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Lecture 2: Theoretical Approaches

Dark Matter Clustering

If collisionless dark matter were the only component of the universe, its evolution could be modeled
using gravity alone.

Baryons also produce gravity, and their evolution is affected by hydrodynamics, star formation,
feedback.

Thus, these processes also have some impact on dark matter clustering.

However, on scales larger than ∼ 1 Mpc, it is usually a good approximation to follow gravitational
dark matter clustering, “paint” the baryons on top.

Importance of baryonic effects on total mass distribution and dark matter clustering itself depends
on scale and desired level of accuracy.

Linear perturbation theory

In Eulerian linear perturbation theory, density fluctuations just “grow in place” in proportion to
the linear growth factor.

Equations (from Lecture 1)

δ(x, t) ≡
ρm(x, t)− ρ̄m(t)

ρ̄m(t)
= δ(x, ti)×

G(t)

G(ti)

where

G̈GR + 2H(z)ĠGR −
3

2
ΩmH2

0 (1 + z)3GGR = 0

and

fGR(z) ≡
d lnGGR

d ln a
≈ [Ωm(z)]

γ

implying
GGR(z)

GGR(z = 0)
≈ exp

[

−

∫ z

0

dz′

1 + z′
[Ωm(z′)]γ

]

.

One can also use linear perturbation theory to compute the displacements and peculiar velocities
of particles given the linear density field.

∆x(q, t) ≡ x(q, t)− q = g0(q)
G(t)

G(t0)

(

3

2
Ωm,0H

2
0a0

)−1

v = a ˙(∆x) =
Ġ

G
(a∆x) ≈ [Ωm(z)]γH(a∆x)

G(t) = growing mode growth rate of linear perturbations

q = comoving position in an unperturbed universe

g0 = gravitational acceleration at t = t0
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Instead of calculating the gravitational accelerations, it can be easier to just think in terms of the
continuity equation, which in linear theory gives

~∇ ·∆x(q, t) = −δ(q) .

Lagrangian linear perturbation theory, a.k.a. the Zeldovich approximation, is surprisingly accurate,
provided the linear density field is smoothed over a scale comparable to the scale of non-linearity
(where σ ≈ 1).

In the Zeldovich approximation, particles follow straight paths in comoving coordinates, in the
direction of their gravitational acceleration, and their peculiar velocities are proportional to their
Lagrangian displacements.

Higher order perturbation theory

I will skip this topic because it will be treated more expertly and in considerable detail in the
Zaldarriaga lectures.

Basically, one can expand the equations of motion and keep terms of higher than linear order in δ
and v.

Both Eulerian higher order perturbation theory and Lagrangian higher order perturbation theory
can be useful for some purposes.

Higher order perturbation theory can be used to compute non-linear corrections to the power
spectrum or redshift-space distortions.

For Gaussian initial conditions, N-point correlations or Nth reduced moments of the density field
vanish at order N − 2 perturbation theory.

For example, 3-point correlations, the bispectrum, and skewness are all zero in linear perturbation
theory, but they are non-zero at second order, with 〈δ3〉 ∼ 〈δ2〉2.

N-body simulations

Cosmological N-body simulations can be thought of as a Monte Carlo solution to the collisionless
Boltzmann equation + Poisson equation in an expanding universe.

Initial conditions: create Gaussian random field with desired linear power spectrum. Perturb parti-
cles from a grid or “glass” using the Zeldovich approximation or 2nd-order Lagrangian perturbation
theory.

In comoving coordinates and Newtonian approximation, equations of motion are:

ẋ = u

u̇+ 2
ȧ

a
u = −

∇φ

a

∇2φ = 4πGa2ρδ(x).

a(t) is determined by integrating the Friedmann equation.
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The Poisson equation can be expressed in terms of Fourier components:

∇2

∫

d3k e2πik·x φk = (4πGa2ρ)

∫

d3k e2πik·x δk

=⇒ − 4π2k2
∫

d3k e2πik·x φk = (4πGa2ρ)

∫

d3k e2πik·x δk

=⇒ φk = −(4πGa2ρ)
δk

4π2k2
.

