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Some final remarks: The future

Non-linear least-squares works

if you have a good parsimonious model
if you have TIME

X-ray fluorescence imaging: 
 256 x 256 image = 65536 x-ray spectra

@ 1 s / spectrum
= 65536 seconds 
= 1092 minutes 
= 18 hours !!!!

Need to explore new methods 
 Linear models? 
 Multivariate models?

44

6. Final remarks
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X-ray fluorescence

analytical technique for element analysis

Energies of the fluorescence x-rays 
are characteristic for each element

qualitative analysis 
which element?

range: 1 - 100 keV Na - U

Intensity 
(number of counts in characteristic line)

quantitative analysis 
how much of each element

range: 100% - ppm

1. The context
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X-ray spectrum

Characteristic lines (Kα, Kβ, Lα, Lβ,…) with frequent interference (peak overlap) 
sitting on a non-specific continuum (background)

Data: 1 - 4 K, 1024 - 4096 channels

Result of a measurement:
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X-ray fluorescence analysis (XRF) and cultural heritage

pigment analysis using portable XRF 
instruments.

information for: 
• restoration 
• preservation 
• authentification 
• …

measuring and analysing 
10 — 100 spots on a 
painting

It is non-destructive!!!



8

X-ray fluorescence imaging

Use a pencil x-ray beam 
and take a spectrum at each pixel

using capillary optics or collimators
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Figure 1a shows the painting by Van Gogh from his 1886-87
Paris period, Patch of Grass (Kröller-Müller Museum, Otterlo, The
Netherlands).5 Earlier examinations with XRR and infrared re-
flectography (IRR) vaguely revealed a head under the surface
painting (parts b and c of Figure 1). However, due to the
limitations of XRR, the facial characteristics could not be clearly
read, making the person portrayed far from identifiable.

Instead of using the absorption of primary X-rays as an imaging
method, one can also record the intensity of secondary radiation,
emitted by the atoms in the painting while a pencil beam of
energetic X-rays is scanned over the surface. This fluorescence
technique has the added advantage that the emitted X-ray radiation
is element specific. The covering surface layers will not signifi-
cantly attenuate the high-energy fluorescence signals from heavy
elements in the hidden layers; in this manner, the distribution of
both minor and major components in the painting can be
visualized. The use of high intensity X-ray beams reduces the dwell
time for data acquisition to such an extent that large, decimeter-
sized areas can be scanned.

METHODS AND TECHNIQUES
To carry out the analysis, we transported Patch of Grass to the

microfluorescence beamline L at DORIS-III, a second-generation
synchrotron light source at HASYLAB (Hamburger Synchrotron-
strahlungslabor at Deutsches Elektronen-Synchrotron DESY,
Hamburg, Germany). A pencil beam (0.5 × 0.5 mm2) of quasi-
monochromatic synchrotron radiation with an energy of 38.5 keV
was used for primary excitation. With this beam, we scanned a
square of approximately 17.5 × 17.5 cm2, corresponding to the
position of the covered head. The dwell time was 2 s per pixel, so
that the total scan time was approximately 2 days. Fluorescence
spectra were recorded for each pixel with a high-resolution energy-
dispersive Ge-detector. A typical spectrum is displayed in Figure
3a. The resulting spectra were processed using the software
package AXIL6 to subtract background signal and determine net
peak areas for all identified elements. The extracted peak areas
were adjusted to account for fluctuations in the current of the
synchrotron storage ring, detector dead times, and spectra
collection times. Elemental distribution images were then recon-
structed from the resulting sets of peak areas. These maps were

(5) Vergeest, A. In The Paintings of Vincent van Gogh in the Collection of the
Kröller-Müller Museum, Van Kooten, T.; Rijnders, M., Eds.; Kröller-Müller
Museum: Otterlo, The Netherlands, 2003; pp 78-81.

(6) Vekemans, B.; Janssens, K.; Vincze, L.; Adams, F.; Van Espen, P. X-ray
Spectrom. 1994, 23, 278–285.

