Recent PYTHIA 8 developments: Hard diffraction, Colour reconnection and $\gamma\gamma$ collisions MPI@LHC 2015

Ilkka Helenius

Lund University Department of Astronomy and Theoretical Physics

23.11.2015

Outline

1 Introduction

- Monte-Carlo event generation
- ► PYTHIA 8 basics
- 2 Hard diffraction (by Christine O. Rasmussen and Torbjörn Sjöstrand)
 - ▶ PYTHIA 8 implementation
 - Dynamical rapidity gap survival
- 3 Colour reconnection (by Jesper Roy Christiansen, Peter Skands and T.S.)
 - The new model
 - Baryon-to-meson ratios
 - Multiplicity dependence
- 4 Photon-photon collisions (by I.H. and T.S.)
 - Photon PDFs
 - Parton shower
 - Beam remnants

5 Summary & outlook

Goal: Describe all stages of an event

► Hard Process

- ► Hard Process
- Initial state radiation (ISR)

- Hard Process
- Initial state radiation (ISR)
- Final state radiation (FSR)

- Hard Process
- Initial state radiation (ISR)
- Final state radiation (FSR)
- Multiparton interactions (MPI)

Goal: Describe all stages of an event

- Hard Process
- Initial state radiation (ISR)
- Final state radiation (FSR)
- Multiparton interactions (MPI)

Radiation from MPIs

- Hard Process
- Initial state radiation (ISR)
- Final state radiation (FSR)
- Multiparton interactions (MPI)

- Radiation from MPIs
- Beam remnants

- Hard Process
- Initial state radiation (ISR)
- Final state radiation (FSR)
- Multiparton interactions (MPI)

- ► Radiation from MPIs
- Beam remnants
- Hadronization

- Hard Process
- Initial state radiation (ISR)
- Final state radiation (FSR)
- Multiparton interactions (MPI)

- ► Radiation from MPIs
- Beam remnants
- Hadronization

- Hard Process
- Initial state radiation (ISR)
- Final state radiation (FSR)
- Multiparton interactions (MPI)

- ► Radiation from MPIs
- Beam remnants
- Hadronization
- Decays to stable hadrons

$\ensuremath{\mathsf{PYTHIA}}$ 8 basics

Interleaved evolution

• Evolve down using a common p_T -scale

$$\begin{aligned} \frac{\mathrm{d}\mathcal{P}}{\mathrm{d}p_T} &= \left(\frac{\mathrm{d}\mathcal{P}_{\mathrm{MPI}}}{\mathrm{d}p_T} + \sum \frac{\mathrm{d}\mathcal{P}_{\mathrm{ISR}}}{\mathrm{d}p_T} + \sum \frac{\mathrm{d}\mathcal{P}_{\mathrm{FSR}}}{\mathrm{d}p_T}\right) \\ &\times \exp\left[-\int\limits_{p_T}^{p_T^{\mathrm{max}}} \mathrm{d}p_T' \left(\frac{\mathrm{d}\mathcal{P}_{\mathrm{MPI}}}{\mathrm{d}p_T'} + \sum \frac{\mathrm{d}\mathcal{P}_{\mathrm{ISR}}}{\mathrm{d}p_T'} + \sum \frac{\mathrm{d}\mathcal{P}_{\mathrm{FSR}}}{\mathrm{d}p_T'}\right)\right] \end{aligned}$$

- Sample a p_T value for all possibilities
- Pick the one with highest p_T and continue the evolution from there
- ▶ Number of MPIs regulated with screening parameter p_{T0} (~ $2 \, \text{GeV}$)

Lund string model for hadronization

- Connect partons with colour strings
- Colour connections can be shuffled (Colour reconnection)
- Strings decay and form hadrons

Hard diffraction

Christine O. Rasmussen

Hard diffraction in PYTHIA 8

Hard diffraction = Diffractive events with a hard process

Selection of diffractive events using PDFs

- Generate hard process as usual, get parton flavour i, x and Q^2
- ► Split normal hadronic PDFs into non-diffractive and diffractive parts

$$f_i(x, Q^2) = f_i^{\text{ND}}(x, Q^2) + f_i^{\text{D}}(x, Q^2)$$

▶ The diffractive PDF are factorized as

$$f_i^{\mathrm{D}}(x,Q^2) = \int_x^1 \frac{\mathrm{d}x_{\mathbb{P}}}{x_{\mathbb{P}}} \int_{t_{\min}}^{t_{\max}} \mathrm{d}t \, f_{\mathbb{P}/p}(x_{\mathbb{P}},t) \, f_{i/\mathbb{P}}(x/x_{\mathbb{P}},Q^2)$$

