
Developments in MC tuning methods:
Professor 2 and all that

Andy Buckley
University of Glasgow

MPI@LHC 2015, ICTP, Trieste, Nov 2015

1/12

Introduction

MC tuning is a necessary evil – data description is needed, and
models aren’t as predictive as we’d like. Data and models also aren’t as
perfect as we’d like: we need estimates of systematics. Hope that
somewhere along the way we also gain better physical understanding. . .

Professor is numerical machinery frequently used these days to aid
MC generator tuning. Since 2009. Many widespread tunes used
it. . . though not all!

Basic idea is to build fast parameterisations of observable response to
parameters, from parallel sampling of the param space. Then optimise.

Systematics should be derivable from the shape of the goodness-of-fit
around the optimum. Right?

In this talk: Professor v2, handling systematics, other applications

2/12

The Professor method
I MC is slow: ∼ 1 day per run⇒ can’t

use in serial optimisation.
I Solution is very simple: trivially

parallelise MC runs throughout
“reasonable” range of parameter
space, and use sampled “anchor”
points to interpolate each bin’s param
dependence. Up to O(15) params.

I We use SVD polynomial fits for
robustness – requires that values vary
in a polynomial fashion, or are
transformed to do so.

I Analytic interpolations⇒ fast serial
minimisation of an objective function.

I Much strength is in the “system”
features to support the core
machinery.

3/12

Professor 1

I Python code, using scipy and
pyminuit

I Heavy internal code framework,
hangover from early development
work

I Parameterisation up to 5th order –
manually encoded

I Many “magic” behaviours, coded in
> 20 scripts. . . not all well
maintained!

I Lots of “advanced” features, like
uncertainty correlations, sensitivities,
interactive GUI, etc.

I Hit “maximum entropy” point of
development!

4/12

Professor 2

I Start again from scratch, to make
Professor lean, mean & flexible again.
Thanks to Holger Schulz

I Part motivated by more generic
applications, part by pure frustration!

I Core code now in C++; independent
of concepts like “bins”. Very generic

I Wrapped into Python, and used as
core of a library for data I/O⇒
lessons learned from v1

I Works best integrated with the YODA
data toolkit, but not tied to Rivet

I Now only a few scripts – and most
work is done by the library, so scripts
easily customised

PT0REF

0
1

2
3

4
5

6 EXPPOW0.5 1.0 1.5 2.0 2.5 3.0 3.5

2

3

4

5

6

7

8

9

10

11

5/12

More on Professor 2

I All-orders parameterisations now
possible, including. zero (i.e.
constant)

I SVD stability improvements through
param mapping

I Not all old features: we still “need”
envelopes, sensitivities, correlations,
eigentunes, runcombns, kebabs, . . .

I More general weighting system:
matching patterns, bin ranges, etc.

I Strengths are speed and
programmability – less emphasis on
pre-built magic, more on power &
flexibility

I Interactive Web interface in
development

5
0

5
10

15
20

25

5
0

5
10

15
20

25

30000

20000

10000

0

10000

20000

30000

40000

6/12

Param sampling
Prof 2’s more powerful sampling script prof2-sample allows biased
sampling using SymPy expressions.

I Programmable vetos also supported,
e.g. to ban regions where param A
greater than param B. Used in Sherpa
2.2 tuning.

I Sampling can now be used to
generate run scripts and any other
file as well as the standard params
list⇒ easy to use “meta-params” to
control multiple parameters.

I Still very up to the user to ensure that
sampling is dense enough and
concentrated appropriately. To
calculate where best to sample, you’d
need to already know the answer!

0 2 4 6 8 106

4

2

0

2

4

6

7/12

Testing the parameterisation

Can’t just assume that parameterisation is working. . . but this is often
done / inferred much later. New prof2-residuals tests explicitly.

I Loop over runs and histogram
absolute & relative residuals between
ipol and MC, e.g. (f (pi)−MCi)/MCi

I Breakdown by observable, and value
/ error. Easily extended.

I For better testing, train interpolation
on one run subset and test on the
remainder

8/12

Measuring goodness-of-fit
I Historically used a simple pseudo-χ2:

χ2(~p) =
∑

b

wb
(fb(~p)− ref b)

2

∆ref 2
b + ∆f 2

b + ε2
(1)

I Several limitations: no stat/syst
separation, weight has√ of intuitive
effect, ∆f 2

b = median(∆MC) i.e.
const!

I Expt correlations available in Prof 1.4;
coming soon in v2

I Linearised weights also imminent –
depending on feedback. Affects
correlations via covij

I Prof 2 allows error parameterisation:
greatly improves residuals. Denom is
of equal importance in χ2! Needs to be
regularised in fit.

9/12

Eigentunes and coverage
Eigentunes have gained acceptance as a “robust” way to create
systematic variation tunes.

I Motivation cf. PDF Hessian errors.
I Directions are robust: physics in the

components of principle directions
I But distance along vectors not

well-defined. If true χ2, expect
∆ ∼ numparams; actually more like
num bins for coverage

I Effect of large correlated systematics?
Not experimental. . . but in model??

I Can we define a statistically robust
∆χ2 for tunes? Perhaps instead aim
for iterated minimal data coverage.

I More robust dimensional reduction
wanted / needed? cf. ATLAS A14
procedure

10/12

Prof4BSM – life beyond tuning

I Much recent development/use hasn’t
been for tuning at all. . .

I Fast parameterisation also finds use
in BSM physics, e.g. arXiv:1506.08845,
arXiv:1511.05170

I Use parameterisation of observables
in Wilson coefficient space to build
confidence limit contours

I Speed important for marginalising
limits in many dimensions for
projections

-1 -0.5 0 0.5 1
C̄i = Civ

2/Λ2

individual
marginalizedC̄G

C̄tG

C̄1
u

C̄2
u

C̄1
d

C̄2
d

C̄tW

C̄3
qq

C̄3
φq

−0.3 −0.2 −0.1 0.0 0.1 0.2 0.3
CtWv

2/Λ2

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

C
3 φ
q
v

2
/Λ

2

11/12

Summary & outlook

I Professor is a well-established tool to aid in many-parameter MC
tuning. Not a replacement for physics awareness.

I Used by majority of experiment tunes, also some MC author
tunes.

I Prof 1 series had become unwieldy for developers, flaky for users:
Prof 2 is a leaner, faster reboot.

I Not all functionality yet replaced – taking time to think about
better-motivated heuristics.

I But already some advantages like speed, format support, and
uncertainty parameterisation.

I New version has so far been used more for BSM than QCD;
but not for long, I hope!

12/12

