Double parton scattering in the ultraviolet
addressing the double counting problem

M. Diehl

Deutsches Elektronen-Synchroton DESY

MPI@LHC, Trieste, 24 November 2015
Reminder: single vs. double hard scattering (SPS vs. DPS)

- example: prod’n of two gauge bosons, transverse momenta q_1 and q_2

 ![Diagram](image)

 single scattering:
 $$|q_1| \text{ and } |q_2| \sim \text{hard scale } Q^2$$
 $$|q_1 + q_2| \ll Q^2$$

 for transv. momenta $\sim \Lambda \ll Q$

 $$\frac{d\sigma_{SPS}}{d^2q_1 \, d^2q_2} \sim \frac{d\sigma_{DPS}}{d^2q_1 \, d^2q_2} \sim \frac{1}{Q^4 \Lambda^2}$$

 but single scattering populates larger phase space:

 $$\sigma_{SPS} \sim \frac{1}{Q^2} \gg \sigma_{DPS} \sim \frac{\Lambda^2}{Q^4}$$
Reminder: single vs. double hard scattering (SPS vs. DPS)

▶ example: prod’n of two gauge bosons, transverse momenta q_1 and q_2

Single scattering:

$|q_1|$ and $|q_2| \sim$ hard scale Q^2

$|q_1 + q_2| \ll Q^2$

▶ for small parton mom. fractions x

Double scattering enhanced by parton luminosity

▶ depending on process: enhancement or suppression

from parton type (quarks vs. gluons), coupling constants, etc.
Double parton scattering

\[
\frac{d\sigma_{\text{DPS}}}{dx_1 \, d\bar{x}_1 \, dx_2 \, d\bar{x}_2} = \frac{1}{C} \, \hat{\sigma}_1 \hat{\sigma}_2 \int \, \! d^2 y \, F(x_1, x_2, y) \, F(\bar{x}_1, \bar{x}_2, y)
\]

- \(C = \) combinatorial factor
- \(\hat{\sigma}_i = \) parton-level cross sections
- \(F(x_1, x_2, y) = \) double parton distribution (DPD)
- \(y = \) transv. distance between partons

- at higher orders in \(\alpha_s \) get usual convolution integrals over \(x_i \) in \(\hat{\sigma}_i \) and \(F \)
- analogous formulation for measured \(q_1 \) and \(q_2 \)
 \(\sim \) transverse-momentum dependent DPDs
- for \(y \ll 1/\Lambda \) can compute

\[
F(x_1, x_2, y) \sim \frac{1}{y^2} \, \text{splitting fct} \otimes \text{usual PDF}
\]
Double parton scattering: ultraviolet problem

\[
\frac{d\sigma_{\text{DPS}}}{dx_1 \, d\bar{x}_1 \, dx_2 \, d\bar{x}_2} = \frac{1}{C} \hat{\sigma}_1 \hat{\sigma}_2 \int d^2y \, F(x_1, x_2, y) F(\bar{x}_1, \bar{x}_2, y)
\]

- \(C = \) combinatorial factor
- \(\hat{\sigma}_i = \) parton-level cross sections
- \(F(x_1, x_2, y) = \) double parton distribution (DPD)
- \(y = \) transv. distance between partons

- at higher orders in \(\alpha_s \) get usual convolution integrals over \(x_i \) in \(\hat{\sigma}_i \) and \(F \)
- analogous formulation for measured \(q_1 \) and \(q_2 \)
 \(\sim \) transverse-momentum dependent DPDs
- for \(y \ll 1/\Lambda \) can compute

\[
F(x_1, x_2, y) \sim \frac{1}{y^2} \text{ splitting fct} \otimes \text{usual PDF}
\]

gives \textbf{UV divergent} cross section \(\propto \int d^2y / y^4 \)

in fact, formula \textbf{not valid} for \(|y| \sim 1/Q \)
...and more problems

- double counting problem between double scattering with splitting and single scattering at loop level

 MD, Ostermeier, Schäfer 2011; Gaunt, Stirling 2011; Gaunt 2012
 Blok, Dokshitzer, Frankfurt, Strikman 2011; Ryskin, Snigirev 2011, 2012
 already noted by Cacciari, Salam, Sapeta 2009

- also have graphs with splitting in one proton only: “1 vs 2”

\[\sim \int d^2 y / y^2 \times F_{\text{non-split}}(x_1, x_2, y) \]

B Blok et al 2011-13
J Gaunt 2012
B Blok, P Gunnellini 2015
A consistent solution

MD, J. Gaunt work in progress

- regulate DPS: \(\sigma_{\text{DPS}} \propto \int d^2y \Phi(\nu y) F(x_1, x_2, y) F(\bar{x}_1, \bar{x}_2, y) \)
 - \(\Phi \rightarrow 0 \) for \(u \rightarrow 0 \) and \(\Phi \rightarrow 1 \) for \(u \rightarrow \infty \), e.g. \(\Phi(u) = \theta(u - 1) \)
 - cutoff scale \(\nu \sim Q \)
 - \(F(x_1, x_2, y) \) has both splitting and non-splitting contributions