N-body codes compute φ(x) by direct summation over particles or particle groups, by FFT using
the result above, or by a combination. Combinations of Tree+FFT algorithms can be made very
efficient.

Interparticle forces are softened on small scales to suppress 2-body relaxation and allow larger
timesteps.

Particle positions and velocities are integrated forward in time, typically with a leapfrog algorithm.

High resolution simulations, attempting to resolve the inner regions of halos, may use individual
timesteps – shorter timesteps for particles in denser regions – to increase efficiency.

N-body simulations, some key results

For an initial power spectrum with a sharp small scale cutoff, first non-linear structures are sheets
and filaments.

For a CDM-like power spectrum, or a power-law spectrum with −1 >∼ n > −3, halos form along
similar filamentary structures, beads on a string.

Largest halos form at intersections of filaments, fed by filamentary flow.

Small scale structures form by non-linear collapse of larger scale perturbations. Information flows
from large scales to small scales, but small scale details have little back reaction on large scales.

Halos are roughly in virial equilibrium inside r200, radius within which mean interior overdensity
is ≈ 200ρ̄, but best choice of halo “boundary” remains a matter of debate.

Halos form with NFW-like profiles (Navarro, Frenk, & White 1996, 1997), ρ(r) = ρ0/[(r/rs)(1 +
r/rs)

2] bending from r−1 at small radii to r−3 at large radii. (Detailed inner form still somewhat
debated, affected by baryons.)

Concentration r200/rs increases with decreasing halo mass.

Halo mass function has roughly Press-Schechter-ish form, a power law with an exponential-of-power-
law cutoff at characteristic scale where σ(M∗) = δc and δc ≈ 1.68 is the linear density contrast at
which a spherical perturbation would collapse.

More accurate analytic arguments and numerically calibrated forms for dn/dM are now available.

More massive halos are more strongly biased. Bias is roughly unity at M ≈ M∗.

At masses well below M∗, halo bias has significant dependence on formation time: oldest halos are
more strongly clustered. Effect is weaker, and maybe opposite sign, above M∗.

The dependence of halo bias on formation time, or more generally on properties other than mass,
is referred to as assembly bias.

Self-similar clustering, for power-law initial conditions and an Ωm = 1 universe, is a useful source
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of intuition and test of numerical accuracy. CDM on M∗ scales corresponds roughly to n ≈ −1 to
−1.5.

Non-linear clustering is surprisingly insensitive to Ωm, Λ, w, if one considers the same P (k) and
uses G(t) as the time variable (see Z. Zheng et al. 2002, ApJ 575, 617).

These quantities primarily affect matter clustering through their influence on the P (k) shape and
amplitude, the history of G(t), and the amplitude of peculiar velocities (∝ [Ωm(z)]γ).

Halo model of dark matter clustering

Reading: A. Cooray & R. Sheth 2002, Phys Rep 372, 1

A useful conceptual and practical model of non-linear matter clustering is:

• all matter resides in halos, distributed according to mass function

• distribution of matter within halos is NFW-like, with numerically calibrated mass-concentration
relation

• power spectrum of halos of a given mass is b2(M) times the linear matter power spectrum

Allows matter power spectrum to be calculated as sum of one-halo and two-halo terms.

Variations in the details, including linear vs. perturbative matter power spectrum, scale-dependent
bias, treatment of halo exclusion.

Can be generalized to clustering of gas, given model for gas distribution within halos.

Closely related to halo occupation distribution (HOD) modeling discussed below, but I use the
term “halo model” specifically to refer to an approximate method of computing non-linear matter
clustering, and HOD to refer to a model for the relation between galaxies and mass.

A Sketch of Galaxy Formation Theory

Reading: S. Cole et al. 1994, MNRAS 271, 781; A. Benson 2010, Phys Rep 495, 33

Galaxies are made of stars, which formed from gas that dissipated its energy and condensed within
dark matter potential wells.

For the most part, gas and dark matter collapse together and accrete onto halos together. Correc-
tions due to pressure support, especially for halos with circular velocity below ∼ 30 km s−1.