Figure 1. (a) Vincent van Gogh, Patch of Grass, Paris, Apr-June 1887, oil on canvas, 30 cm × 40 cm, Kröller-Müller Museum, Otterlo, The
Netherlands (KM 105.264; F583/JH1263). The red frame indicates the field of view in images b and c (rotated 90° counter-clockwise). (b) X-ray
radiation transmission radiograph (XRR), paint sample location indicated in the blue frame (Figure 4). (c) Infrared reflectograph (IRR).

6437Analytical Chemistry, Vol. 80, No. 16, August 15, 2008

Applied to “Patch of Grass” V. Van Gogh (1887)

µXRF beamline L at Doris-III (Hasylab) 

0.5×0.5 mm2 @ 38.5 keV 

Scanned area 170×170 mm2  @ 2s per pixel (64h)

First succes Using synchrotron radiation XRF
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dispersive detector. The sample surface was oriented vertically,
making an angle of 60° relative to the incident beam. A sketch of
the setup is given elsewhere.12 XANES spectra were acquired at
both the Sb LIII-edge (4.12-4.24 keV) and the Sb LI-edge
(4.68-4.77 keV), with energy increments of 0.25 and 0.20 eV,
respectively. Reference spectra were acquired on pure powders,
in transmission mode, with a broad beam of 200 µm cross section.

Reference antimony compounds were purchased from Alfa
Aesar (KSbO3 ·3H2O and NaSbO3OH ·3H2O), Aldrich (Sb2O4), and
Kremer (Naples yellow) or lent from museums [valentinite
(Sb2O3), reference RA1170, senarmontite (Sb2O3), reference
RC4421, and stibiconite (Sb3O6OH), reference RC3374, from the
Koninklijk Belgisch Instituut voor Natuurwetenschappen/Institut
des Sciences Nationales de Belgique, Brussels, Belgium; and
kermesite (Sb2S2O), reference R188, from the Museum National
d’Histoire Naturelle, Paris, France].

Finally, XRF measurements were carried out on several
portraits painted by V. van Gogh of the same period in the Kröller-
Müller Museum (Otterlo, The Netherlands) by means of a portable X-ray fluorescence spectrometer (PXRF). Spectra were

recorded with a Keymaster Tracer III-V equipped with a rhodium
X-ray tube and a peltier cooled SiPIN diode detector. The PXRF

(12) Cotte, M.; Susini, J.; Solé, V. A.; Taniguchi, Y.; Chillida, J.; Checroun, E.;
Walter, Ph. J. Anal. At. Spectrom. 2008, 23, 820–828.

Figure 3. (a) Example of a X-ray fluorescence spectrum, derived from one location on the painting, showing the presence of Sb; (b) Comparison
of Sb K- edge XANES spectra from three positions on the painting to reference XANES spectra of Naples yellow [Pb(SbO3)2 ·Pb3(Sb3O4)2] and
antimony white (Sb2O3). All spectra were recorded in the fluorescent mode.

Figure 4. View on sample location indicated in Figures 1b and 2c
(rotated 90° counter clockwise). The red frame indicates the location
of the sample before removal. The insets show photographs of both
sides of the unembedded sample before cross-sectioning.

Figure 5. Cross section of paint sample measured with SR-based
µ-XRF showing elemental distributions of Pb, Sb, Hg, and Zn (black,
high intensity; white, low intensity). Insets show the correlation of Sb
and Pb on the pigment grain level.

6439Analytical Chemistry, Vol. 80, No. 16, August 15, 2008

Discovery of a hidden painting
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News in Brief: Snapshot

The hidden van Gogh

X-ray reveals mystery portrait.

Philip Ball

An unknown

Vincent van Gogh

painting of a

woman's head has

been revealed with

X-ray technology.

The painting is

thought to have

been made in

1884–85, during a

period in which he

painted several

portraits of

peasants in the

Dutch village of

Nuenen. The

image was hidden

beneath Patch of

Grass, an unrelated landscape that van Gogh painted a year or

two later when living in Paris.

Earlier X-ray studies revealed a faint, blurry shadow of a figure.

