

Gravitational waves – Experiments and sources **I PART**

(Università di Urbino/INFN Sezione di Firenze)

18-29 MAY 2015 Trieste, Italy

Outline

- Gravitational waves and their detection
 GW spectrum, astrophysical sources and GW detectors
- First generation of ground based detectors
 Second generation of ground based detectors
 Network of GW detectors

Scientific results for different astrophysical sources

- Initial LIGO and Virgo
 - Prospects for the advanced LIGO and Virgo

The GW Spectrum

http://rhcole.com/apps/GWplotter/

http://rhcole.com/apps/GWplotter/

http://rhcole.com/apps/GWplotter/

First generation of ground based detectors

To reiterate:

1916 → Einstein's theory of relativity predicts the existence of a new type of wave: the gravitational waves

GWs are perturbations of the space-time metric:

- Generated by mass distributions with time-varying quadrupole moments
- Propagating at the speed of light

Change in the distance between stationary (inertial) masses

According to GR, GWs have two independent polarization states

Each GW signal can be described as a linear combination of them:

$$h = A_{+}h_{+}(t) + A_{x}h_{x}(t)$$

Do GWs exist?

PSR 1913+16 was the first Binary Pulsar discovered (Hulse & Taylor 1973)

It was the laboratory for the indirect evidence of GW existence

Orbiting stars stir space time around them, lose energy by emitting GW and spiral closer together

In 1993 Taylor & Hulse received Nobel prize for the discovery. The orbital period of PSR 1913+16 is decreasing at exactly the rate predicted by Einstein's general relativity.

No direct GW observation has been claimed yet!

GWs have a very weak interaction with matter

→ Powerful probes of faraway regions of the Universe and dense inner regions of astrophysical systems opaque to photons
→ Very hard to detect

How can GWs be detec

A GW deforms space

$$\Delta L = \frac{1}{2}Lh(t)$$

The displacement is proportional to length: it is a **strain**!

Do we know how to detect displacement?

The length change is measured interferometrically by using a laser light beam Laser Laser Mirror

Photodetector

Some numbers...

Ground-based GW detectors:

- km arms interferometers
- measure length changes 10⁻¹⁹ m, a few orders of magnitude smaller than the size of an atomic nucleus!

Ground-based Gravitational Wave Detectors

Ground-based Gravitational Wave Detectors

The LIGO and Virgo detectors are currently being upgraded to the 2nd interferometer generation: the Avanced LIGO and Virgo

Advanced GW detectors More Laser Power... Better mechanical quality...

Test mass of 40kg suspended by 400 micron glass fibers...

10kHz

... and better isolation

Advanced GW detectors More Laser Power... Better mechanical quality...

Network of current and near future GW detectors

Single GW detector directional sensitivity

$$\frac{\Delta L}{L} = h_{\text{det}}(t) = F_+ h_+(t) + F_x h_x(t)$$

The **antenna pattern** depends on the polarization in a certain (x,+) basis.

- Single GW detector is a good all-sky monitor, nearly omni-directional (the transparency of Earth to GWs)
- But does not have good directional sensitivity, not a pointing instrument! It has a very poor angular resolution (about 100 degrees)

The source localization requires a network of GW detectors

The **sky position** of a GW source is mainly **evaluated by triangulation**, measuring the differences in signal arrival times at the different network detector sites

3-detectors \rightarrow localize

The GW lengths are comparable to Earth diameter

→ longer baseline and greater number of the sites distributed worldwide significantly improve the sky-localization capabilities!

Other benefits of a network of GW detectors

Improvements:

- Sensitivity
- Observation time, and sky coverage
- In determining the polarization
- Ability to reconstruct the GW source parameters
- False alarm rejection thanks to coincidence

Virgo and the LIGO Scientific Collaborations have signed a MoA for full data exchange and joint data analysis and publication policy

Advanced LIGOs and Virgo will observe the sky (10-1000 Hz) as a single network aiming at the first direct detection of GWs

Example of sky-localization capabilties NS-NS with SNR=7 in each of the LIGOs and Virgo:

- best case localization of 20 deg² (signal is directly over the plane of network)
- median of 40 deg²

(Fairhurst 2009)

Near Future Gravitational Wave Detectors

Move one of the two LIGO detectors in Hanford to India

Kamioka mine: 3km length, - Cryogenic mirrors (2nd phase) Astrophysical sources detectable by the ground-based GW detectors Some science results of the Initial LIGO/Virgo Prospects for the advanced detectors

"Transient" GW sources detectable by LIGO/Virgo

"Transient GW signal": signal with duration in the detector sensitive band significantly shorter than the observation time and that cannot be re-observed

Coalescence of Compact Objects

Neutron-Stars and/or Black-Holes

Binary containing a NS:
Inspiral dominant phase
GW emission enters
sensitive band (> 50 Hz)
20 s before merger
Energy emitted in GW: ~10⁻²M_oc²

Energy emitted in GW uncertain: 10⁻⁸ - 10⁻⁴ M_oc²

Initial LIGO/Virgo Binary containing a NS detectable to ~50 Mpc likely rate **0.02 yr**⁻¹

Initial LIGO/Virgo Detectable within a fraction of the Milky Way (10 kpc)

Ott et al. 2013, ApJ, 768

Core-collapse of Massive Stars

Advanced Era GW-detectors (ADE)

LIGO and Virgo detectors are currently being upgraded

boost of sensitivity by a **factor of ten** (of 10³ in number of detectable sources)