- ► Use PDFs to determine whether hard process of diffractive origin
- The probabilities for either sides to be diffractive are

$$\mathcal{P}_{\mathrm{B}} = f_i^{\mathrm{D}}(x_a, Q^2) / f_i(x_a, Q^2)$$
$$\mathcal{P}_{\mathrm{A}} = f_i^{\mathrm{D}}(x_b, Q^2) / f_i(x_b, Q^2)$$

Dynamical rapidity gap survival

Generate parton shower and MPIs to see whether the rapidity gap survives Single diffractive event Impact parameter distributions

- MPIs generated for proton-proton and pomeron-proton system
- If rapidity gap survives event considered as diffractive

- ► PDF selection similar as ND
- After MPIs the events with larger b (lower multiplicity) survives

Preliminary results

Comparison with CDF data for $p{+}\bar{p}$ [Phys.Rev.D86 (2012) 032009]

- Too much suppression due to MPIs
- Suppression constant in $x_{\bar{p}}$
- Better description with reduced number of MPIs (larger p_{T0})
- Uncertainties in PDFs not yet considered

Colour reconnection

Jesper Roy Christiansen

The new CR model reshuffles the colours just prior to hadronization based on three main principles:

- Use the SU(3) colour rules to determine if two strings are colour compatible
- Use a simplistic space-time picture to tell if the two strings coexist
- Minimize \u03c0 string-length measure to find which colour configurations are preferred

 Colour epsilon tensor corresponds to a junction structure

New type of reconnection

Tests - Λ/K_s

Comparison to CMS data at $\sqrt{s}=7.0\,\mathrm{TeV}$ [JHEP 05 (2011) 064]

- Model parameters tuned to overall yield
- ▶ (No rate change in e⁺e⁻)

 Λ/K_{S}^{0} versus transverse momentum at $\sqrt{s} = 7$ TeV

- Λ/K_S is better described by the new model
- ► Still some discrepancy at p_T > 5 GeV/c

Multiplicity dependent particle ratios

 p/π and Λ/K ratios at $|\eta|<1$ and $\sqrt{s}=7\,{\rm TeV}$

- \blacktriangleright Higher multiplicity \rightarrow more CR \rightarrow more baryon enhancement
- Great observables to test baryon/strangeness enhancement for new models

CR and Flow-like effects

Particle ratios with different multiplicities

- \blacktriangleright Flow-like effects observed in pp is potentially connected with CR
- ▶ Repeat typical HI observable: Λ/K as function of p_{\perp} separated into different multiplicity intervals (or centrality)
- ► Qualitative similar effect seen in the model as in HI collisions

Photon-photon collisions

Photon-photon collisions

Motivation

- Interesting on its own right
- \blacktriangleright Background for future $\mathrm{e^+e^-}$ colliders
- ► Aim for a new robust model exploiting Pythia 8 developments

Framework

- High-energy photons can fluctuate into a hadronic state
- The hard interaction occurs between the partons

Can be generated with photon PDFs

PDFs for photon

DGLAP equations for photons

• Additional term due to $\gamma
ightarrow q ar q$ splittings

$$\frac{\partial f_i^{\gamma}(x,Q^2)}{\partial \log(Q^2)} = \frac{\alpha_{\rm EM}}{2\pi} e_i^2 P_{i\gamma}(x) + \frac{\alpha_s(Q^2)}{2\pi} \sum_j \int_x^1 \frac{\mathrm{d}z}{z} P_{ij}(z) f_j(x/z,Q^2)$$

where $P_{i\gamma}(x) = 3(x^2 + (1-x)^2)$ for quarks, 0 for gluons (in LO)

Solution has two components:

$$f_i^{\gamma}(x,Q^2) = \underline{f}_i^{\gamma,\mathrm{pl}}(x,Q^2) + f_i^{\gamma,\mathrm{had}}(x,Q^2)$$

