

Joint ICTP-IAEA Workshop on Advances in X-ray Instrumentation for Cultural Heritage Applications

Evaluation and interpretation of large datasets from scanning macro X-ray fluorescence (MA-XRF) experiments: application to historical paintings

Piet Van Espen piet.vanespen@uantwerpen.be

Tuesday, 14 July 2015

Joint ICTP-IAEA School on Novel Experimental Methodologies for Synchrotron Radiation Applications in Nano-science and Environmental Monitoring

Evaluation of XRF Spectra

from basics to advanced systems

1

Piet Van Espen <u>piet.vanespen@uantwerpen.be</u>

20 Nov 2014

Some final remarks: The future

Non-linear least-squares works

if you have a good parsimonious model if you have TIME

X-ray fluorescence imaging: 256 x 256 image = 65536 x-ray spectra

@ 1 s / spectrum

- = 65536 seconds
- = 1092 minutes
- = 18 hours !!!!

Need to explore new methods Linear models? Multivariate models?

Outline

- 1. The context
- 2. A space time problem
- 3. Solving the "space" problem
- 4. Solving the "time" problem
- 5. Results
- 6. Application
- 7. Conclusions

1. The context X-ray fluorescence

analytical technique for element analysis

Energies of the fluorescence x-rays are characteristic for each element range: 1 - 100 keV

Intensity (number of counts in characteristic line) range: 100% - ppm qualitative analysis which element? Na - U

quantitative analysis how much of each element

Result of a measurement:

X-ray spectrum

Characteristic lines (K α , K β , L α , L β ,...) with frequent interference (peak overlap) sitting on a non-specific continuum (background)

Data: 1 - 4 K, 1024 - 4096 channels

X-ray fluorescence analysis (XRF) and cultural heritage

It is **non-destructive**!!!

pigment analysis using portable XRF instruments.

measuring and analysing 10 - 100 spots on a painting

information for:

- restoration
- preservation
- authentification

• . . .

X-ray fluorescence imaging

Use a pencil x-ray beam and take a spectrum at each pixel

using capillary optics or collimators

First succes Using synchrotron radiation XRF

Applied to "Patch of Grass" V. Van Gogh (1887)

µXRF beamline L at Doris-III (Hasylab)

0.5×0.5 mm² @ 38.5 keV

Scanned area 170×170 mm² @ 2s per pixel (64h)

Some "visibility"

naturenews

Published online 30 July 2008 | *Nature* **454**, 563 (2008) | doi:10.1038/454563a

News in Brief: Snapshot

The hidden van Gogh

X-ray reveals mystery portrait.

<u>Philip Ball</u>

An unknown Vincent van Gogh painting of a woman's head has been revealed with X-ray technology. The painting is thought to have been made in 1884–85, during a period in which he painted several portraits of peasants in the

Method known as Scanning Macro XRF (MA-XRF)

Since then we scanned hundreds of paintings $\Rightarrow \sim 13$ TB data

More recent trend: X-ray fluorescence imaging using small x-ray tubes

Large size: moving the source and detector

e.g. AXES MA-XRF scanner

Small size: moving the object

Commercial instruments

M6 JETSTREAM

Rh anode microfocus X-ray tube 50 kV 600 μ A 30 mm² SDD, <145 eV @ Mn Ka Spot size: 100 - 500 μ m Scanning area: 800 x 600 mm, 10 μ m stepsize

2. The Space - Time Problem

Paintings are BIG!!!!

Research is needed to make the method work in practice!

Maybe some old recipes will do?

a) Measuring: a time problem

 $256 \ge 256 \text{ pixels} @ 0.5 \text{mm} = 12.8 \text{ cm} \ge 12.8 \text{ cm} \text{ painting}$

 $1024 \ge 1024 \text{ pixels} @ 0.5 \text{mm} = 51.2 \text{ cm} \ge 51.2 \text{ cm} \text{ painting}$

(*a*) 2s/pixel = 36 h = 1.5 days(*a*) 0.2 s/pixel = 3.6 h (a) 2s/pixel = 582 h = 24 days!!!

(a) 0.2s/pixel = 58.2 h = 2.4 days

b) Data store and retrieval: a space problem

 \Rightarrow reduce the data size by a factor of 10 !!!

16

6

c) Analysis: another time problem

Analysis of 10^4 to 10^6 spectra ???

256 x 256 pixels @0.5mm = 12.8 cm x 12.8 cm painting

(a) 2s/spectrum = 36 h = 1.5 days

1024 x 1024 pixels @0.5 mm = 51.2 cm x 51.2 cm painting

(*a*) 2s/spectrum = 582 h = 24 days!!!

 \Rightarrow reduce the spectrum analysis time by a factor 100 !!!

