

Quantification in X-ray fluorescence analysis and the contribution of Monte Carlo simulations

Mateusz Czyzycki, Pawel Wrobel, Dariusz Wegrzynek and Marek Lankosz

Outline

- Confocal XRF spectroscopy in tilted geometry
- Fundamental Parameters model
- Monte Carlo simulations
- Examples
 - Multi-layers with low-Z matrices,
 - Multi-layers of alloys.

Multi-layer materials

- > electronics
- energy production & storage
- > optics
- environmental solutions
- petroleum industry
- automotive industry
- building industry
- biomedical applications
- cultural heritage

Conventional geometry

Confocal geometry

Experimental endstation

Mateusz Czyzycki et. al., Joint ICTP-IAEA Workshop on Advances in X-ray Instrumentation for Cultural Heritage Applications, 13-17 July 2015, Trieste, Italy

NIST SRM 611

HASYLAB, DESY, DORIS III, beamline L NIST SRM 611 glass standard. Scanned volume: 135 μ m / 135 μ m / 150 μ m Incident X-ray beam: 6.7 μ m, 21 keV.

M. Czyzycki et al., unpublished work

Confocal experiment on a single layer

Equipment in tilted geometry

Tilted geometry – schematic drawing

Mateusz Czyzycki et. al., Joint ICTP-IAEA Workshop on Advances in X-ray Instrumentation for Cultural Heritage Applications, 13-17 July 2015, Trieste, Italy

Fundamental parameter model – general

$$\eta_{A}(\vec{r}_{A}) = \frac{T_{A}}{2\pi\sigma_{A}^{2}} \exp\left(-\frac{x_{A}^{2} + z_{A}^{2}}{2\sigma_{A}^{2}}\right)$$

$$\eta_{D}(\vec{r}_{D}^{t}) = \frac{\Omega}{4\pi} T_{D} \varepsilon \exp\left(-\frac{(x_{D}^{t})^{2} + (z_{A}^{t})^{2}}{2\sigma_{D}^{2}}\right)$$

$$\eta(\vec{r}_{A}) = \eta_{A}(\vec{r}_{A}) \cdot \eta_{D}(\vec{r}_{A})$$

$$\tilde{\eta} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \eta(\vec{r}_{A}) dx_{A} dy_{A} dz_{A} = \frac{T_{A} T_{D} \Omega \varepsilon}{\sqrt{8\pi}} \frac{\sigma_{D}^{2}}{\sqrt{\sigma_{A}^{2} + \sigma_{D}^{2}}}$$

$$\eta_{x}(x) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \eta(\vec{r}_{A}) dy_{A} dz_{A} = \frac{\tilde{\eta}_{A}}{\sqrt{2\pi}\sigma_{x}} \exp\left(-\frac{x^{2}}{2\sigma_{x}^{2}}\right)$$

W. Malzer, B. Kanngiesser, Spectrochim. Acta Part B 2005; 60, 1334-1341

Spatial resolution in confocal geometry

Mateusz Czyzycki et. al., Joint ICTP-IAEA Workshop on Advances in X-ray Instrumentation for Cultural Heritage Applications, 13-17 July 2015, Trieste, Italy

Integral sensitivity

Mateusz Czyzycki et. al., Joint ICTP-IAEA Workshop on Advances in X-ray Instrumentation for Cultural Heritage Applications, 13-17 July 2015, Trieste, Italy

Fundamental parameter model – in tilted geometry

$$\sigma_{x} = \sqrt{\chi \sigma_{A}^{2} \sin^{2} \psi + \sigma_{D}^{2} \cos^{2} \psi}$$

$$\chi = \frac{\sigma_A^2 \cos^2 \alpha + \sigma_D^2}{\sigma_A^2 + \sigma_D^2}$$

$$\Phi_l(x) = \Phi_0 \sigma_F \int_0^D \eta_x(\zeta - x) \rho(\zeta) \exp\left[-\int_0^\zeta \mu_{\text{lin}}(\xi) d\xi\right] d\zeta$$

$$\mu_{\text{lin}} = \sum_{i} \rho_{i} \left(\frac{\mu_{0,i}}{\cos \theta_{A}} + \frac{\mu_{j,i}}{\cos \alpha \cos \theta_{D}} \right)$$

M. Czyzycki, P. Wrobel, M. Lankosz, Spectrochim. Acta Part B 2014; 97, 99-104

Fundamental parameter model

$$\Phi_{l}(x) = \frac{\Phi_{0} \tilde{\eta} \sigma_{F} \rho}{2} \exp\left(-\mu_{\text{lin}} x\right) \exp\left(\frac{(\mu_{\text{lin}} \sigma_{x})^{2}}{2}\right) \times \left\{ \operatorname{erf}\left(\frac{D + \mu_{\text{lin}} \sigma_{x}^{2} - x}{\sqrt{2}\sigma_{x}}\right) - \operatorname{erf}\left(\frac{\mu_{\text{lin}} \sigma_{x}^{2} - x}{\sqrt{2}\sigma_{x}}\right) \right\}$$

$$\Phi(x) = \sum_{l=1}^{n} \Phi_l(x) \prod_{k=1}^{l-1} \exp\left(-\mu_{\ln k} D_k\right)$$

I. Mantouvalou, W. Malzer, I. Schaumann, L. Lühl, R. Dargel, C. Vogt, B. Kanngiesser, *Anal. Chem.* 2008; 80, 819-826

Spatial resolution in tilted geometry

Monte Carlo simulation – Why to use?