But Joris Dik of the Delft University of Technology in the

Netherlands and his colleagues have extracted a much sharper

image using the Deutsches Elektronen-Synchrotron (DESY) in

Hamburg, Germany (J. Dik et al. Anal. Chem.

doi:10.1021/ac800965g; 2008). The synchrotron's X-ray beam

excites secondary X-rays from elements in the sample at

characteristic wavelengths. The researchers mapped the

distributions of cobalt, arsenic, lead and other metals in the

hidden paint layers — all well-known components of pigments

Some “visibility”

Since then we scanned hundreds of paintings ⇒ ~ 13 TB data

Method known as Scanning Macro XRF (MA-XRF)
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More recent trend: X-ray fluorescence imaging using small x-ray tubes

e.g. 
AXES MA-XRF scanner

Large size: moving the source and detector

Small size: moving the object



13

Rh anode microfocus X-ray tube 50 kV 600 µA 
30 mm2 SDD, <145 eV @ Mn Ka 
Spot size: 100 - 500 µm 
Scanning area: 800 x 600 mm, 10 µm stepsizeM6 JETSTREAM

Large Area Micro X-ray Fluorescence Spectrometer

Micro-XRF
Innovation with Integrity

M6 JETSTREAM

M6 JETSTREAM
Large Area Micro X-ray Fluorescence Spectrometer

Micro-XRF
Innovation with Integrity

Commercial instruments



2. The Space - Time Problem

Research is needed to make the 
method work in practice!

Maybe some old recipes will do?

Paintings are BIG!!!!
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a) Measuring: a time problem

256 x 256 pixels @0.5mm = 12.8 cm x 12.8 cm painting @ 2s/pixel = 36 h = 1.5 days

1024 x 1024 pixels @0.5mm = 51.2 cm x 51.2 cm painting @ 2s/pixel = 582 h = 24 days!!!

@ 0.2s/pixel = 3.6 h

@ 0.2s/pixel = 58.2 h = 2.4 days

count rate 105 cps 
@ 0.2s/pixel

20000 counts/spectrum 
20 counts/channel

Technological 
Pixelated detectors

Posible solution

0"

500"

1000"

1500"

2000"

2500"

0" 500" 1000" 1500" 2000"

H
ou

rs
&

Pixels&in&in&x&an&y&direc1on&
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24 d

97 d
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b) Data store and retrieval: a space problem

Image size #spectra MByte

256 x 256 65536 256

512 x 512 262144 1024 = 1GB

1024 x 1024 1048576 4096= 4 GB

Data cube

x-pixels

y-pixels

channels

1 channel in a spectrum = 4 bytes 
1 spectrum = 1024 channel = 4 kB

⇒ reduce the data size by a factor of 10 !!!
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c) Analysis: another time problem

Analysis of 104 to 106 spectra ???

0"

20"

40"

60"

80"

100"

120"

0" 500" 1000" 1500" 2000" 2500"

D
ay
s%

Pixels%in%x%and%y%direc/on%

Compu/ng%/me%
2"s"/"spectrum" 0.01"s"/"spectrum"

⇒ reduce the spectrum analysis time by a factor 100 !!!

256 x 256 pixels @0.5mm = 12.8 cm x 12.8 cm painting @ 2s/spectrum = 36 h = 1.5 days

1024 x 1024 pixels @0.5mm = 51.2 cm x 51.2 cm painting @ 2s/spectrum = 582 h = 24 days!!!



3. Solving the Space Problem
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15 (4 bits)

255 (8 bits)

1880 channels 
92 %

168 channels 
8 %

Original:  2048 channel = 8192 bytes

Compression

Channel content stored in 4 bytes (values 0 — 4 294 967 295 counts)

Real MA-XRF spectrum has many channels between 0 and 15 counts 
needs only 1/2 byte (nibble)
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Lossless spectrum compression

…

Original: constant length 2048 × 4 bytes

Variable length compression: use ½ byte when possible, 1 byte if needed or 1½, or 2…

data size values 
0  0 
1 nibble  1 — 15 
2 nibbles  16 — 255 
3 nibbles 
4 nibbles 1 — 65231 
…

header

count

… …

values header values

nibble = ½ byte = 4 bits 
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15 (4 bits)

255 (8 bits)

1880 channels 
92 %

168 channels 
8 %

Original:  8192 bytes 
Compressed: 1005 bytes 
Factor:  8.2

Compression factor
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Header
Average Spectrum
Maximum Intensity Spectrum

