Double parton scattering in the ultraviolet addressing the double counting problem

M. Diehl

Deutsches Elektronen-Synchroton DESY

MPI@LHC, Trieste, 24 November 2015

A reminder	Problems	A solution	More detail	Summary
•	00	00	000	0

Reminder: single vs. double hard scattering (SPS vs. DPS)

 \blacktriangleright example: prod'n of two gauge bosons, transverse momenta $oldsymbol{q}_1$ and $oldsymbol{q}_2$

single scattering:

 $|m{q}_1|$ and $|m{q}_2|\sim$ hard scale Q^2 $|m{q}_1+m{q}_2|\ll Q^2$

double scattering: both $|{m q}_1|$ and $|{m q}_2| \ll Q^2$

 \blacktriangleright for transv. momenta $\sim \Lambda \ll Q$:

$$\frac{d\sigma_{\mathsf{SPS}}}{d^2 \boldsymbol{q}_1 \, d^2 \boldsymbol{q}_2} \sim \frac{d\sigma_{\mathsf{DPS}}}{d^2 \boldsymbol{q}_1 \, d^2 \boldsymbol{q}_2} \sim \frac{1}{Q^4 \Lambda^2}$$

but single scattering populates larger phase space :

$$\sigma_{\rm SPS} \sim \frac{1}{Q^2} \ \gg \ \sigma_{\rm DPS} \sim \frac{\Lambda^2}{Q^4}$$

A reminder	Problems	A solution	More detail	Summary
•	00	00	000	0

Reminder: single vs. double hard scattering (SPS vs. DPS)

 \blacktriangleright example: prod'n of two gauge bosons, transverse momenta $m{q}_1$ and $m{q}_2$

single scattering:

$$|oldsymbol{q}_1|$$
 and $|oldsymbol{q}_2|\sim$ hard scale Q^2

$$|\boldsymbol{q}_1 + \boldsymbol{q}_2| \ll Q^2$$

double scattering: both $|\boldsymbol{q}_1|$ and $|\boldsymbol{q}_2| \ll Q^2$

- for small parton mom. fractions x double scattering enhanced by parton luminosity
- depending on process: enhancement or suppression from parton type (quarks vs. gluons), coupling constants, etc.

A reminder	Problems	A solution	More detail	Summary
0	•0	00	000	0

Double parton scattering

$$\begin{split} \frac{d\sigma_{\text{DPS}}}{dx_1 d\bar{x}_1 dx_2 d\bar{x}_2} &= \frac{1}{C} \ \hat{\sigma}_1 \hat{\sigma}_2 \int d^2 \boldsymbol{y} \ F(x_1, x_2, \boldsymbol{y}) \ F(\bar{x}_1, \bar{x}_2, \boldsymbol{y}) \\ C &= \text{ combinatorial factor} \\ \hat{\sigma}_i &= \text{ parton-level cross sections} \\ F(x_1, x_2, \boldsymbol{y}) &= \text{ double parton distribution (DPD)} \\ \boldsymbol{y} &= \text{ transv. distance between partons} \end{split}$$

- ▶ at higher orders in α_s get usual convolution integrals over x_i in $\hat{\sigma}_i$ and F
- \blacktriangleright analogous formulation for measured q_1 and q_2 \rightsquigarrow transverse-momentum dependent DPDs
- \blacktriangleright for $\pmb{y} \ll 1/\Lambda\,$ can compute

$$F(x_1,x_2,oldsymbol{y})\sim rac{1}{oldsymbol{y}^2}$$
 splitting fct \otimes usual PDF

A reminder	Problems	A solution	More detail	Summary
0	•0	00	000	0

Double parton scattering: ultraviolet problem

$$\begin{split} \frac{d\sigma_{\mathsf{DPS}}}{dx_1 d\bar{x}_1 dx_2 d\bar{x}_2} &= \frac{1}{C} \ \hat{\sigma}_1 \hat{\sigma}_2 \int d^2 \boldsymbol{y} \ F(x_1, x_2, \boldsymbol{y}) \ F(\bar{x}_1, \bar{x}_2, \boldsymbol{y}) \\ C &= \text{ combinatorial factor} \\ \hat{\sigma}_i &= \text{ parton-level cross sections} \\ F(x_1, x_2, \boldsymbol{y}) &= \text{ double parton distribution (DPD)} \\ \boldsymbol{y} &= \text{ transv. distance between partons} \end{split}$$