Gas could be pressure supported in DM halo if it were at the virial temperature kTvir/mp ∼
GMh/rvir ∼ v2c .

Gas within the cooling radius, where tcool <∼ tdyn, can radiate its energy and sink to the center of
the halo.

Makes a disk, size determined by angular momentum conservation. rd ∼ λrvir where λ ≈ j/(vcrvir).

N-body simulations show λ ∼ 0.03 − 0.07 for dark matter, but the specific angular momentum of
baryons that form the disk may be different.

In halos with M <∼ 1011.5M⊙, hydrodynamic simulations and analytic arguments suggest that
there is little or no hot gas halo, and most gas accretes cold, with T ≪ Tvir, often along filamentary
streams.

More massive halos have pressure supported hot gas halos, which may be penetrated by cold
streams.
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Ellipticals could form from rapid, chaotic collapse or from dissipative mergers of disks.

Galaxy formation is extremely inefficient. Only 5-10% of baryons are in the stellar components of
galaxies. Even maximally efficient halos (M ∼ 1012M⊙) have only 20-30% of the halo baryons in
stars.

Current lore:

• For galaxies with Mh
<∼ 1012M⊙, stellar feedback ejects gas from the disk, as much or more as

forms into stars. Increasingly efficient outflow driving at lower halo mass.

• For more massive galaxies, which are typically no longer forming stars, stellar feedback is insuffi-
cient. AGN feedback from accreting black holes may be what prevents gas from cooling in massive
halos.

This picture accounts for a lot, but the feedback physics is still only sketchily understood.

Modeling Galaxy Clustering

Hydrodynamic simulations

Reading: D. Weinberg et al. 2004, ApJ 601, 1; D. Weinberg et al. 2008, ApJ 678, 6

In principle, the “right” way to model galaxy clustering is to carry out hydrodynamic simulations
that incorporate all of the physics of galaxy formation within an evolving DM distribution.

Hydro simulation methods will be discussed in Borgani’s lecture.

The biggest difficulty with this approach is that one cannot simulate very large volumes while
maintaining the resolution needed to model the formation of galaxies.

In addition, this approach is subject to numerical systematics — i.e., to incorrectly computing the
result of the assumed input physics.

Even if the computations are correct, there are significant uncertainties in the galaxy formation
physics itself, especially with regard to stellar and AGN feedback and their interaction with accre-
tion.

Despite the two latter problems, this is probably the most reliable way to compute the small scale
clustering of stellar mass-thresholded samples of galaxies. For color or morphology selection, the
uncertainties of galaxy formation physics become more important because of their impact on galaxy
properties.

Populating DM halos via semi-analytic models

Reading: Kauffmann, Nusser, & Steinmetz 1997, MNRAS 286, 795; A. Benson et al. 2000, MNRAS
311, 793; V. Springel et al. 2005, Nature 435, 629 (Millenium Simulation)

An alternative to running hydro simulations is to run DM-only N-body simulations and populate
the halos with galaxies using some recipe.

The most physical of these approaches uses semi-analytic calculations of the cooling of gas, star
formation, feedback, etc., implementing the physical processes sketched above.

Early versions of this approach used Monte Carlo merger trees, generated with the extended Press-
Schechter formalism, to assign a merger history to each dark matter subhalo in the final output of
the simulation.

As simulations achieved higher resolution, these merger trees could be constructed directly from
the N-body simulations themselves.
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Strengths: Incorporates a complete, albeit approximate, model of galaxy formation physics, tuned
to reproduce observed galaxy properties. Can impose any desired galaxy selection.

Limitations: Uncertainties in galaxy formation physics may affect predictions. Subhalos may be
artificially disrupted in the inner regions of large halos, either because of numerical effects or because
influence of condensed baryons is not included. Need to correct for this in some way.

Abundance matching and age matching

Reading: Conroy, Wechsler, Kravtsov 2006, ApJ 647, 201; V. Simha et al. 2012, MNRAS 423, 3458;
Hearin & Watson 2013, MNRAS 435, 1313; A. Hearin et al. 2014, MNRAS 444, 729

To a decent approximation, hydro simulations and semi-analytic models predict that more massive
galaxies live in more massive halos.