Offsets
compressed spectrum (x=1 y=1)
compressed spectrum (x=2 y=1)
…

compressed spectrum (x=n y=m)
spectrum image

⋯

Element image 1
Element image 2

Element image k

compressed spectrum (x=1 y=2)
…

⋯

Efficiency of data compression

Original data (ascii, ESRF-EDF) → Compressed Spectroscopic Image Data

special format for efficient storage and retrieval 
makes interactive analysis possible



23

Example converting to compressed spectroscopic image data (csid)

Original data: part of scan of Van Gogh’s Sunflowers 
   570 edf files of 5.9 MB each = 3.34 GB (1.53 GB zipped) 
   each edf file: 714 spectra of 2047 channels (1 scan line)

Importing the 570 files
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While importing
visualisation of the x-ray intensity between 
channel 545 and 555 (Pb-Lα) in each pixels 
ROI image
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Adjusting the ROI image to channel 437 - 474 (Zn Kα)
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ROI image of channel 437 - 474 (Zn Kα)
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Adjusting the image histogram



28

ROI image of channel 437 - 474 (Zn Kα) with adjusted histogram
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Zooming the image and reviewing the spectrum at each pixel
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Storing the data with optional reshaping and resampling (binning)



31

MA-XRF scan 570 × 714 pixels = 406980 spectra

Compressed = 300.7 MB on disk

Original data: part of scan of Van Gogh’s Sunflowers 

   570 edf files of 5.9 MB each = 3.34 GB (1.53 GB zipped) 
   each edf file 714 spectra of 2047 channels (1 scan line)

size reduction by factor of 11.1
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Data set Type # cols (x) # rows (y) # pixels # ch Space on disk 
MB

CSID  space 
on disk Compression

PE1-1-fluo ascii 200 200 40,000 2048 178.5 28.5 6.3

PE2-fluo ascii 202 201 40,602 2048 181.2 29.7 6.1

PE3-fluo ascii 268 195 52,260 2048 233.5 37.8 6.2

PE4-fluo ascii 202 201 40,602 2048 171.2 24.1 7.1

wk edf 635 584 370,840 2048 3,026.8 237.0 12.8

nk edf 1020 1199 1,222,980 2048 10,071.4 711.9 14.1

pp edf 1060 1040 1,102,400 4096 36,130.0 759.5 47.5

Original data formats: ascii text format, EDF (ESRF) format…

Convert to CSID: Compressed Spectroscopic Image Data



4. Solving the Time Problem
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Data analysis in XRF

Determining which elements are  present and the intensity of the x-ray lines

Interactive building of a model 
Fitting the model to the measured spectra

i.e. using non-linear least 
squares fitting software such 
as: 

Axil, WinAxil, bAxil 
PyMCA 
…

net element intensities: 
corrected for the background 
and interferences
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Spectrum evaluation

Established technique

Least squares fitting of a model to the spectrum 
model = analytical function containing intensity of characteristic lines

A. Concept

In this method, an algebraic function, including analytical importantly parameters such as
the net areas of the fluorescence lines, is used as a model for the measured spectrum. The
object function (w2) is defined as the weighted sum of squares of the differences between
this model y(i) and the measured spectrum yi over a region of the spectrum:

w2 ¼
X

n2

i¼n1

1

s2i
yi " yði; a1; . . . ; amÞ½ &2 ð77Þ

where s2i is the variance of data point i, normally taken as s2i ¼ yi, and aj are the para-
meters of the model. The optimum values of the parameters are those for which w2 is
minimal. They can be found by setting the partial derivatives of w2 with respect to the
parameters to zero:

@w2

@aj
¼ 0; j ¼ 1; . . . ;m ð78Þ

If the model is linear in all the parameters aj, these equations result in set of m linear
equations in the m unknowns aj, which can be solved algebraically. This is known as linear
least-squares fitting. If the model is nonlinear in one or more of its parameters, a direct
solution is not possible and the optimum value of the parameters must be found itera-
tively. An initial value is given to the parameters and they are varied in some way until a
minimum for w2 is obtained. The latter is equivalent to searching for a minimum in the
mþ 1-dimensional w2 hypersurface. This is known as nonlinear least-squares fitting. The
selection of a suitable minimization algorithm is very important because it determines to a
large extent the performance of the method. A detailed discussion of linear and nonlinear
least-squares fitting is given in Sec. IX.