3. Solving the Space Problem

Compression

Channel content stored in 4 bytes (values 0 - 4 294 967 295 counts)

Original: 2048 channel = 8192 bytes

Real MA-XRF spectrum has many channels between 0 and 15 counts needs only 1/2 byte (nibble)

Lossless spectrum compression

Original: constant length	2048×4 bytes	S		

Variable length compression: use $\frac{1}{2}$ byte when possible, 1 byte if needed or $\frac{1}{2}$, or 2...

Compression factor

Efficiency of data compression

Original data (ascii, ESRF-EDF) → Compressed Spectroscopic Image Data

special format for efficient storage and retrieval makes interactive analysis possible

Example converting to compressed spectroscopic image data (csid)

Original data: part of scan of Van Gogh's Sunflowers 570 edf files of 5.9 MB each = 3.34 GB (1.53 GB zipped) each edf file: 714 spectra of 2047 channels (1 scan line)

Importing the 570 files

	No bAxil CSID file
: Zoom in Zoom out	
	Converting AXES EDF files
	Directory: /Users/PVE/Desktop/XIP/Data/Sunflowers/ea/ea_edf Files range from ea_0_0001 to ea_0_0570 Column range from 0 to 713 = 714 columns Row range from 1 to 570 = 570 rows Total number of pixels = 406980 Channel range from 0 to 2047 = 2048 channels
	Data in output file First channel 0 C Last channel 2047
	First column 0 C Last Column 713 C
	First row 1 C Live time 1.00
	Spectrum image ROI
	Begin channel 545 C End channel 555
	Output file
	/Users/PVE/Desktop/XIP/Data/Sunflowers/ea/ea_edf/ea.csid Select output file
	Quit Start

While importing

visualisation of the x-ray intensity between channel 545 and 555 (Pb-L α) in each pixels ROI image

Adjusting the ROI image to channel 437 - 474 (Zn K α)

ROI image of channel 437 - 474 (Zn Kα)

Adjusting the image histogram

ROI image of channel 437 - 474 (Zn K α) with adjusted histogram

Zooming the image and reviewing the spectrum at each pixel

Storing the data with optional reshaping and resampling (binning)

bAxilConvertSID	File	Edit	View	Tools	Help								÷	4	•)
000			656000	00000	/Users	/PVE/Desktop/	XIP/Dat	a/Sunflow	ers/ea/e	a edf/ea.	csid			0.01		
: : Zoor	min Zo	om out														
N.					Save	/Users/PVE/De	sktop/X	IP/Data/St	unflower	rs/ea/ea e	edf/ea2		N. A.			and the second second
			-	Inpu Chai Colu Row	t file: /Us nnel: 0 - 2 mns: 0 - s: 1 - 5	ers/PVE/Deskto 2047 713 70	op/XIP/	Data/Sunfl	owers/e	ea/ea_edf/	ea.csid		1			and a large day
			-			First		Last		Binning		1003	1		67.53	3
-	1	7		Char	nel	0	0	2047	0			1	-			3
		12	×.	Colu	mn (x)	0	0	713	0	2	0		and the	1		2
1	1 4			Row	(y)	1	0	570	0	2	0			1		3
			A	Live	time	1.00	0					Carrow .				
	0		1	Spe	ctrum imag	ge ROI							6			
100		11	M	Be	gin	437	٢	End		474	٢		1	1		2
			A THE SA		The				C	ancel	Ok				A STATE OF STATE	a sub-set of the state of defining the first of
1999	21	-		64	W 1					1	4	1.200	· Shield	1		2

Original data: part of scan of Van Gogh's Sunflowers

570 edf files of 5.9 MB each = 3.34 GB (1.53 GB zipped) each edf file 714 spectra of 2047 channels (1 scan line)

MA-XRF scan 570×714 pixels = 406980 spectra

Compressed = 300.7 MB on disk

size reduction by factor of 11.1

Original data formats: ascii text format, EDF (ESRF) format...

Convert to CSID: Compressed Spectroscopic Image Data

Data set	Туре	# cols (x)	# rows (y)	# pixels	# ch	Space on disk MB	CSID space on disk	Compression
PE1-1-fluo	ascii	200	200	40,000	2048	178.5	28.5	6.3
PE2-fluo	ascii	202	201	40,602	2048	181.2	29.7	6.1
PE3-fluo	ascii	268	195	52,260	2048	233.5	37.8	6.2
PE4-fluo	ascii	202	201	40,602	2048	171.2	24.1	7.1
wk	edf	635	584	370,840	2048	3,026.8	237.0	12.8
nk	edf	1020	1199	1,222,980	2048	10,071.4	711.9	14.1
рр	edf	1060	1040	1,102,400	4096	36,130.0	759.5	47.5