- analogous regulator for transverse-momentum dependent DPDs

- full cross section: \(\sigma = \sigma_{\text{DPS}} - \sigma_{\text{sub}} + \sigma_{\text{SPS}} \)
 - subtraction \(\sigma_{\text{sub}} \) to avoid double counting:
 - \(= \sigma_{\text{DPS}} \) with \(F \) computed for small \(y \) in fixed order perturb. theory
 - (much simpler computation than \(\sigma_{\text{SPS}} \) at given order)
A consistent solution

MD, J. Gaunt work in progress

regulate DPS: \[\sigma_{\text{DPS}} \propto \int d^2 y \ \Phi(\nu y) \ F(x_1, x_2, y) \ F(\bar{x}_1, \bar{x}_2, y) \]

- \(\Phi \rightarrow 0 \) for \(u \rightarrow 0 \) and \(\Phi \rightarrow 1 \) for \(u \rightarrow \infty \), e.g. \(\Phi(u) = \theta(u - 1) \)
- cutoff scale \(\nu \sim Q \)
- \(F(x_1, x_2, y) \) has both splitting and non-splitting contributions

analogous regulator for transverse-momentum dependent DPDs

full cross section: \[\sigma = \sigma_{\text{DPS}} - \sigma_{\text{sub}} (1\text{vs1} + 1\text{vs2}) + \sigma_{\text{SPS}} + \sigma_{\text{tw2}\times\text{tw4}} \]

- subtraction \(\sigma_{\text{sub}} \) to avoid double counting:
 = \(\sigma_{\text{DPS}} \) with \(F \) computed for small \(y \) in fixed order perturb. theory
 (much simpler computation than \(\sigma_{\text{SPS}} \) at given order)
- can also include twist 2 \(\times \) twist 4 contribution
 and double counting subtraction for “1 vs 2” term
Subtraction formalism at work

\[
\sigma = \sigma_{\text{DPS}} - \sigma_{\text{sub}} + \sigma_{\text{SPS}}
\]

- for \(y \lesssim 1/Q \) have \(\sigma_{\text{DPS}} \approx \sigma_{\text{sub}} \)
 because pert. computation of \(F \) gives good approx. at considered order
 \(\Rightarrow \sigma \approx \sigma_{\text{SPS}} \)
 dependence on \(\Phi(\nu y) \) cancels between \(\sigma_{\text{DPS}} \) and \(\sigma_{\text{sub}} \)

- for \(y \gg 1/Q \) have \(\sigma_{\text{sub}} \approx \sigma_{\text{SPS}} \)
 because DPS approximations work well in box graph
 \(\Rightarrow \sigma \approx \sigma_{\text{DPS}} \)
 with regulator fct. \(\Phi(\nu y) \approx 1 \)

- same argument for 1 vs 2 term and \(\sigma_{\text{tw2} \times \text{tw4}} \) (were neglected above)

- subtraction formalism works order by order in perturb. theory

 J. Collins, Foundations of Perturbative QCD, Chapt. 10
Added benefit: DGLAP logarithms

- define DPDs as matrix elements of renormalised twist-two operators:

\[F(x_1, x_2, y; \mu_1, \mu_2) \sim \langle p|O_1(0; \mu_1) O_2(y; \mu_2)|p \rangle \]
\[f(x; \mu) \sim \langle p|O(0; \mu)|p \rangle \]

⇒ separate DGLAP evolution for partons 1 and 2:

\[\frac{d}{d \log \mu_i} F(x_i, y; \mu_i) = P \otimes x_i \ F \]

for \(i = 1, 2 \)

- for \(Q_1 \ll Q_2 \) higher orders in box graph give logarithms \(\alpha_s^n \log^n(Q_2/Q_1) \) of DGLAP type from region \(Q_1 \ll |k_1| \ll \cdots \ll |k_n| \ll Q_2 \)

 - resummed by DPD evolution if take \(\nu \sim \mu_1 \sim Q_1, \mu_2 \sim Q_2 \)

 and appropriate initial conditions, e.g. \(F = F_{\text{split}} + F_{\text{non-split}} \)

\[F_{\text{split}}(x_1, x_2, y; 1/y^*, 1/y^*) = F_{\text{perturb.}}(y^*) e^{-y^2 \Lambda^2} \quad \text{with} \quad 1/y^2 = 1/y^2 + 1/y_{\text{max}}^2 \]

\[F_{\text{non-split}}(x_1, x_2, y; \mu_0, \mu_0) = f(x_1; \mu_0) f(x_2; \mu_0) \Lambda^2 e^{-y^2 \Lambda^2 / \pi} \]
Added benefit: DGLAP logarithms