The most difficult problem to solve when applying this least-squares procedure is the
construction an analytical function that accurately describes the observed spectrum. The
model must be capable of describing accurately the spectral data in the fitting region. This
requires an appropriate model for the continuum, the characteristic lines of the elements
and for all other features present in the spectrum such as absorption edges, escape, and
sum peaks. Although the response function of the energy-dispersive detector is, to a very
good approximation, Gaussian, deviation from the Gaussian shape needs to be taken into
account. Failure to construct an accurate model will result in systematic errors, which
under certain conditions may lead to gross positive or negative errors in the estimated
peak areas. On the other hand, the fitting function should remain simple, with as few
parameters as possible. Especially for the nonlinear fitting, the location of the w2 minimum
becomes problematic when a large number of parameters is involved.

In general, the fitting model consists of two parts:

yðiÞ ¼ yBðiÞ þ
X

P

yPðiÞ ð79Þ

where y(i) is calculated content of channel i and the first part describes the continuum and
the second part the contributions of all peaklike structures.

Because the fitting functions for both linear and nonlinear least-squares fitting have
many features in common, we treat the detailed description of the fitting function for the
most general case of nonlinear least squares. Moreover, if the least-squares fit is done
using the Marquardt algorithm, the linear least-squares fit is computationally a particular
case of the nonlinear least-squares fit. Programs based on this algorithm can perform

Copyright © 2002 Marcel Dekker, Inc.
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the net areas of the fluorescence lines, is used as a model for the measured spectrum. The
object function (w2) is defined as the weighted sum of squares of the differences between
this model y(i) and the measured spectrum yi over a region of the spectrum:

w2 ¼
X

n2

i¼n1

1

s2i
yi " yði; a1; . . . ; amÞ½ &2 ð77Þ

where s2i is the variance of data point i, normally taken as s2i ¼ yi, and aj are the para-
meters of the model. The optimum values of the parameters are those for which w2 is
minimal. They can be found by setting the partial derivatives of w2 with respect to the
parameters to zero:

@w2

@aj
¼ 0; j ¼ 1; . . . ;m ð78Þ

If the model is linear in all the parameters aj, these equations result in set of m linear
equations in the m unknowns aj, which can be solved algebraically. This is known as linear
least-squares fitting. If the model is nonlinear in one or more of its parameters, a direct
solution is not possible and the optimum value of the parameters must be found itera-
tively. An initial value is given to the parameters and they are varied in some way until a
minimum for w2 is obtained. The latter is equivalent to searching for a minimum in the
mþ 1-dimensional w2 hypersurface. This is known as nonlinear least-squares fitting. The
selection of a suitable minimization algorithm is very important because it determines to a
large extent the performance of the method. A detailed discussion of linear and nonlinear
least-squares fitting is given in Sec. IX.

The most difficult problem to solve when applying this least-squares procedure is the
construction an analytical function that accurately describes the observed spectrum. The
model must be capable of describing accurately the spectral data in the fitting region. This
requires an appropriate model for the continuum, the characteristic lines of the elements
and for all other features present in the spectrum such as absorption edges, escape, and
sum peaks. Although the response function of the energy-dispersive detector is, to a very
good approximation, Gaussian, deviation from the Gaussian shape needs to be taken into
account. Failure to construct an accurate model will result in systematic errors, which
under certain conditions may lead to gross positive or negative errors in the estimated
peak areas. On the other hand, the fitting function should remain simple, with as few
parameters as possible. Especially for the nonlinear fitting, the location of the w2 minimum
becomes problematic when a large number of parameters is involved.

In general, the fitting model consists of two parts:

yðiÞ ¼ yBðiÞ þ
X

P

yPðiÞ ð79Þ

where y(i) is calculated content of channel i and the first part describes the continuum and
the second part the contributions of all peaklike structures.