4. Solving the Time Problem

Data analysis in XRF

Determining which elements are present and the intensity of the x-ray lines

Interactive building of a model Fitting the model to the measured spectra

i.e. using non-linear least squares fitting software such as:

Axil, WinAxil, bAxil PyMCA

net element intensities: corrected for the background and interferences Analytical important information in the spectrum

net peak area of the characteristic lines

→= corrected for continuum and peak overlap

Established technique

Least squares fitting of a model to the spectrum model = analytical function containing intensity of characteristic lines

model:
$$y(i,a_1,...,a_m)$$

Spectrum: y_i
 $\chi^2 = \sum_{i=n_1}^{n_2} \frac{1}{\sigma_i^2} [y_i - y(i,a_1,...,a_m)]^2$

$$\frac{\partial \chi^2}{\partial a_j} = 0, \quad j = 1, \dots, m$$

$$y(i) = y_B(i) + \sum_P y_P(i)$$

$$y(i) = y_{\text{Cont}}(i) + \sum_{j \text{ Elements}} A_j \left[\sum_{k \text{ lines}} R_{jk} P(i, E_{jk}) \right]$$

Peak shape
Line ratio
Area (Linear parameter)
Continuum function

Peak profile:
$$P(i, E_{jk}) = G(i, E_{jk}) + f_s(i, E_{jk}) + f_T(i, E_{jk})$$

Gaussian $G(i, E_{jk}) = \frac{Gain}{\sigma_{jk}\sqrt{2\pi}} \exp\left[-\frac{\left(E_i - E_{jk}\right)^2}{2\sigma_{jk}^2}\right]$

Energy calibration

 $E_i = Zero + Gain \times i$

Resolution calibration

$$\sigma_{jk} = \left[\left(\frac{Noise}{2\sqrt{2\ln 2}} \right)^2 + \varepsilon \times \underline{Fano} \times E_{jk} \right]^{1/2}$$

(Nonlinear parameters)

Step: $S(i, E_{jk}) = \frac{Gain}{2E_{jk}} \operatorname{erfc}\left[\frac{E(i) - E_{jk}}{\sqrt{2}\sigma}\right]$ Tail: $T(i, E_{jk}) = \frac{Gain}{2\gamma\sigma \exp\left[-\frac{1}{2\gamma^{2}}\right]} \exp\left[\frac{E(i) - E_{jk}}{\gamma\sigma}\right] \operatorname{erfc}\left[\frac{E(i) - E_{jk}}{\sqrt{2}\sigma} + \frac{1}{\sqrt{2}\gamma}\right]$ Because the fitting function contains non-linear parameters

- there is no direct solution to the minimisation problem
- requires a iterative procedures
- involving a lot of calculations
- e.g. the Marquardt -Leverberg algorithm

$$\chi^{2} = \sum_{i} \frac{1}{\sigma_{i}^{2}} \left[y_{i} - y_{0}(x_{i}, a) - \sum_{j} \frac{\partial y_{0}(x_{i}, a)}{\partial a_{j}} \delta a_{j} \right]^{2}$$
$$\beta_{j} = \sum_{i=1}^{n} \frac{1}{\sigma_{i}^{2}} \left[y_{i} - y_{0}(x_{i}) \right] \frac{\partial y_{0}(x_{i})}{\partial a_{j}}$$
$$\delta a_{j} = \sum_{k=1}^{m} \alpha_{jk}^{-1} \beta_{k}$$
$$\alpha_{jk} = \sum_{i=1}^{n} \frac{1}{\sigma_{i}^{2}} \frac{\partial y_{0}(x_{i})}{\partial a_{j}} \frac{\partial y_{0}(x_{i})}{\partial a_{k}}$$
$$\alpha_{jk} = \begin{cases} a_{jk}(1+\lambda), & j=k\\ \alpha_{jk}, & j\neq k \end{cases}$$

Works very good

Known as

AXIL Analysis of X-ray spectra by Iterative Least squares

 $Axil \rightarrow WinAxil \rightarrow bAxil$

But is rather slow

a few seconds!!!

Solving the time problem: "hybrid fitting"

$$P_j(i) = A_j \sum_k R_k G(i, E_{jk})$$

$$G(i, E_{jk}) = \frac{Gain}{\sigma_{jk}\sqrt{2\pi}} \exp\left[-\frac{\left(E_i - E_{jk}\right)^2}{2\sigma_{jk}^2}\right]$$

10⁻²

10⁻³

10⁻⁴

Fitting model
$$y'_{i} = a_{1}P_{1}(i) + a_{2}P_{2}(i) + ... + a_{m}P_{m}(i)$$
 $i = i_{first} ... i_{last}$