Assume this is so, and put galaxies in halos of N-body simulation with luminosity assigned to match
the cumulative number density of observed galaxies above that luminosity: nh(> M) = ng(> L).

Subhalos, hosting galaxies that are satellites of larger galaxies, are a bit tricky. Works best to
assign galaxy luminosity based on the mass that the subhalo has at the time it is accreted onto the
larger halo, since the mass decreases after that because of tidal stripping.

Get interestingly different answers using halo mass or maximum circular velocity to assign galaxy
luminosities.

Can extend to predict galaxy color by monotonically mapping observed distribution of color (redder
= older) at fixed luminosity onto distribution of halo formation times at fixed halo mass.

Easily extended to incorporate some scatter between halo properties and luminosity or color.

Observed luminosity function and color distribution are matched by construction, but clustering is
predicted.

For a specified cosmological model, there are no free parameters (unless scatter is incorporated),
though there are choices (e.g., mass or circular velocity, what measure of formation time).

Strengths: Simple, and straightforward to describe. Given few or no free parameters, describes
observations astonishingly well.

Limitations: Makes strong assumptions about the effect of galaxy formation physics. Same subhalo
resolution issues that affect semi-analytic population approach.

Both semi-analytic population and abundance matching are very good for illustrating what could
happen, generating plausible galaxy distributions to test methods.

Semi-analytic population method can give a sense of how the cosmological results depend on un-
certainties in the galaxy formation physics.

Halo occupation distribution (HOD) modeling

1. Basic philosophy

Reading: R. Scoccimarro et al. 2001, ApJ 546, 20; Berlind & Weinberg 2002, ApJ 575, 587; Zheng
& Weinberg 2007, ApJ 659, 1

N-body simulations can predict the population of DM halos with little uncertainty due to baryonic
physics.

Treat assignment of galaxies to halos as a statistical problem, solved by fitting observed galaxy
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space density and clustering.

For specified cosmology, derived HOD teaches us about galaxy formation physics.

Marginalizing over parameters describing the HOD is a way to remove sensitivity to galaxy forma-
tion physics in deriving cosmological parameters.

2. Parameterization

Reading: A. Kravtsov et al. 2004, ApJ 609, 35; Z. Zheng et al. 2005, ApJ 633, 791

Key element is P (N |M), probability that a halo of virial mass M contains N galaxies of a specified
class.

Also need to specify the spatial and velocity distribution of galaxies within halos. The first only
matters for small scale clustering; the second only matters for redshift-space measurements.

Each class of galaxies (defined by, e.g., luminosity or stellar mass range, color, morphology) has its
own HOD, which depends on redshift.

For a class of galaxies defined by a luminosity or stellar mass threshold, a useful parameterization
that accurately describes theoretical predictions is:

• A softened step function for 〈Ncen(M)〉 for central galaxies, corresponding to Gaussian scatter of
lnM∗ at fixed lnMh. Every halo contains zero or one central galaxies.

• A power-law 〈Nsat(M)〉 = (M/M1)
α for satellite galaxies, cut off at minimum mass for central

galaxies. Distribution of P (N |Nsat) is Poisson.

• Central galaxies located at halo center-of-mass (or potential minimum). Satellite galaxies have
NFW profile, perhaps with different concentration than dark matter.

• Central galaxy has center-of-mass velocity bv,cenσDM where σDM is the dark matter velocity
dispersion. Natural limit is bv,cen = 0.

• Satellite galaxies have velocity dispersion bv,satσDM. Expect bv,sat ≈ 1.

Parameters: Mmin and σlnM for central galaxies, M1, α, and Mcut for satellites, concentration of
satellites in halo, two velocity bias parameters.

For color or morphology selected samples, parameter values may be different, and one can no longer
assume that all sufficiently massive halos have a central galaxy.

For luminosity ranges instead of luminosity thresholds, 〈Ncen(M)〉 may be a log-normal instead of
a softened step function.