Because the fitting functions for both linear and nonlinear least-squares fitting have
many features in common, we treat the detailed description of the fitting function for the
most general case of nonlinear least squares. Moreover, if the least-squares fit is done
using the Marquardt algorithm, the linear least-squares fit is computationally a particular
case of the nonlinear least-squares fit. Programs based on this algorithm can perform
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Analytical important information in the spectrum

net peak area of the characteristic lines
= corrected for continuum and peak overlap

model: y(i,a1,…am) 

Spectrum: yi 
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Continuum function

Area
Line ratio

Peak shape

(Linear parameter)

Energy calibration

Resolution calibration

(Nonlinear parameters)

Step:

Tail:

P(i,Ejk ) = G(i,Ejk )+ fs (i,Ejk )+ fT (i,Ejk )

G(i,Ejk ) =
Gain

σ jk 2π
exp −

Ei − Ejk( )2
2σ jk

2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

Peak profile:

Gaussian

Ei = Zero+Gain × i

σ jk =
Noise
2 2 ln2

⎛
⎝⎜

⎞
⎠⎟
2

+ ε × Fano× Ejk

⎡

⎣
⎢

⎤

⎦
⎥

1/2
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e.g. the Marquardt -Leverberg algorithm

important group of algorithms is nevertheless based on the evaluation of the curvature
matrix. The gradient method and the first-order expansion will be discussed briefly, as they
form the basis of the most widely used Leverberg!Marquardt algorithm (Marquardt,
1963; Bevington and Robinson, 1992; Press et al., 1988).

a. The Gradient Method

Having a fitting function y ¼ yðx; aÞ and w2 defined as a function of the m parameters aj,

w2 ¼ w2ðaÞ ¼
X

n

i¼1

1

s2i
½yi ! yðxi; aÞ&2 ð163Þ

the gradient of w2 in the m-dimensional parameter space is given by

Hw2 ¼
X

j

@w2

@aj
j ð164Þ

where j is the unit vector along the axis j and the components of the gradient are given by

@w2

@aj
¼ !2

X

i

1

s2i
½yi ! yðxi; aÞ&

@y

@aj
ð165Þ

It is convenient to define

bj ¼ ! 1

2

@w2

@aj
ð166Þ

The gradient gives the direction in which w2 increases most rapidly. A method to locate the
minimum can thus be developed on this basis. Given the current set of parameters aj, a
new set of parameters a0j is calculated (for all j simultaneously):

a0j ¼ aj þ Dajbj ð167Þ

which follows the direction of steepest descent and guarantees a decrease of w2 (at least if
the appropriate step sizes Daj are taken).

The gradient method works quite well away from the minimum, but near the
minimum, the gradient becomes very small (at the minimum, even zero). Fortunately, the
method discussed next behaves in the opposite way.

b. First-Order Expansion

If we write the fitting function yðxi; aÞ as a first-order Taylor expansion of the parameters
aj around y0,

yðx; aÞ ¼ y0ðx; aÞ þ
X

j

@y0ðx; aÞ
@aj

daj ð168Þ

we obtain an (approximation) to the fitting function which is linear in the parameter in-
crements daj. y0ðx; aÞ is the value of the fitting function for some initial set of parameter a.
Using this function, we can now express w2 as

w2 ¼
X

i

1

s2i
yi ! y0ðxi; aÞ !

X

j

@y0ðxi; aÞ
@aj

daj

" #2

ð169Þ

and we can use the method of linear least squares to find the parameters daj so that w2 will
be minimal. We are thus fitting the difference y0i ¼ yi ! y0ðxi; aÞ with the derivatives as
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variables and the increments daj as unknowns. With reference to the section on linear
least-squares fitting [Eq. (122)],

Xj ¼
@y0ðxiÞ
@aj

ð170Þ

and [Eq. (130) and (131)]

bj ¼
X

n

i¼1

1

s2i
½yi % y0ðxiÞ&

@y0ðxiÞ
@aj

ð171Þ

ajk ¼
X

n

i¼1

1

s2i

@y0ðxiÞ
@aj

@y0ðxiÞ
@ak

ð172Þ

defining a set of m normal equations in the unknowns daj,

b ¼ ada ð173Þ

with solution

daj ¼
X

m

k¼1

a%1
jk bk ð174Þ

It is not very difficult to prove that

bj ¼ % 1

2

@w20
@ak

ð175Þ

(i.e., the component of the gradient of w2 at the point of expansion) and

ajk '
1

2

@2w20
@ajdak

ð176Þ

Thus, ajk in Eq. (172) is the first-order approximation to the curvature matrix whose
inverse is the error matrix.