- define DPDs as matrix elements of renormalised twist-two operators:
 \[F(x_1, x_2, y; \mu_1, \mu_2) \sim \langle p | O_1(0; \mu_1) O_2(y; \mu_2) | p \rangle \]
 \[f(x; \mu) \sim \langle p | O(0; \mu) | p \rangle \]
 \[\Rightarrow \text{separate DGLAP evolution for partons 1 and 2:} \]
 \[\frac{d}{d \log \mu_i} F(x_i, y; \mu_i) = P \otimes x_i F \]
 \[\text{for } i = 1, 2 \]

- lowest order 1 vs 2 term \(\propto \log(Q/\Lambda) \)
 additional logs \(\alpha_s^n \log^{n+1}(Q/\Lambda) \) from \(\Lambda \ll |k_1| \ll \cdots \ll |k_n| \ll Q \)
 - again resummed by DPD evolution if take \(\nu \sim \mu_1 \sim \mu_2 \sim Q \)
 - with \(\nu \sim Q \) have no \(\log(Q/\Lambda) \) in \(\sigma_{tw2 \times tw4} - \sigma_{sub (1vs2)} \)
 provides justification to omit this term while keeping 1 vs 2 in \(\sigma_{DPS} \)
 - after Fourier trf. our \(\sigma_{DPS} \) is very similar to M Ryskin, A Snigirev 2011, 2012
DPS parton luminosities for illustration, model parameters not tuned

- plot $\int d^2 y \Phi(\nu y) F(x_1, x_2, y) F(\bar{x}_1, \bar{x}_2, y)$ vs. rapidity of q_1
- bands for 2 vs 2 (violet), 1 vs 2 (blue) and 1 vs 1 (yellow)
- 1 vs 1 term has strong cutoff dependence $\propto \nu^2$
 if is important must add $-\sigma_{\text{sub (1vs1)}} + \sigma_{\text{SPS}}$
DPS parton luminosities for illustration, model parameters not tuned

- plot $\int d^2 y \, \Phi(\nu y) F(x_1, x_2, y) F(\bar{x}_1, \bar{x}_2, y)$ vs. rapidity of q_1
 with q_2 central and $Q_1 = Q_2 = M_W$ at $\sqrt{s} = 14$ TeV

- bands for 2 vs 2 (violet), 1 vs 2 (blue) and 1 vs 1 (yellow)
 with scales $\nu = \mu_1 = \mu_2 = 0.5 M_W \ldots 2 M_W$

- 1 vs 1 important, but not as much as for $u\bar{u}$

very preliminary
DPS parton luminosities for illustration, model parameters not tuned

- plot $\int d^2y \, \Phi(\nu y) F(x_1, x_2, y) \, F(\bar{x}_1, \bar{x}_2, y)$ vs. rapidity of q_1
 with q_2 central and $Q_1 = Q_2 = M_W$ at $\sqrt{s} = 14$ TeV
- bands for 2 vs 2 (violet), 1 vs 2 (blue) and 1 vs 1 (yellow)
 with scales $\nu = \mu_1 = \mu_2 = 0.5 M_W \ldots 2 M_W$

$u \bar{d}$ induced by splitting at $\mathcal{O}(\alpha_s^2)$, e.g. by $u \rightarrow ug \rightarrow udd\bar{d}$
A comment on sum rules

- $F(x_1, x_2, y)$ follows homogeneous DGLAP equation
 no splitting term \Rightarrow does not conserve sum rules for $\int d^2 y \, F(x_1, x_2, y)$
 J Gaunt, J Stirling 2009

- is irrelevant if cannot satisfy sum rules at some scale μ
 - if def. $F(x_1, x_2, y)$ by min. subtraction of UV divergences
 $\Rightarrow \int d^2 y \, F(x_1, x_2, y) = \infty$
 due to splitting at short distances
 i.e. same physics that would provide inhomogenous term in evolution

- to use sum rules as constraint for DPD modelling
 must subtract infinite splitting contribution such that result
 - fulfills sum rule
 - enters in factorisation formula for cross section

 This is not the case in any known scheme
 \Rightarrow at present sum rules have no theory justification
Summary

- double parton scattering important in specific kinematics/for specific processes
- recent progress: towards a systematic formulation of factorisation in QCD
- solution for UV problem of DPS ↔ double counting with SPS
 - simple UV regulator for DPS using distance y between partons
 - simple subtraction term to avoid double counting order by order in perturbation theory
 naturally includes “1 vs 2” contributions and correctly resums DGLAP logarithms
- distinction between “splitting” and “non-splitting” in DPD necessary in ansatz for DPD (inevitable model dependence) but not in formulation of factorisation