General linear model in matrix notation
$$\mathbf{y} = \mathbf{P}\alpha + \boldsymbol{\varepsilon}$$
 $\mathbf{P} = \mathbf{P}_{n \times m}$
Least squares solution of α $\mathbf{a} = (\mathbf{P}^T \mathbf{P})^{-1} \mathbf{P}^T \mathbf{y} (\mathbf{P}^T \mathbf{P})^{-1}_{m \times m}$

Practical

1. Calculate the profiles P_j for each element using non-linear least squares

2. Pre-calculate the matrix
$$\mathbf{M} = \left(\mathbf{P}^T \mathbf{P}\right)^{-1} \mathbf{P}^T$$

3. For each spectrum \mathbf{y} , strip the continuum obtain the element contributions a_j $\mathbf{a} = \mathbf{M}\mathbf{y}$

ONE matrix multiplication per spectrum!!!

Hybrid aspect

Do a non-linear fit at regular intervals and recalculate the peak profiles and the **M** matrix

Accounts for possible calibration changes during the scan (peak shift and broadening)

Retains all the features of the non-linear fitting procedure building the model (which elements to include) calibrate the spectrum

The price we pay for this

Unweighted least squares solution

No estimate of the uncertainties in the parameters

No account for sum peaks...

But: it goes FAST

5. Results

Validity of the hybrid fitting results: MA-XRF of an ancient parchment

	G Martius Babet dies.pppi.	
5. 6 Co:	Buna bero.ppp.	and a
ial D	iii dalbiniepi bu f	
	e stang mille	de la
18 A B	vi f vd 21	108
	a adriani mart.iiii 6	
(Cin)	pip 24 c benedictiat	5.
FGP.	hui B pui d	
	cperpetueafelisi e	a
Cor Col.	ofi d	
1.20	n epl.martvru ip gAnuuci.m	af.
(15.C)	f inder 24	15
1 - 1 - 1.	will a while Brupertiefi	
2 2	ii Aaregoriipape bi c	
Para l'	6 d quitini ma	tty
at Din	n c puin puille	Ca
N	blonginimar, in flabine biro	ţi.
i / P.	aleiter oculta febue feburario 13 ilida	21

Comparison of results

Parchment: $109 \times 49 = 5341$ spectra

Standard non-linear fitting

9 ar

27:44 min 0.31 s/spectrum

hybrid fitting

0:14 min 0.0026 s/spectrum

Au-L α

Са-Ка

Fe-Ka

Cu-Ka

Comparison of results

×10⁴

Efficiency of the hybrid fitting: speed

Computer: MacBook Pro 2.53 GHz intel core i5 8 GB memory

Parchment: 5341 spectra Non-linear least squares fit: 1164 seconds Hybrid fitting: 14 seconds Factor: ~120

MA-XRF scan 1020×1199 pixels = 1 222 980 spectra

Fitting model of 13 elements (profiles) Fitted in 7.10 minutes or 0.35 msec / spectrum

Interactive capabilities: MA-XRF scan 1020×1199 pixels = 1 222 980 spectra

interactive fitting of pixel 478-623

interactive fitting of pixel 241-918

Investigating the maximum intensity spectrum

Investigating the average spectrum

Starting the hybrid fitting

displaying the Pb-La image so far

Results after 3 minutes

54

Display of the Mn-Ka image after 6:10 minutes

End of the analysis: Fe-Ka image

End of the analysis: the Pb-La image

Speed: 7:10 min = 430 s or 0.35 ms/spectrum

Mn image without background removal

Mn image with hybrid fitting

6. Applications

5. Application

The Ghent Altarpiece

Adoration of the Lamb

Brothers Van Eyck 1432

Restoration 2012 - 2017

Original data (ESRF-EDF format) 1041 files of 34.7 MB each = 36.13 GB

1060 × 1040 pixels @ 0.2 s = 1,102,400 spectra = 2.5 d measuring Compressed: 760 MB (factor 48!!!)

Multivariate analysis using the spectral data

Wooden frame causes background in the spectra

Method implemented in software package bAxil

Building the fitting model based on the "maximum intensity spectrum"

Looking at pixel 571,496

Looking at pixel 977,107

Cu-Ka image after fitting 465 rows of 1060 spectra (5.34 min)

Cu-Ka image after fitting 665 rows of 1060 spectra (8.01 min)

Analysed: hybrid fitting 6 elements in 12.25 min = 0.6 ms / spectrum

Pb La

Cu Ka

Cu overpainting / Restoration in 16th century Ca Ka

Fe Ka

other defects and bad restorations

7. Conclusions:

Reduced the data size on disk by a factor of ~ 10

Reduced the spectrum evaluation time by a factor of ~ 1000

While maintaining the interactive capabilities of spectrum evaluation

While obtaining results very comparable with non-linear least squares fitting

A useful tool for the processing of large MA-XRF datasets

Thanks for your attention