- ▶ at higher orders in α_s get usual convolution integrals over x_i in $\hat{\sigma}_i$ and F
- \blacktriangleright analogous formulation for measured q_1 and q_2 \rightsquigarrow transverse-momentum dependent DPDs
- \blacktriangleright for $\pmb{y} \ll 1/\Lambda\,$ can compute

$$F(x_1,x_2,oldsymbol{y})\sim rac{1}{oldsymbol{y}^2}$$
 splitting fct \otimes usual PDF

gives UV divergent cross section $\propto \int d^2 y/y^4$ in fact, formula not valid for $|y| \sim 1/Q$

A reminder	Problems	A solution	More detail	Summary
0	0•	00	000	0

... and more problems

 double counting problem between double scattering with splitting and single scattering at loop level

> MD, Ostermeier, Schäfer 2011; Gaunt, Stirling 2011; Gaunt 2012 Blok, Dokshitzer, Frankfurt, Strikman 2011; Ryskin, Snigirev 2011, 2012 already noted by Cacciari, Salam, Sapeta 2009

also have graphs with splitting in one proton only: "1 vs 2"

 $\sim \int d^2 \boldsymbol{y} / \boldsymbol{y}^2 \, imes F_{\text{non-split}}(x_1, x_2, \boldsymbol{y})$

B Blok et al 2011-13 J Gaunt 2012 B Blok. P Gunnellini 2015

A reminder Proble	ns A solution	More detail	Summary
0 00	•0	000	0

A consistent solution

MD, J. Gaunt work in progress

► regulate DPS: $\sigma_{\text{DPS}} \propto \int d^2 y \, \Phi(\nu y) \, F(x_1, x_2, y) \, F(\bar{x}_1, \bar{x}_2, y)$

- $\Phi \to 0$ for $u \to 0$ and $\Phi \to 1$ for $u \to \infty$, e.g. $\Phi(u) = \theta(u-1)$
- cutoff scale $\nu \sim Q$
- $F(x_1, x_2, y)$ has both splitting and non-splitting contributions analogous regulator for transverse-momentum dependent DPDs
- full cross section: $\sigma = \sigma_{\text{DPS}} \sigma_{\text{sub}} + \sigma_{\text{SPS}}$
 - subtraction σ_{sub} to avoid double counting: = σ_{DPS} with F computed for small y in fixed order perturb. theory (much simpler computation than σ_{SPS} at given order)

A reminder Problems	A solution	More detail	Summary
0 00	•0	000	0

A consistent solution

MD, J. Gaunt work in progress

• regulate DPS: $\sigma_{\text{DPS}} \propto \int d^2 \boldsymbol{y} \, \Phi(\nu \boldsymbol{y}) \, F(x_1, x_2, \boldsymbol{y}) \, F(\bar{x}_1, \bar{x}_2, \boldsymbol{y})$

- $\Phi \to 0$ for $u \to 0$ and $\Phi \to 1$ for $u \to \infty$, e.g. $\Phi(u) = \theta(u-1)$
- cutoff scale $\nu \sim Q$

• $F(x_1, x_2, y)$ has both splitting and non-splitting contributions analogous regulator for transverse-momentum dependent DPDs

• full cross section: $\sigma = \sigma_{\text{DPS}} - \sigma_{\text{sub}(1\text{vs}1 + 1\text{vs}2)} + \sigma_{\text{SPS}} + \sigma_{\text{tw}2 \times \text{tw}4}$

- subtraction σ_{sub} to avoid double counting: = σ_{DPS} with F computed for small y in fixed order perturb. theory (much simpler computation than σ_{SPS} at given order)
- can also include twist 2 × twist 4 contribution and double counting subtraction for "1 vs 2" term