Point-like part, calculated from pQCD

Hadron-like part need non-perturbative input which is fixed by data

$$f_i^{\gamma, \text{had}}(x, Q_0^2) = N_i x^{a_i} (1-x)^{b_i}$$

ISR with photon beams

Splitting probability for backwards evolution from DGLAP

 \blacktriangleright New term corresponding to $\gamma \to q \bar{q}$ splitting

$$\mathrm{d}\mathcal{P}_{a\leftarrow b} = \frac{\mathrm{d}Q^2}{Q^2} \frac{x' f_a^{\gamma}(x',Q^2)}{x f_b^{\gamma}(x,Q^2)} \frac{\alpha_s}{2\pi} P_{a\to bc}(z) \,\mathrm{d}z + \frac{\mathrm{d}Q^2}{Q^2} \frac{\alpha_{\mathrm{EM}}}{2\pi} \frac{e_b^2 P_{\gamma\to bc}(x)}{f_b^{\gamma}(x,Q^2)}$$

 Probability to find the original beam photon during backwards evolution

No need to construct the beam remnants

Beam remnants

Photon remnants

- ► Two "valence" quarks, flavors can fluctuate
- Decompose the PDFs to valence and sea parts

$$f_i^{\gamma}(x,Q^2) = f_{i,\text{val}}^{\gamma}(x,Q^2) + f_{i,\text{sea}}^{\gamma}(x,Q^2)$$

- > Decide whether parton is valence quark and construct remnants
- ► Need to have room for massive partons: W_{rem} > W₁ + W₂ Definitive limit when two valence quarks interact without k_T:

$$\sqrt{s(1-x_1)(1-x_2)} > m_{\text{val},1} + m_{\text{val},2}$$

Reject hard processes and splittings that violate this condition

- Remnants for both beams
- Remnants for one beam
- No remnats

Charged particle p_T spectrum

Comparison to p+p

- Cross section smaller due to EM-coupling ($\alpha_{\rm EM}^2 \sim 10^{-4}$)
- Harder spectra due to larger number of high-x partons

- Generated with ISR+FSR
- No MPI considered yet

Summary & Outlook

New model for hard diffraction available

- Dynamical rapidity gap survival
- Some disagreement with the CDF data
- Potentially improved with new Pomeron flux

New colour reconnection model

- Includes also junction structures
- Better description of the baryon-to-meson ratios
- Multiplicity dependence similar as obtained from flow in heavy-ions

Photon-photon collisions

- Can now produce fully hadronized events with hard processes
- ► Model the photon emissions from electrons and consider virtuality
- Include soft interactions and MPIs

Backup

I. Helenius (Lund U.)

Soft diffraction

 Diffractive and elastic events calculated with Pomeron-based parametrization of Schuler–Sjöstrand

Figure: SD

Figure: DD

Figure: CD

Non-diffractive (ND) cross section from

$$\sigma_{\rm ND} = \sigma_{\rm tot} - \sigma_{\rm el} - \sum_{\rm X=S,C,D} \sigma_{\rm XD},$$

where $\sigma_{\rm tot}$ calculated using Donnachie-Landshoff parametrisation

- What happens for multiple strings?
 - QCD quadropole? We have no idea how to hadronize this
 - Instead use several dipoles!
 - ► Multiple possible pairings ⇒ Colour reconnection!

Data for photon PDFs

 \blacktriangleright Photon structure functions can be measured in $\mathrm{e^-}{+}\mathrm{e^+}$ collisions

"Photon DIS"

- ► Other electron emits a virtual photon (γ*)
 - $\Rightarrow\,$ This electron is measured
- Other electron is not detected as the scattering angle is small
 - \Rightarrow Photon from this electron has small virtuality
- Also W_{γγ} need to be measured to construct kinematics
- Data available mainly from different LEP experiments (O(200) points)
- Precision and kinematic coverage more limited than for proton PDFs

Photon PDF fits

Several groups have performed photon PDF analyses

- Reasonable agreement between the data and the fits
- Currenty we are using PDFs from CJKL analysis [PRD 68 014010 (2003)]
 - Provides a parametrization for the PDFs
 - Provides point-like and hadron-like parts separately

$ACOT(\chi)$ scheme for heavy quarks

DIS kinematics

- ► Limit for heavy quark production $W^2 = Q^2 (x^{-1} 1) > (2m_H)^2$
- In ACOT(χ) scheme this is taken into account by rescaling

 $x \to \chi = x(1 + 4m_H^2/Q^2)$

▶ In CJKL the heavy quark PDFs are zero for $x>1/(1+\frac{4m_{H}^{2}}{Q^{2}})$

$\gamma + \gamma$ kinematics

• Heavy quark limit not related to Q^2 but $\sqrt{s} \Rightarrow$ Undo rescaling $x \rightarrow x/(1 + 4m_H^2/Q^2)$