HOD can be generalized to the “conditional luminosity function” describing a continuous relation
between galaxy properties and halo mass.

3. Observational results

Reading: I. Zehavi et al. 2005 (ApJ 630, 1), 2011 (ApJ 736, 59)

HOD models applied to ΛCDM cosmology are impressively successful at fitting observed luminosity
and color dependence of clustering in the Sloan Digital Sky Survey (SDSS).

Inflection in 2-point correlation functions reflects transition from 1-halo regime (both galaxies in
same halo) to 2-halo regime (galaxies in separate halos).

Luminosity dependence largely reflects increase of Mmin for central galaxies and M1 for satellites
with increasing luminosity threshold.
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Color dependence largely reflects greater satellite fraction of red galaxies (lower M1, higher α).

The ratio M1/Mmin is typically 10− 20. While the halo mass of the Milky Way is ∼ 1012M⊙, you
need a halo mass of ∼ 1.5× 1013M⊙ before you are likely to get two galaxies more luminous than
the Milky Way.

Fluctuations about 〈N〉 are significantly sub-Poisson for 〈N〉 < 2, which greatly reduces the number
of small scale pairs compared to Poisson P (N |〈N〉). This is a crucial ingredient in explaining
observed galaxy correlation functions.

4. Assembly bias

Reading: Gao, Springel, & White 2005, MNRAS 363, L66; A. Zentner et al. 2014, MNRAS 443,
3044;

In its standard form, HOD modeling assumes that the galaxy content of a halo of fixed mass is
independent of the halo’s large scale environment.

To the extent that this assumption holds, the HOD allows a complete description of the relation
between galaxies and mass, from large scales into the fully non-linear regime.

(Caveat, a given parameterization of the HOD may or may not be sufficiently flexible to describe
this relation.)

But the clustering of halos of fixed mass depends on halo formation history – e.g., formation time
– at least in some regimes.

If galaxy properties are correlated with halo formation history – e.g., redder galaxies in halos that
form earlier – then galaxies can inherit “assembly bias” from their host halos.

In this case, P (N |M) varies with large scale environment, and one must include this variation to
correctly predict galaxy clustering.

One can include environmental parameters in the HOD, e.g. through a dependence of Mmin and
M1 on the overdensity in the halo environment.

Hydrodynamic simulations predict little galaxy assembly bias (i.e., they predict an environment-
independent HOD) because of stochastic relation betwen galaxy properties and halo formation
history.

However, abundance matching models tied to halo circular velocity, and age matching models for
galaxy color, do predict galaxy assembly bias.

Understanding how important galaxy assembly bias is, and how to incorporate it into modeling of
galaxy clustering, is a frontier of the field.

Galaxy-galaxy lensing and cluster-galaxy lensing

Reading: R. Mandelbaum et al. 2006 (MNRAS 368, 715), 2013 (MNRAS 432, 1544); J. Yoo et al.
2006 (ApJ 652, 26); Zu & Mandelbaum 2015, arXiv:1505.02781

When we think of weak lensing, we typically think of cosmic shear, the correlated ellipticities of
galaxies as a function of separation.

Cosmic shear directly probes dark matter clustering; in particular, the amplitude of the cosmic
shear power spectrum is proportional to the amplitude of the total matter power spectrum, with a
redshift weighting that depends on the source redshift distribution.

One can also measure the mean tangential shear of background galaxies around foreground galaxies
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or clusters (i.e., the stretch of the background galaxies perpendicular to the line of sight of the
foreground galaxies).

This is called galaxy-galaxy lensing (GGL, or cluster-galaxy lensing for clusters).

The GGL signal is proportional to the product of Ωmξgm, where ξgm is the galaxy-matter cross-
correlation function.

This method can be used to probe the dark matter properties of galaxies of different stellar mass,
luminosity, or color.

By combining GGL with measured galaxy clustering, one can constrain the amplitude of matter
clustering.

In linear theory, we expect

ξgg = b2gξmm, Ωmξgm = Ωmbgξmm.