A reminder	Problems	A solution	More detail	Summary
0	00	0•	000	0

Subtraction formalism at work

 $\sigma = \sigma_{\rm DPS} - \sigma_{\rm sub} + \sigma_{\rm SPS}$

- ► for $y \leq 1/Q$ have $\sigma_{\text{DPS}} \approx \sigma_{\text{sub}}$ because pert. computation of F gives good approx. at considered order $\Rightarrow \sigma \approx \sigma_{\text{SPS}}$ dependence on $\Phi(\nu y)$ cancels between σ_{DPS} and σ_{sub}
- ► for $y \gg 1/Q$ have $\sigma_{sub} \approx \sigma_{SPS}$ because DPS approximations work well in box graph $\Rightarrow \sigma \approx \sigma_{DPS}$ with regulator fct. $\Phi(\nu y) \approx 1$
- same argument for 1 vs 2 term and $\sigma_{tw2 \times tw4}$ (were neglected above)
- subtraction formalism works order by order in perturb. theory

J. Collins, Foundations of Perturbative QCD, Chapt. 10

A reminder	Problems	A solution	More detail	Summary
0	00	00	•00	0

Added benefit: DGLAP logarithms

▶ define DPDs as matrix elements of renormalised twist-two operators: $F(x_1, x_2, \boldsymbol{y}; \mu_1, \mu_2) \sim \langle p | \mathcal{O}_1(\boldsymbol{0}; \mu_1) \mathcal{O}_2(\boldsymbol{y}; \mu_2) | p \rangle$ $f(x; \mu) \sim \langle p | \mathcal{O}(\boldsymbol{0}; \mu) | p \rangle$ \Rightarrow separate DGLAP evolution for partons 1 and 2:

$$\frac{d}{d\log\mu_i}F(x_i, \boldsymbol{y}; \mu_i) = P \otimes_{x_i} F \qquad \qquad \text{for } i = 1, 2$$

- For Q₁ ≪ Q₂ higher orders in box graph give logarithms αⁿ_s logⁿ(Q₂/Q₁) of DGLAP type from region Q₁ ≪ |k₁| ≪ ··· ≪ |k_n| ≪ Q₂
 - resummed by DPD evolution if take $\nu \sim \mu_1 \sim Q_1$, $\mu_2 \sim Q_2$ and appropriate initial conditions, e.g. $F = F_{\text{split}} + F_{\text{non-split}}$

$$\begin{split} F_{\rm split}(x_1, x_2, \pmb{y}; 1/y^*, 1/y^*) &= F_{\rm perturb.}(y^*) \, e^{-y^2 \Lambda^2} \quad \text{with} \quad 1/y^{*2} = 1/y^2 + 1/y_{\rm max}^2 \\ F_{\rm non-split}(x_1, x_2, \pmb{y}; \mu_0, \mu_0) &= f(x_1; \mu_0) f(x_2; \mu_0) \, \Lambda^2 e^{-y^2 \Lambda^2} / \pi \end{split}$$

A reminder	Problems	A solution	More detail	Summary
0	00	00	•00	0

Added benefit: DGLAP logarithms

► define DPDs as matrix elements of renormalised twist-two operators: $F(x_1, x_2, \boldsymbol{y}; \mu_1, \mu_2) \sim \langle p | \mathcal{O}_1(\boldsymbol{0}; \mu_1) \mathcal{O}_2(\boldsymbol{y}; \mu_2) | p \rangle$ $f(x; \mu) \sim \langle p | \mathcal{O}(\boldsymbol{0}; \mu) | p \rangle$ \Rightarrow separate DGLAP evolution for partons 1 and 2:

$$\frac{d}{d\log \mu_i}F(x_i, \boldsymbol{y}; \mu_i) = P \otimes_{x_i} F \qquad \qquad \text{for } i = 1, 2$$

- ▶ lowest order 1 vs 2 term $\propto \log(Q/\Lambda)$ additional logs $\alpha_s^n \log^{n+1}(Q/\Lambda)$ from $\Lambda \ll |\mathbf{k}_1| \ll \cdots \ll |\mathbf{k}_n| \ll Q$
 - again resummed by DPD evolution if take $\nu\sim\mu_1\sim\mu_2\sim Q$ with same initial conditions for F
 - with $\nu \sim Q$ have no $\log(Q/\Lambda)$ in $\sigma_{tw2 \times tw4} \sigma_{sub \ (1vs2)}$ provides justification to omit this term while keeping 1 vs 2 in σ_{DPS}