Advanced era

Detection rates of compact binary coalescences					
	Source	Low yr ⁻¹	Real yr ⁻¹	High yr ⁻¹	Max yr ⁻¹
Advanced	NS-NS NS-BH BH-BH	0.4 0.2 0.4	$\begin{array}{c} 40\\10\\20\end{array}$	400 300 1000	1000

(Abadie et al. 2010, CQG 27)

Core-Collapse Supernovae

2-4 yr⁻¹ EM-observed within 20 Mpc

Rate of GW-detectable events unknown

GW-signal detectable

Optimistic models

Mass: NS = 1.4 Mo BH = 10 Mo Advanced era Sky location and orientation averaged range 197 Mpc for NS-NS 410 Mpc for NS-BH 968 Mpc for BH-BH

Compact object merger rates

Merger rates of BH-BH, NS-BH, NS-NS

Ziosi et al. 2014, MNRAS, 441

Gamma-ray Burst Observations

N-body and Montecarlo Globular Star cluster & Young Star Clusters

Population Synthesis Code Binaries form and evolve isolated

Rates very poorly constrained:

- only 9 observed binary NS-NS sytems
- never observed NS-BH and BH-BH

Inspiral Merger Ring-down

The signal is embedded in the detector noise

Which analysis to extract the signal?

Coalescence of NS-NS, NS-BH, BH-BH – Search by "Matched Filtering"

The waveforms depend on

- intrinsic parameters: masses and spins of the binary system (plus eccentricity, NS compactness, tidal deformability)
- extrinsic parameters that describe location, distance, merger time and system orientation with respect to an observer

Detection phase: Known waveform → MATCHED FILTERING

- using templates for a range of intrinsic parameters (masses and spin)
- "Extrinsic" parameters absorbed in overall amplitude

After confident detection → *Source PARAMETER RECONSTRUCTION:*

- Techniques to explore 15-dimensional parameter space and find most likely values
- Measure masses, spins, distance, sky, location, orientation, …

Initial LIGO/Virgo upper limit compact binary rates

Upper limits on the rate of low mass compact binary coalescence total mass 2-25 Mo

Abadie et al. 2012, Phys. Rev. D, 85

The upcoming years are very exciting to observe for the first time BH-NS and BH-BH, to constrain stellar evolution model and shed light on the birth and evolution of BHs

Unmodeled GW transients

Transient sources:

- Core-collapse of massive stars
- Cosmic strings
- Neutron star instabilities
 - the unknown

Detection without unknown waveform → LOOK FOR "EXCESS POWER"

All-sky, all-time search for transient increase in power in some time-frequency region, minimal assumptions:

- 1. Duration: 1 to 100 ms (characteristic time scale for stellar mass objects)
- 2. Frequency: 60 to 2000 Hz (determined by detector's sensitivity)
- Signal appears coherently in multiple detectors, consistent with antenna pattern → coincidence, coherent statistics, sky location

Poorly modeled
 → Can't use matched filtering

Initial LIGO/Virgo burst sensitivity

Energy emitted in GW at a distance of 10 kpc for the tested waveforms

Representative waveforms injected into data for simulation studies

Abadie 2012, PRD, 85,122007

Continuous GW signal

- \rightarrow Non-axisymmetric spinning NS emit sources *emit quasi-periodic waves whose frequency* changes slowly
- ightarrow Weakness of signal requires long observation times (years) in order to accumulate SNR to ensure detection
- \rightarrow Searches for GWs:
 - within parameter windows of know pulsars TARGETED SEARCH
 - all sky and all frequencies ALL SKY SEARCH

GW amplitude upper limits from 195 known Pulsars

Crab limit at 1% of total energy loss!

Ellipticity: $\varepsilon < 8.6 \times 10^{-5}$

Vela limit at 10% of total energy loss! Ellipticity: $\varepsilon < 6 \times 10^{-4}$

Aasi et al. 2014, ApJ, 785

Stochastic background

LIGO-Virgo limit surpasses indirect limit from Big Bang nucleosynthesis: in the frequency band 41.5–169.25 Hz

 $\Omega_{GW} \le 5.6 \times 10^{-6}$

Aasi et al. 2014, PRL,113 Abbott et al. 2009, Nature, 460

- Superposition of many incoherent, unresolvable sources of GWs
- **Astrophysical**: summing contributions from compact binaries, rotating neutron stars, magnetars, and supernovae across the universe.
- Cosmological: early universe signatures –
- inflation, Cosmic (super)strings, alternative cosmologies
- A single detector observes stochastic background just like weak noise within the detector noise
- Search method
 cross-correlation between network detectors

Tomorrow other scientific results on multi-messenger astronomy!

Outline-II part

Multi-messenger astronomy
 Opportunities and challenges

Extra slides

The natural frequency for a self-gravitating body is

Where $\langle \rho \rangle$ is the mean density of mass-energy in the source $\langle \rho \rangle = \frac{3M}{4 - p^2}$

Gravitational Dynamics

GWs:

=

- between 1 and 10⁴ Hz accessible
 to ground-based detectors
- lower frequencies only from space

Line marking the black-hole boundary:

 $\frac{G < \rho >}{4\pi}$

R = 2M. There are no objects below this line.

This line restricts ground-based to looking at stellar-mass objects.

Nothing over a mass of about 10⁴M[☉] can radiate above 1 Hz.

Simplified Interferometric Gravitational Wave Detector

Spatial distortion from a **plus** and a cross polarized GW

Polarization "Plus" X

"Cross"

The length change is measured interferometrically by using a laser light beam

Suspended mirrors as test mass