Dividing GGL measurement by
√

ξgg cancels the galaxy bias yielding Ωmξ
1/2
mm ∝ σ8Ωm.

In practice one does a joint fit to the observables, but the above relation captures the concept.

In the non-linear regime, one can use HOD modeling to describe both ξgg and ξmm, marginalizing
over HOD parameters to constrain Ωm and ξmm.

Galaxy assembly bias seems to pose a risk to this program, as the HOD description may be insuf-
ficient to capture all the relevant effects of non-linear galaxy bias.

However, our preliminary experiments on abundance matching catalogs (J. McEwen & D. Weinberg,
in prep.) suggest that even in the presence of assembly bias, the value of

rgm ≡
ξgm

√

ξggξmm

is accurately predicted (at the 2% level) by an HOD model with parameters fit to the observed ξgg .

One can therefore infer ξmm from observations of ξgg and ξgm.

These kinds of investigations are an area of active research, with great promise in the era of the
Dark Energy Survey, LSST, Euclid, and WFIRST.

One can do analogous things for cluster-galaxy lensing, where the theoretical complications are
probably smaller because of the expected correlation between cluster properties and halo mass.

Theory of redshift-space distortions (RSD)

I am mostly skipping this topic for lack of time.

However, I’ll write down the linear theory formula (Kaiser 1987). the galaxy power spectrum in
redshift space depends on µ = cos θ where θ is the angle between the wavevector and the line of
sight:

Pg(k, µ) = b2g(1 + βµ2)2Pm(k) =
[

bg + µ2f(z)
]2

Pm(k)

where f(z) ≈ [Ωm(z)]γ is the fluctuation growth rate and β = f(z)/bg.

With measurements of Pg(k, µ), or its Fourier transform ξ(s, µ), one can constrain the parameter
combination σ8f(z) even without knowing bg.

9



Precision Cosmology with Large Scale Structure David Weinberg

Unfortunately, linear theory for RSD is not a good approximation on any scale where RSD is
precisely measured. Small scale dispersions in non-linear structures are a particular nuisance.

A variety of approaches are being tried to get the most out of RSD measurements down to at least
mildly non-linear scales.

The smaller scale one can get to, the higher the S/N of the measurements, but the harder the
predictions are and the more accurate they have to be.

Numerical predictions using HODs are one potential way forward.

The Lyα forest

Basic phenomenology and physics

Reading: D. Weinberg et al. 1999, astro-ph/9810142; M. Peeples et al. 2010, MNRAS 404, 1281

The Lyα forest is a pattern of fluctuating absorption observed in the spectra of high redshift
quasars, caused by absorption by intervening concentrations of neutral hydrogen.

The phenomenon was recognized observationally in the 1970s, but the underlying physics was not
well understood until 3-d cosmological hydro simulations in the mid-1990s.

While it took sophisticated simulations to recognize it, the basic physics can be described in ap-
proximate terms rather simply.

The IGM is highly photoionized, so the neutral hydrogen density is

nHI ∝
n2
Hα(T )

ΓHI

where nH is the total hydrogen density, the recombination coefficient is α(T ) ∝ T−0.7 in the relevant
temperature range (T ≈ 104 K), and ΓHI is the photoionization rate due to the background of UV
photons produced by quasars and star-forming galaxies.

For densities near the mean density at z = 2.5, nHI/nH ≈ 10−5, and 1/ΓHI ∼ 3× 104 years.

The interplay between photoionization heating and adiabatic cooling (because of the expansion of
the universe) produces a tight relation between gas temperature and density through most of the
volume, T ∝ ρα with α = 0− 0.6.

Pressure is low, so the gas mostly traces dark matter, though pressure support becomes significant
on sub-Mpc scales.

The optical depth for Lyα absorption is proportional to nHI .

One can therefore view the Lyα forest as a non-linear map of the matter density along the line of
sight to the quasar, with the continuum-normalized flux

F

Fc
= e−τHI ≈ exp

[

−(1 + δDM)2−0.7α
]

.

In more detail, one needs to worry about peculiar velocities and smoothing by the thermal velocity
of the atoms.

