be multiplied beyond necessity.”

MSSM with one percent-level tun-
ing is arguably the most compelling
framework for particle physics.

ALLAM o OC w(\nr-nm

Implications:
e The most likely place to find SUSY is just around the corner.

e Keep looking for “standard” SUSY signals.
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Thanks!
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Backup
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Classical Fermion Fields

Classical mechanics is a limiting case (A — 0) of quantum
mechanics. So why do we define a quantum theory by
“quantizing” a classical action?

QFT: Heisenberg fields obey Lorentz covariant equations of
motion:

2y 4 AWE 4
@+ m*)p(x) = —¢>(x) (¢~ theory)
hats on operators for emphasis
= time dependence is Lorentz covariant.

Unitarity of time evolution guaranteed by Heisenberg equa-
tions of motion:

%(i)(t' 56) = l[Fl, é(t/ 2)] = (ﬁ(t, X) = eiI:Ith(t =0, )?)e_u:’t

19 unitary transformation




Quantization: construct H so that Heisenberg equation of
motion is equivalent to classical equation of motion:

6S B
S00) g

a ~ — N 2 —
—o(t, X) = ([H, ¢(t, X)]
ot
From this point of view, classical action is the “data” that
defines the quantum theory.

For bosonic fields, the classical action does more: it de-
scribes the classical limit of the theory. But for fermions we
have to take the more formal viewpoint described above.
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Fermion fields are quantized by imposing equal-time
anticommutation relations:

Dirac spinor field:
{a(t, %), U (t, 7} = 76953 (X - 9)
{oot, %), 90(t, y3 = {97 (t, %), O}t ¥} =0

a=1,...,4
= Dirac spinor index

The classical fields can be thought of as the i — 0 limit of
the quantum fields:

h—0: ¥I(x) - Wwi(x)
= {WI), Wi (1)} =0
{Wo(x), W)} = (Wl (x), Wi (y)} =

Alternately: in path integral quantization, fermion path inte-
gral is over anticommuting figjds.

)
forall x, y
0

Gauge Coupling Renormalization

We can learn a lot about the renormalization of the gauge
coupling by promoting it to a superfield.

Discuss using SUSY QED, the theory of two chiral superfields
&, with charges g = +1.

Use normalization with 1/g? in front of gauge kinetic term:
L= sze%swawa +h.c.
+ Jd“GZ (o7 e?Ve, + ol e 2o ]

s 1 ¢}
= — — + ..
292 16m?2

= chiral multiplet
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RG equation for gauge coupling:

dg® | 4 6 8
umg =b19" + b29° + 0(g9°)

d (1
= U— (—2) = —b1 —b29* + 0(g*)
du \g

d

—_ =—l —l -1 -2

“dus >b1 2b2£/+0(5 )
holomorphic!

2
ReS 1= I
1+ (g20/1612)2

This depends on O, which is impossible (at least in perturba-
tion theory).
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We conclude that

d 1
S=-5b; exactly!

“@ 2
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