▶ after Fourier trf. our σ_{DPS} is very similar to M Ryskin, A Snigirev 2011, 2012

A reminder	Problems	A solution	More detail	Summary
0	00	00	000	0

DPS parton luminosities for illustration, model parameters not tuned

- ▶ plot $\int d^2 \boldsymbol{y} \, \Phi(\nu y) F(x_1, x_2, \boldsymbol{y}) \, F(\bar{x}_1, \bar{x}_2, \boldsymbol{y})$ vs. rapidity of q_1 with q_2 central and $Q_1 = Q_2 = M_W$ at $\sqrt{s} = 14 \, \text{TeV}$
- bands for 2 vs 2 (violet), 1 vs 2 (blue) and 1 vs 1 (yellow) with scales $\nu = \mu_1 = \mu_2 = 0.5 M_W \dots 2M_W$

▶ 1 vs 1 term has strong cutoff dependence $\propto \nu^2$ if is important must add $-\sigma_{sub (1vs1)} + \sigma_{SPS}$

A reminder	Problems	A solution	More detail	Summary
0	00	00	000	0

DPS parton luminosities for illustration, model parameters not tuned

- ▶ plot $\int d^2 \boldsymbol{y} \, \Phi(\nu y) F(x_1, x_2, \boldsymbol{y}) \, F(\bar{x}_1, \bar{x}_2, \boldsymbol{y})$ vs. rapidity of q_1 with q_2 central and $Q_1 = Q_2 = M_W$ at $\sqrt{s} = 14 \, \text{TeV}$
- bands for 2 vs 2 (violet), 1 vs 2 (blue) and 1 vs 1 (yellow) with scales $\nu = \mu_1 = \mu_2 = 0.5 M_W \dots 2M_W$

▶ 1 vs 1 important, but not as much as for $u\bar{u}$

A reminder	Problems	A solution	More detail	Summary
0	00	00	000	0

DPS parton luminosities for illustration, model parameters not tuned

- ▶ plot $\int d^2 \boldsymbol{y} \, \Phi(\nu y) F(x_1, x_2, \boldsymbol{y}) \, F(\bar{x}_1, \bar{x}_2, \boldsymbol{y})$ vs. rapidity of q_1 with q_2 central and $Q_1 = Q_2 = M_W$ at $\sqrt{s} = 14 \, \text{TeV}$
- bands for 2 vs 2 (violet), 1 vs 2 (blue) and 1 vs 1 (yellow) with scales $\nu = \mu_1 = \mu_2 = 0.5 M_W \dots 2M_W$

• $u\bar{d}$ induced by splitting at $\mathcal{O}(\alpha_s^2)$, e.g. by $u \to ug \to ud\bar{d}$

A reminder	Problems	A solution	More detail	Summary
0	00	00	000	0

A comment on sum rules

- ► $F(x_1, x_2, y)$ follows homogeneous DGLAP equation no splitting term \rightsquigarrow does not conserve sum rules for $\int d^2 y F(x_1, x_2, y)$ J Gaunt, J Stirling 2009
- \blacktriangleright is irrelevant if cannot satisfy sum rules at some scale μ
 - if def. $F(x_1, x_2, y)$ by min. subtraction of UV divergences $\rightsquigarrow \int d^2 y F(x_1, x_2, y) = \infty$

due to splitting at short distances

i.e. same physics that would provide inhomogenous term in evolution

- to use sum rules as constraint for DPD modelling must subtract infinite splitting contribution such that result
 - fulfills sum rule
 - enters in factorisation formula for cross section

This is not the case in any known scheme \Rightarrow at present sum rules have no theory justification

A reminder	Problems	A solution	More detail	Summary
0	00	00	000	•

Summary

- double parton scattering important in specific kinematics/for specific processes
- recent progress: towards a systematic formulation of factorisation in QCD
- \blacktriangleright solution for UV problem of DPS \leftrightarrow double counting with SPS
 - simple UV regulator for DPS using distance y between partons
 - simple subtraction term to avoid double counting order by order in perturbation theory

naturally includes "1 vs 2" contributions and correctly resums DGLAP logarithms

 distinction between "splitting" and "non-splitting" in DPD necessary in ansatz for DPD (inevitable model dependence) but not in formulation of factorisation