In-situ XRF analysis as a diagnostic analytical tool in the conservation field

A.G. Karydas, V. Kantarelou

- Nuclear Science and Instrumentation Laboratory, IAEA Laboratories, A-2444 Seibersdorf
- Institute of Nuclear and Particle Physics, NCSR “Demokritos”, Aghia Paraskevi, Athens, Greece
Outline and the PROMET analytical campaigns across the Mediterranean

Outline

1. The PROMET project
2. The micro-XRF mobile instrumentation
3. Accuracy and pitfalls of micro-XRF analysis
4. PROMET campaigns:
 - Ancient Messene (2006)
 - Malta, Armoury Palace (2006)
 - Damascus National Museum (2007)
 - Numismatic Museum, Yarmouk University, Irbid, Jordan

Andreas Karydas, ICTP, 14th of July 2015
Aim:
To develop Prototype innovative and advanced analytical methods to survey large collections of metal objects in-situ, making it possible to pinpoint conservation needs without any risk of damaging the artefacts.

Efficient, versatile and mobile analytical methodologies: Micro-XRF and Laser Induced Breakdown Spectroscopy

LIBS related tasks were carried out by Prof. D. Anglos
FORTH-IESL, Crete

24 partners, including Turkey, Syria, Jordan, Morocco, Italy, France, Spain, Czech Republic

Coordinator: Prof. V. Argyropoulos (TEI, Athens)
Andreas Karydas, ICTP, 14th of July 2015
Demokritos objectives within PROMET:

✓ To develop, optimize and calibrate the analytical performance of an innovative portable micro-XRF spectrometer

✓ To develop and improve analysis procedures, protocols and the standardization of the method

✓ To apply the micro-XRF spectrometer for systematic technological and conservation related studies of museum metal collections at the Mediterranean region:

 • The study of the manufacture technology of metal alloys
 • Non – invasive characterization of corrosion products
 • Contribution to the assessment of innovative protective coatings

Andreas Karydas, ICTP, 14th of July 2015
Development and application of portable micro-XRF unit
Customized design of ARTAX by Bruker Nano AXS

Andreas Karydas, ICTP, 14th of July 2015
Versatility: *In-situ* Micro-XRF analyses

In-situ Micro-XRF analyses Laboratory test of TEI coupon

X-ray Detector

X-ray lens

Laser pointer

Headed Eagle lapis lazuli and gold 3000 B.C. Early Bronze Age

Damascus National Museum, Syria, October 2007

Numismatic Museum of Yarmouk University, Irbid, Nov. 2008

Andreas Karydas, ICTP, 14th of July 2015
Pitfalls: Interference of XRF signal with diffraction peaks, QC/QA of micro-XRF data

- Diffraction peaks
- Heterogeneity at the micro-scale
- Definition of the scanning area that represents the alloy bulk composition

<table>
<thead>
<tr>
<th>Alloys</th>
<th>Filters/ Thickness (μm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ti (23.6 ± 0.2)</td>
</tr>
<tr>
<td>Gold</td>
<td>x</td>
</tr>
<tr>
<td>Silver</td>
<td>x</td>
</tr>
<tr>
<td>Copper</td>
<td>x</td>
</tr>
</tbody>
</table>
Analytical range using He atmosphere

50kV, 600mA, 100s

The improvement in the intensity of Al-K and Si-K characteristic X-ray lines is significant, 22 and 7.3 times, respectively.
Analytical performance: Elemental sensitivity

Thin Targets ~ 50 μg/cm²

Energy (keV)

Sensitivity: cps/(μg/cm²)

- K-sensitivities, He atmosphere
- K-sensitivities, No Helium
- L-sensitivities, No Helium

600 μA
50 kV
Analytical performance: Spatial resolution

![Graph showing FWHM (µm) vs Energy (keV) for Filtered_Ni (25µm) and Unfiltered cases.](image)
Calibration methodology

\[I_i(E_k) = G \cdot w_i \cdot \left(\int I(E) \cdot T(E) \cdot \sigma_i(E, E_k) \cdot A_i(E, E_k) \cdot F_i \cdot dE \right) \cdot f_{air}(E_k) \cdot \varepsilon_d(E_k) \cdot \frac{1}{\sin \theta_i} \]

where:

\[A_i(E, E_k) = \frac{1 - \exp[-\mu_{tot}(E, E_k) \cdot \rho X]}{\mu_{tot}(E, E_k)} \]

\[\mu_{tot}(E, E_k) = \sum_{i=1}^{N} w_i \cdot \left(\frac{\mu_i(E)}{\sin \theta_1} + \frac{\mu_i(E_k)}{\sin \theta_2} \right) \]

\[F_i = 1 + \sum_{j=1,n}^{S} \sum_{k=1,n}^{SF} \left(1 + \sum_{j=1,n}^{SF} \right) \]

\[T(E) = \left(\sum_{i=0.5}^{A_i \cdot E^i} \right) \cdot \exp(-c \cdot E) \]

