
RTOS & LwIP
on Zynq and Zedboard

Dr. Heinz Rongen
Forschungszentrum Jülich GmbH
Zentralinstitut Systeme der Elektronik (ZEA-2)
H.Rongen@fz-juelich.de

mailto:H.Rongen@fz-juelich.de

µController (The small ones …)

- Single Chip Solutions / Applications
- Internal Memory: Flash / RAM (program / data memory)
- Internal I/O

- Digital I/O: Ports, Timer, Counter, PWM, …
- Analog I/O: ADC‘s, DAC‘s, …
- Communication: I2C, SPI, RS232, USB, …

- „Bare-Metal“ Programmierung
- Without the support of a Operating system

- Typically: No Networking / Ethernet:
- TcpIP Stack to complex to implement

Big brothers ..
(Processor Systems)

www.taskit.de
Stamp 926
• ARM9
• 16 MB Flash
• 32 MB SDRAM
• SSD Karte
• LCD/TFT Controller
• Ethernet

Embedded Linux

- Processor Systems: Multiple Chip Solutions
- External Memories
- External I/O‘s

- Operating system support
- Windows, embedded Linux, …

- Full features Networking / Ethernet:

http://www.taskit.de/

The gap …

- Simple „single Chip“ Hardware
- As „Building-Block“ for own HW developments

- Powerful
- OS Support

- Multi-Tasking
- Real-time

- Ethernet

Solution

lwip.wikia.com/wiki/LwIP_Wiki

IP (Internet Protocol)
ICMP (Internet Control Message Protocol)
IGMP (Internet Group Management Protocol)
UDP (User Datagram Protocol)
TCP (Transmission Control Protocol)
BSD Berkeley-like socket API
DNS (Domain names resolver)
SNMP (Simple Network Management Protocol)
DHCP (Dynamic Host Configuration Protocol)
PPP (Point-to-Point Protocol)
ARP (Address Resolution Protocol) for Ethernet

 in ca. 40 KB code und 8 KB Ram

de.wikipedia.org/wiki/FreeRTOS

• Open-Source-Echtzeitbetriebssystem
• for embedded MicroControllers
• Multitasking fähig
• präemptive und cooperativer Scheduler

This on
• Atmel µController
• PIC µController
• ….
• and ZYNQ

http://en.wikipedia.org/wiki/Internet_Protocol
http://en.wikipedia.org/wiki/Internet_Control_Message_Protocol
http://en.wikipedia.org/wiki/IGMP
http://en.wikipedia.org/wiki/User_Datagram_Protocol
http://en.wikipedia.org/wiki/Transmission_Control_Protocol
http://en.wikipedia.org/wiki/Berkeley_sockets
http://en.wikipedia.org/wiki/Domain_name_system
http://en.wikipedia.org/wiki/Simple_Network_Management_Protocol
http://en.wikipedia.org/wiki/DHCP
http://en.wikipedia.org/wiki/Point-to-Point_Protocol
http://en.wikipedia.org/wiki/Address_Resolution_Protocol
http://en.wikipedia.org/wiki/Internet_Protocol

freeRTOS and LwIP in a FPGA

Xilinx Virtex-7 ZYNQ
- FPGA with internal ARM7 (Cortex-A9)

 Embedded Linux

Alternative
- freeRTOS
- lwIP

freeRTOS and lwIP
on Zynq / Zedboard

Dr. Heinz Rongen
Forschungszentrum Jülich GmbH
Zentralinstitut Systeme der Elektronik (ZEA-2)
H.Rongen@fz-juelich.de

mailto:H.Rongen@fz-juelich.de

documents

http://www.xilinx.com/support/documentation/application_notes/xapp1026.pdf

• Zedboard example designs: http://www.zedboard.org/support/design/1521/11

ZedBoard version of XAPP1026: LightWeight IP (lwIP) Application Examples
This ZedBoard adaptation of Xilinx application note XAPP1026 describes how to utilize
the lwIP library to add networking capability to an embedded system. In particular,
lwIP is utilized to develop these applications: echo server, Web server, TFTP server, as
well as receive and transmit throughput tests.

http://www.xilinx.com/support/documentation/application_notes/xapp1026.pdf
http://www.zedboard.org/support/design/1521/11

Download freeRTOS Repository (Library)

• http://www.freertos.org/Interactive_Frames/Open_Frames.html?http://interactiv
e.freertos.org/forums

http://www.freertos.org/Interactive_Frames/Open_Frames.html?http://interactive.freertos.org/forums

Repository (Library) for freeRTOS and lwIP

Using FreeRTOS in the Xilinx SDK environment
• A stand-alone board support package (BSP) is a library generated by the

Xilinx SDK that is specific to a hardware design.
• It contains initialization code for bringing up the ARM CPUs in Zynq and also

contains software drivers for all available Zynq peripherals.
• However it is not FreeRTOS aware.