The first-order expansion of the fitting function is closely related to the first-order
Taylor expansion of the w2 hypersurface itself:

w2 ¼ w20 þ
X

j

@w20
@aj

daj ð177Þ

where w20 is the w2 function at the point of expansion:

w20 ¼
X

n

i¼1

1

s2i
½yi % y0ðxi; aÞ&2 ð178Þ

At the minimum, the partial derivation of w2 with respect to the parameter ak will be zero:

@w2

@ak
¼ @w20
@ak

þ
X

j

@2w20
@aj @ak

dak ¼ 0 ð179Þ

This results in a set of equations in the parameters dak:

@w20
@ak

¼ %
X

m

j¼1

@w20
@aj @ak

dak ð180Þ
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bk ¼
X

ajkdak ð181Þ

which is the same set of equations, except that in the expansion of the fitting function, only
a first-order approximation of the curvature matrix is used.

Because near the minimum the first-order expansion of the w2 surface is a good ap-
proximation,we can conclude that also thefirst-order expansionof the fitting function (which is
computationallymore elegant because only derivatives of functions and not of w2 are required)
will yield parameter increments daj which will direct us toward the minimum. For each linear
parameter in the fitting function, the first-order expansion of the function in this parameter is
exact and the calculated increment daj will be such that the new value aj þ daj is optimum (for
the given set of nonlinear parameters which might not be at their optimum value yet).

c. The Marquardt Algorithm

Based on the observation that away from the minimum the gradient method is effective
and near the minimum the first-order expansion is useful, Marquardt developed an al-
gorithm that combines both methods using a scaling factor l that moves the algorithm
either in the direction of the gradient search or into the direction of first-order expansion
(Marquardt, 1963).

The diagonal terms of the curvature matrix are modified as follows:

a0jk ¼
ajkð1þ lÞ; j ¼ k
ajk; j 6¼ k

!

ð182Þ

where ajk is given by Eq. (172) and the matrix equation to be solved for the increments daj is

bj ¼
X

k

a0jkdak ð183Þ

When l is very large (l % 1), the diagonal elements of a dominate and Eq. (183) reduces to

bj & a0jjdak ð184Þ

or

dak &
1

a0jj
bj &

1

a0jj

@w2

@ak
ð185Þ

which is the gradient, scaled by a factor a0jj. On the other hand, for small values of
l (l ' 1), the solution is very close to first-order expansion.

The algorithm proceeds as follows:

1. Given some initial values of the parameters aj, evaluate w2 ¼ w2ðaÞ and initialize
l¼ 0.0001.

2. Compute b and a matrices using Eqs. (171) and (172).
3. Modify the diagonal elements a0jj ¼ ajj þ l and compute da.
4. If w2ðaþ daÞ ( w2ðaÞ

increase l by a factor of 10 and repeat Step 3;
If w2ðaþ daÞ < w2ðaÞ

decrease l by a factor of 10
accept new parameters estimates a aþ da and repeat Step 2.

The algorithm thus performs two loops: the inner loop incrementing l until w2 starts to
decrease and the outer loop calculating successively better approximations to the optimum
values of the parameters. The outer loop can be stopped when w2 decreases by a negligible
absolute or relative amount.
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Because the fitting function contains non-linear parameters

• there is no direct solution to the minimisation problem 
• requires a iterative procedures 
• involving a lot of calculations
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Works very good

But is rather slow a few seconds!!!