- 1. Morphology of the sample: shape, sizes, inner structure, inhomogeneities, layers
- Experimental conditions: spectral and spatial distribution of X-ray beam, polarisation effects, unlimited geometries
- 3. Interaction of X-rays with matter: photoabsorption, scattering effects

Monte Carlo algorithm

Quantitative reconstruction of layers

Element concentrations:

$$w_{i}^{(k+1)}(x) = w_{i}^{(k)}(x) \frac{Y_{i,\exp}(x)}{Y_{i,MC}^{(k)}(x) \sum_{j=1}^{N_{m}} w_{j}^{(k)}(x) \frac{Y_{j,\exp}(x)}{Y_{j,MC}^{(k)}(x)}}$$

Thicknesses:

$$d_m^{(k+1)} = \frac{d_m^{(k)}}{N_x N_X} \sum_{x} \sum_{i=1}^{N_X} \frac{Y_{i,\text{exp}}(x)}{Y_{i,\text{MC}}^{(k)}(x)}$$

M. Czyzycki, D. Wegrzynek, P. Wrobel, M. Lankosz, X-Ray Spectrom. 2011; 40, 88-95

Computing cluster

> Software

C, Perl, Unix, *xraylib* library

> Hardware

IBM BladeCenter HS21 cluster 112 Intel Dual-core processors 2GB RAM/core 2.4 Tflops

Academic Computer Centre
CYFRONET AGH, Cracow, Poland

Multi-layer Zn standard on polymer matrix

9 individual layers

odd layers:

 $(CH_2)_n - 95.02\%$

ZnO - 4.98%

even layers:

 $(CH_2)_n - 100\%$

M. Czyzycki, P. Wrobel, M. Szczerbowska-Boruchowska, B. Ostachowicz, D. Wegrzynek, M. Lankosz, *X-Ray Spectrom*. 2012; 41, 273-278

Depth-sensitive scan on Zn standard

HASYLAB at DESY, DORIS III, beamline L

Spatial resolution in depth-scan: 14.3 μm (Zn-Kα)

Reconstruction of multi-layer Zn standard

	ZnO weight fraction	Layer thickness	
Layer no.	determined by MC	MC	Optical microscope
	[%]	[µm]	[µm]
1	4.98 (0.07)	80.5 (0.6)	80.2 (0.3)
2		63.2 (0.5)	62.4 (0.4)
3	5.06 (0.06)	45.9 (0.4)	45.3 (0.4)
4		43.8 (0.4)	43.6 (0.5)
5	4.84 (0.15)	38.7 (0.3)	38.8 (0.9)
6		45.9 (0.4)	46.5 (0.6)
7	4.76 (0.07)	49.9 (0.4)	51.3 (1.1)
8		55.0 (0.4)	54.8 (0.5)
9	4.95 (0.05)	96.8 (0.8)	97.3 (0.6)
nominal	4.98		

Multi-layer Zn/Cu standard on polymer matrix

9 individual layers

odd layers:

$$(CH_2)_n - 95.02\%$$

ZnO - 4.98%

even layers:

$$Cu_2O - 4.50\%$$

 $(CH_2)_n - 95.50\%$

Depth-sensitive scan on Zn/Cu standard

HASYLAB at DESY, DORIS III, beamline L

Spatial resolution in depth-scan: 15.2 μm (Cu-Kα) and 14.3 μm (Zn-Kα)

Reconstruction of multi-layer Zn/Cu standard

Confocal XRF spectrometer in the IAEA lab

Mateusz Czyzycki et. al., Joint ICTP-IAEA Workshop on Advances in X-ray Instrumentation for Cultural Heritage Applications, 13-17 July 2015, Trieste, Italy

Mono-layers of high-Z matrix (1)

Mono-layers of high-Z matrix (2)

IAEA Seibersdorf e,f – Cu foil, 7 μ m g,h – Cu sheet, 2 mm

Three-layer alloy standard

Conclusion

Confocal µXRF spectroscopy can be sucessfully used to discover the elemental composition of materials studied (in particular multi-layers).

Monte Carlo simulation is a reliable tool for the simulation of scanning confocal μXRF experiments and for the qualitative and quantitative interpretation of experimental results.

Acknowledgements

Andrzej Markowicz, Andreas Karydas, IAEA (Research Contract No. 16023)

Rolf Simon, David Batchelor, ANKA

Karen Appel, DESY Photon Science

European Community, 7th Framework Programme (FP7/2007-2013), Grant Agreement No. 226716

Thank you for your attention!