This Fluctuating Gunn-Peterson Approximation is a useful intuitive guide, and it can be used as a
practical tool to paint the Lyα forest onto dark matter simulations, though one must be cautious
of its approximations.
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Hydro simulations of the Lyα forest are relatively straightforward (much more so than for galaxy
formation), but it is hard to achieve the necessary ∼ 100 kpc-scale resolution over large volumes.

1-d and 3-d measures of Lyα forest structure

Reading: R. Croft et al. 2002, ApJ 581, 20; N. Palanque-Delabrouille et al. 2015, JCAP 02, 045;
T. Delubac et al. 2015, A&A 574, 59

The Lyα forest is a powerful probe of structure at z = 2−4, where Lyα is accessible to ground-based
observations and forest absorption is not saturated.

Each well observed quasar probes dozens-to-hundreds of density fluctuations along its line of sight,
depending on spectral resolution of observations.

On scales larger than ∼ 1 Mpc, the power spectrum of the Lyα forest should be a biased version
of the matter power spectrum.

The bias factor is < 1 because the flux is constrained to 0 < F/Fc < 1, and the power spectrum
shape is closer to the linear than the non-linear matter power spectrum because high density regions
are not heavily weighted.

For galaxies, the RSD parameter β = f(z)/bg , but for the Lyα forest it is not just βF = f(z)/bF
because saturation means that flux doesn’t “add” in the way that galaxy or matter density does.

Nonetheless redshift-space distortions of Lyα forest clustering are very strong because the bias
factor is small.

The 1-d power spectrum, computed for each line-of-sight individually and averaged over many lines
of sight, is an integral over the 3-d power spectrum, P1d(k) =

∫∞

k
P (y)dy/2π.

With large surveys like SDSS and BOSS, the 1-d power spectrum has been measured with exquisite
precision.

Modeling at this level of precision requires hydro simulations, but the simulation volumes don’t
need to be enormous.

This is our best probe of the linear matter power spectrum at scales of 1 to a few Mpc.

It provides an important constraint on warm dark matter, which cuts off the Lyα P (k) if the mass
is less than about 2 keV (for a standard thermal relic).

It provides leverage on ns and running of the spectral index.

It provides what is probably the tightest current constraint on neutrino mass,
∑

mν < 0.15 eV at
95% confidence, because neutrinos reduce small scale power relative to large scale power.

With 160,000 quasars over 10,000 deg2, BOSS has a high enough density of sightlines to measure
the Lyα forest in 3-d, with correlations across sightlines.

Think of it as a very oddly sampled non-linear map of the intergalactic hydrogen distribution,
which traces the matter distribution.

The primary goal of the BOSS quasar survey was to measure BAO in the Lyα forest, which it has
succeeded in doing, with precision of about 2%.

Structure can be measured at higher precision on scales of 10-80 Mpc. Potential applications:
matter power spectrum shape and amplitude, Alcock-Paczynski test.

There is an observational challenge of removing subtle distortions imprinted by the data analysis
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method.

The theoretical challenge is to achieve sufficiently accurate modeling over enormous volumes. Hy-
dro simulations are infeasible, and the Fluctuating Gunn-Peterson Approximation is probably not
accurate enough.

Peirani et al. 2014 (ApJ 784, 11) present one possible route forward, based on applying conditional
distributions derived from hydro simulations to large volume N-body simulations.

How accurate does theory need to be?

From the point of view of precision cosmology, the goal of modeling is to compute observables as
a function of cosmological parameters accurately enough that any bias in the predictions is small
compared to the statistical uncertainties in the measurements.

Theoretical uncertainties can sometimes be encoded by nuisance parameters and marginalized over
in cosmological parameter fits. This typically increases the statistical error, but that is better than
biasing the answer.

Ideally one would like to get theoretical priors on any such nuisance parameters tight enough that
they don’t degrade the cosmological parameter errors.

The requirements get tighter as surveys get bigger and measurement errors get smaller.

The level of the challenge is very different from problem to problem — e.g., BAO looks to be much
easier than RSD or the Lyα forest power spectrum.
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