Andreas Karydas, ICTP, 14th of July 2015
Experimental/simulated pure element thick/thin elemental intensities

Thin targets

![Graph showing thin targets intensity vs energy](image)

- Theory (FPA) (K_α lines)
- Experimental (K_α lines)
- Theory (FPA) (L_α lines)
- Experimental (L_α lines)

Thick targets

![Graph showing thick targets intensity vs energy](image)

- Theory (FPA) (K_α lines)
- Experimental (K_α lines)
- Theory (FPA) (L_α lines)
- Experimental (L_α lines)

Kantarelou et al., XRS, 2015

Andreas Karydas, ICTP, 14th of July 2015
Results of the fitting procedure

Estimated Lens transmission efficiency

Kantarelou et al., XRS, 2015

Andreas Karydas, ICTP, 14th of July 2015
Accuracy/Quantification of CH related materials

Andreas Karydas, ICTP, 14th of July 2015
Assessment of micro-XRF analysis accuracy

Validation with respect to Cu based RM

Micro-XRF (~50μm) vs Milli-XRF (3 mm)

A. Heginbotham et al., An Evaluation of Inter-Laboratory Reproducibility for Quantitative XRF of Historic Copper Alloys, Proceedings of the International Conference on Metal Conservation, METAL 2010, pp 178-188, Edited by Paul Mardikian, Claudia Chemello, Cristopher Watters and Peter Hull, 11-15 October 2010, Charleston, South Carolina, USA

Andreas Karydas, ICTP, 14th of July 2015
Semi-QA and Diagnostic Micro-XRF Analysis

Methodology:

Variation of the K/L or L/M elemental intensity ratios in single spot, line or area scan measurements

Filtered excitation

Analysis of corroded area vs corrosion free area

Line and area scans to obtain in reasonable measuring time (1x1 mm2, 50 μm step, 10s/step, ~1.5h) intensity maps of the detected characteristic X-ray lines

Andreas Karydas, ICTP, 14th of July 2015
Semi-QA and Diagnostic Micro-XRF Analysis

Results obtained:

- Identification of the spatial coexistence of different elements, fingerprints of certain corrosion products or of manufacture techniques.

- Estimation on a semi-quantitative basis of the elements enriched or depleted from the surface

- Rough estimation of the depths that a certain element is located, namely, on the surface, near surface (~2-10 μm) or below ~10 μm.

- Spatial distribution of individual elements

- Identification of the presence of certain minor to trace elements that may support provenance and manufacture studies of the metal

Andreas Karydas, ICTP, 14th of July 2015
Analysis of Copper coupon corrosion products

Artificially and naturally aged bronze coupon: (Cu: 91.3%, Sn: 7.5%, Pb: 1.0%)

#9 : green area
#47: pale green area

50kV, 600μA, 30s/step, 0.1mm/step, 50 measurements
Analysis of metal corrosion products

Silver coupon (prepared-characterized by Prof. G. M. Ingo, Polytechnico of Milano)

Artificially and naturally aged silver coupon:
Ag: 92%
Cu: 6.5%
Pb: 1.5%

50kV, 600μA, 30s/step, 0.1mm/step, 50 measurements

A.G. Karydas et al, PROMET Book, 2008
Damascus Archaeological museum: Analysis of silver tarnishing

Silver Bowl 1400 -1300 BC Late Bronze Age
Thickness of the layer: ~ 0.5 μm

Tarnish: corrosion mainly caused by the sulfur in the air
PROMET, Damascus, Syria: Gilded Bronze figurines

Late Bronze Age, 1400 B.C. Ugarit site: Issues addressed

- Manufacture technology (compositional analysis, raw materials)
- Gilding technique
- Identification of corrosion products

Kantarelou et al., JAAS, 2015
Compositional analysis of bronze metal

Concentrations (wt. %)
- Fe: 0.26 ± 0.03
- Cu: 92.5 ± 1.0
- Zn: 0.60 ± 0.06
- As: 0.10 ± 0.01
- Sn: 6.32 ± 0.30
- Pb: 0.040 ± 0.004

Andreas Karydas, ICTP, 14th of July 2015
Compositional analysis of gold foil

Thickness of the gold foil > 10 micrometers

Two (2) main compositional groups:
Ag: 14-15% or 4-5%
Cu: generally <2-3%

Andreas Karydas, ICTP, 14th of July 2015
Imaging of the elements distribution on the gold foil

Au-Lα

Ag-Kα

Cu-Kα
PROMET, Damascus, Syria: Corrosion products
Eal God, Late Bronze Age 1400-1300 B.C.