The freeRTOS Repository
• The FreeRTOS port provided in this package extends the stand-alone BSP

described above to also include FreeRTOS source files.
• After using this port in a Xilinx SDK environment, the user gets all the

FreeRTOS source files in a FreeRTOS BSP library.
• This library uses the Xilinx SDK generated stand-alone BSP library.

Unpack the Respository

The Xilinx Zynq repository in this package has the following structure
sw Repository used to integrate FreeRTOS related files and related apps in to SDK
- repo
- - bsp FreeRTOS and lwip library Source files
- - sw_apps Contains Example Apps for Hello World, Blink LED using Semaphore,

Blink LED using Mutex , lwip socket, and lwIP raw IO apps

• The bsp folder contains all FreeRTOS and lwip source files. These source files include the
generic FreeRTOS source and Zynq related source files (the Portation).

• The sw_apps contains demo applications that the user can run to test the FreeRTOS
port. It contains a simple hello world application that prints messages from multiple
tasks. It contains four LED examples that blink a LEDs. There are also two apps to test the
lwIP library, a standalone raw I/O version not using FreeRTOS and a socket I/O version
that uses FreeRTOS.

Create FreeRTOS Application and BSP using Xilinx SDK
- Extract the zip file available in the package to get the FreeRTOS_Zynq_Vivado directory.

Create a Zynq PS (Programmable System) for freeRTOS
• Configure a Vivado project with the IPI (IP Block Integrator)
• Use the standard MIO Signals (PS Multiplexed IO) to connect GPIO to LEDs
• Use a AXI_TIMER (needed for the RTOS scheduler = Task timing)
An example block design with AXI GPIO and AXI Timer:

Make a HDL Wrapper, Implement the Design, Generated Bitstream, Export to SDK and launch SDK

SDK for Rtos and lwIP Application: Load the Repository

• SDK: Select Xilinx Tools -> Repositories.
• Preferences Window pops up.
• Click New under Local Repositories section and

give the path to FreeRTOS_Zynq_Vivado/sw/repo/ directory.
• Click Rescan Repositories, then select Apply and then OK.
• This will ensure that the Xilinx SDK knows about the FreeRTOS and

lwIP BSPs and the applications available to it.

New Project

• Choose File -> New -> Application Project -> Select.
• New Application Project window opens up. Provide Project Name.
• Under Target Hardware tab, choose a Hardware Platform from dropdown list

against Hardware Platform attribute. (Choice can be made to use pre-defined
hardware platforms or create new hardware project, say zed_hw_platform)

• Choose the processor for which the application should be targeted.
• Under Target Software tab, select freertos_zynq as OS Platform. Name for Board

Support Package will be populated based on the application project name. Accept
the default or edit and ... Click Next.

Select a Application template

• Select any of the available FreeRTOS applications, such as FreeRTOS lwIP Socket
I/O Apps. Click Finish.

The SDK Project

Three sdk projects – FreeRTOS lwIP socket application with the provided project name,
board support package and Zedboard hardware platform project will be created.

Preparing the “Run”

Execute the lwIP FreeRTOS APPS
• Choose Run -> Run Configurations …
• Under Xilinx C/ C++ application select New from the context menu and choose the

lwip Socket app created earlier.
• In the Application tab click the “Add” button and browse to the location of the

image.mfs file from the XAPP1026 files retrieved from the Xilinx website. Set the
address to 0x7200000 and hit “Apply” then “Run”.

• Once this is set up, future launches do not need this dialog. Just run from the run
menu directly.

• From a browser on the same subnet navigate to fixed address as reported by the
serial terminal output. The terminal will display information about the application.

	Foliennummer 1
	Foliennummer 2
	Foliennummer 3
	Foliennummer 4
	Foliennummer 5
	Foliennummer 6
	freeRTOS and lwIP �on Zynq / Zedboard�
	documents
	Download freeRTOS Repository (Library)
	Repository (Library) for freeRTOS and lwIP
	Unpack the Respository
	Foliennummer 12
	Create a Zynq PS (Programmable System) for freeRTOS
	SDK for Rtos and lwIP Application: Load the Repository
	New Project
	Select a Application template
	The SDK Project
	Preparing the “Run”