Known as 
 AXIL  Analysis of X-ray spectra by Iterative Least squares

Axil → WinAxil → bAxil
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Solving the time problem: “hybrid fitting”

yi − yb (i) = a1P1(i)+ a2P2 (i)+…+ amPm (i)

spectrum ≈ linear combination of “element” profiles Pj

Continuum stripping

except for the continuum

yi = yb (i)+ a1P1(i)+ a2P2 (i)+…+ amPm (i)

Element profiles obtained by 
non-linear least squares

G(i,Ejk ) =
Gain

σ jk 2π
exp −

Ei − Ejk( )2
2σ jk

2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

Pj (i) = Aj RkG(i,Ejk )
k
∑
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′yi = a1P1(i)+ a2P2 (i)+…+ amPm (i) i = i first…ilast

y = Pα + ε

a = PTP( )−1PTy

Fitting model

General linear model in matrix notation 

Least squares solution of α

P = Pn×m

PTP( )−1m×m
Practical

1. Calculate the profiles Pj for each element using non-linear least squares

2. Pre-calculate the matrix M = PTP( )−1PT

3. For each spectrum y,  
strip the continuum 
obtain the element contributions aj a =My

ONE matrix multiplication per spectrum!!!
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The price we pay for this

Unweighted least squares solution 

No estimate of the uncertainties in the parameters

Accounts for possible calibration changes during the scan 
 (peak shift and broadening)

No account for sum peaks…

But: it goes FAST

Hybrid aspect

Do a non-linear fit at regular intervals and 
recalculate the peak profiles and the M matrix

Retains all the features of the non-linear fitting procedure 
 building the model (which elements to include) 
 calibrate the spectrum



5. Results
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Validity of the hybrid fitting results: MA-XRF of an ancient parchment
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Standard 
non-linear fitting

Au-Lα

Ca-Kα

Fe-Kα

Cu-Kα

hybrid 
fitting

Comparison of results

Parchment: 109 × 49 = 5341 spectra

27:44 min 
0.31 s/spectrum

0:14 min 
0.0026 s/spectrum
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Comparison of results
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Efficiency of the hybrid fitting: speed

MA-XRF scan 1020 × 1199 pixels = 1 222 980 spectra

Computer: 
MacBook Pro 
2.53 GHz intel core i5 
8 GB memory

Fitting model of 13 elements (profiles)

Parchment: 
 5341 spectra 
 Non-linear least squares fit: 1164 seconds 
 Hybrid fitting: 14 seconds 
 Factor: ~120 

Fitted in 7.10 minutes or 0.35 msec / spectrum
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Interactive capabilities: MA-XRF scan 1020 × 1199 pixels = 1 222 980 spectra

interactive fitting of pixel 478-623
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interactive fitting of pixel 241-918
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Investigating the maximum intensity spectrum
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Investigating the average spectrum
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Starting the hybrid fitting displaying the Pb-La image so far
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Results after 3 minutes
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Display of the Mn-Ka image after 6:10 minutes
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End of the analysis: Fe-Ka image
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End of the analysis: the Pb-La image
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Speed: 7:10 min = 430 s or 0.35 ms/spectrum

Mn image without background removal Mn image with hybrid fitting



6. Applications
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The Ghent Altarpiece Adoration of the Lamb Brothers Van Eyck 1432

5. Application
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Restoration 2012 - 2017
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Original data (ESRF-EDF format) 
1041 files of 34.7 MB each = 36.13 GB

Compressed: 760 MB (factor 48!!!)

1060 × 1040 pixels @ 0.2 s  = 1,102,400 spectra = 2.5 d measuring

Multivariate 
analysis using 
the spectral data

Wooden frame 
causes background 
in the spectra
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Method implemented in software package bAxil

Building the fitting model based on the “maximum intensity spectrum”
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Looking at pixel 571,496
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Looking at pixel 977,107
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Cu-Ka image after fitting 465 rows of 1060 spectra (5.34 min)
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Cu-Ka image after fitting 665 rows of 1060 spectra (8.01 min)
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Pb La Cu Ka

Analysed: hybrid fitting 6 elements in 12.25 min = 0.6 ms / spectrum

Cu overpainting 
Restoration in 16th century
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Ca Ka Fe Ka

other defects and bad restorations
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7. Conclusions:

Reduced the data size on disk by a factor of ~ 10 

Reduced the spectrum evaluation time by a factor of ~ 1000 

While maintaining the interactive capabilities of spectrum evaluation 

While obtaining results very comparable with non-linear least squares fitting

A useful tool for the processing of large MA-XRF datasets
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Thanks for your attention

with special thanks to

Ana Stijn
Geert