Malachite

Copper oxide
Trace elements: Zn, As, Se

Sn rich layer
PROMET at Irbid, Jordan

Umm Qais artefacts

Copper-base bracelet, #216, (Ottoman Period), General + Pitting + Crevice Corrosion, Active corrosion have caused serious crack

Copper oxides

Cu: 76.08%
Zn: 21.7%
Ni: 0.80%
Sn: 0.43%
Pb: 0.43%
Fe: 0.39%
As: 0.17%

Counts

Energy (keV)

Cu
Zn
Pb+As
PU's
Ca
Cl

Rh
Fe+EPCu
Zn
Cu
Cl
PROMET in Ancient Messene - Objectives:

Compositional analysis of different typology copper based artifacts through time

Surface characterization of high tin bronze mirrors

Combined microXRF and LIBS analysis for enhancing in-depth elemental distribution

Andreas Karydas, ICTP, 14th of July 2015
Dynamic combination of micro-XRF and LIBS

Courtesy of D. Anglos

Andreas Karydas, ICTP, 14th of July 2015
PROMET at Ancient Messene

Micro-XRF elemental mapping of the LIBS ablated area

W2 (%): Cu: 82.1, Sn: 6.9, Pb: 10.7
PROMET at Ancient Messene

μ-XRF analysis of High Tin Bronzes
Ancient Messene, Greece: Manufacture of high tin bronze mirrors

2nd c. BC

Mirror 1 (M1)
(Cu: 70.6%, Sn:26.0%, Pb:3.4 %)
Examined areas: metal, black, silverish

Mirror 2 (M2)
(Cu: 70.2%, Sn:22.9 %, Pb: 6.8 %)
Examined areas: metal, black, silverish, green and light grey
Silverish: Increase of SnLα, decrease of CuKa and PbLα: Sn surface enrichment
Black: Significant increase of SnLα (Cassiterite?)
Green: Increase of CuKa, Cu corrosion products (malachite?)
Light green: Increase of PbLα, SnLα, decrease of Cu-K, (Lead-white? Cassiterite?)
Ancient Messene, Greece: Black patina on high tin bronze mirrors

Silverish $< 1 \mu m$

Black layer with a thickness of very few microns
PROMET at Armoury Palace, Malta

Conservation related issues addressed:

✓ Authenticity issues
✓ Gilding technology
✓ Compositional analysis of armory components (rivets)
✓ Identification of surface corrosion products
PROMET at Armoury Palace, Malta

μ-XRF analysis of gilding areas

Gilded Iron Alloy Falling Buff

Andreas Karydas, ICTP, 14th of July 2015
Fire-Gilding technique: Hg to Au ratio

Palace Armoury, Malta

The mean Au/Hg values were deduced among a subgroup of the area map spots, where the Au intensity varies between 0-10%, 10-20%, 30-40% etc with respect to its maximum value.

Conclusions

Micro XRF analysis can offer fast elemental distribution maps, contributing thus both towards the identification of surface corrosion products and manufacture techniques as well.

The operating conditions of the micro-XRF spectrometer require careful optimization per type of samples analyzed, that it is in many cases not a trivial and straightforward procedure.
PROMET Impact

• The results of the project offer a cost effective approach in identifying the conservation problems and needs of a metals collection using portable diagnostic techniques

• The achieved results can easily be applied to any museum setting world-wide due to the portability of the instruments developed whereas analytical methodologies are easily transferable.
Acknowledgements

TEI, Athens, Prof. V. Argyropoulos (coordinator), M. Giannoulaki

IESL-FORTH, D. Anglos, A. Giakoumaki

Ancient Messene, Society of Messenian Archaeological Studies

Prof. Dr. P. Themelis, Director of Excavations

Museum of Ancient Messene, S. Polymenea, Conservator

National Museum at Damascus, Syria

Luda Mahfoud, Abeer Kurdab, Mayada El Saadi and Kasem Yahya

Directorate General of Antiquities and Museums, Mr Maher Azar

Malta Heritage, Dr. C. Degrigny, Dr. S. Golfomitsou, D. Vella

Yarmouk University, Dr Manar Bani Hani, Lina Khrees, Prof. Mohammed S. Shunnaq, Prof. Ziad Al-Saad

Royal Scientific Society of Jordan, Dr Abeer Arafat and

Umm Qais Museum, Mohammad Bashabsheh