Fast XRF imaging and related methods: Using the Maia detector at beamline P06 of DESY for the investigation of cultural heritage

Matthias Alfeld

Joint ICTP-IAEA Workshop on Advances in X-ray Instrumentation for Cultural Heritage Applications Trieste, 15.07.15

Outline

- Motivation: XRF imaging at SR sources
- Beamline P06 of DESY
- The Maia detector
- Application examples
 - U-contaminated Salmo Salar gills studied with XRF imaging
 - As in Ceratophyllum demersum studied with XRF tomography
 - Degradation of Cr yellow studied with XANES imaging
 - Degradation of minium studied with XRD tomography
- Conclusions

- > For respresentative results many samples need to be investigated during a beam time and high quality data needs to be obtained.
- High quality XRF images feature:
 - Lateral resolution ->small beams -> X-ray optics (not in this talk)
 - Contrast and high dynamic range -> Number of photons counted
 - Absence of Artefacts -> Number of photons counted and energy resolution

> Data treatment by least squares (χ^2) fitting

A selected range of cha

$$f_i = a_0 B_i + \sum_{k=1}^k a_k$$
linear intensit factors a

background

non-linear parameters p. (e.g. energy calibration and detector settings)

$$\chi^{2} = \sum_{i=0}^{l} w_{i} (S_{i} - f(a_{0}, a_{1}, ..., p_{0}, p_{1}, ...))^{2}$$

Limits of detection (simulation)

Synchrotron:

Outline

- Motivation: XRF imaging at SR sources
- Beamline P06 of DESY
- The Maia detector
- Application examples
 - U-contaminated Salmo Salar gills studied with XRF imaging
 - As in Ceratophyllum demersum studied with XRF tomography
 - Degradation of Cr yellow studied with XANES imaging
 - Degradation of minium studied with XRD tomography
- Conclusions

Beamline P06@DESY, Hamburg, Germany:

- Hard X-ray Micro/Nanoprobe
- 3rd generation Synchrotron Radiation source PETRA III
- operational since 2011.

Source: de.wikipedia.org

 $n \lambda = 2d \sin(\theta)$

Si(111) monochromator based on Bragg reflection Energy resolution: 1.2E-4 Δ E/E

Area detector(s) ror tomography and XRD

KB mirrors

Sample stage

At beamline P06 a cryo chamber is developed for the investigation of frozen, biological samples by XRF and X-ray (absorption) tomography.

Why use the Maia detector?

The high intensity primary radiation oversaturates the detector and necessitates the attenuation of the primary beam.

XRF: X-ray fluorescence spectrometry

- More photons are not always better.
 - Dead time

Source: www.hitachi-hitec-science.us, 2013

ICR Incoming Count Rate OCR Outgoing Count Rate

Outline

- Motivation: XRF imaging at SR sources
- Beamline P06 of DESY
- The Maia detector
- Application examples
 - U-contaminated Salmo Salar gills studied with XRF imaging
 - As in Ceratophyllum demersum studied with XRF tomography
 - Degradation of Cr yellow studied with XANES imaging
 - Degradation of minium studied with XRD tomography
- Conclusions

1 detector element 50 mm² active area Solid angle: ~0.12 sr

Count rate: 5x10⁵ photons/s

Typical dwell time: 100 ms/pixel

386 detector elements 1 mm² active area/element Solid angle ~1.3 sr

Count rate: 10⁷ photons/s

Typical dwell time: 1 ms/pixel

R. Kirkham, et al., The Maia spectroscopy detector system: engineering for integrated pulse capture, low-latency scanning and real-time processing, AIP Conf. Proc. 1234 (2010) 240-243.

C.G. Ryan, et al., The new Maia detector system: Methods for high definition trace element imaging/of

natural material, AIP Conf. Proc. 1221 (2010) 9-17.

Count rate: Figure 10 Dependence of incoherent scattering cross sections for x-rays polarized parallel and perpendicular to the plane of the stored electron orbit on the scattering angle. Observation at a Typical dwe scattering angle of 90° gives optimum signal-to-background conditions. (From Jones KW, et al. Ultramicroscopy 24:313, 1988.)

From: K.W. Jones, Synchrotron Radiation-Induced X-ray Emission, in: R.E. Van Grieken, A.A. Markowicz (Eds), Handbook of X-ray Spectrometry, 2nd Edition, Marcel Dekker, Inc., New York, 2002, pp. 513.

XRF: X-ray fluorescence spectrometry

> Solid angle

$$\frac{I_{\text{recorded}}}{I_{\text{emitted}}} = \frac{A_{\text{detector}}}{4\pi r^2}$$

 $A_{detector}$ active area of detector r distance of sample to detector

The solid angle Ω is expressed in steradians. (1 steradians = 1 r^2)

1 detector element 50 mm² active area Solid angle: ~0.12 sr

Count rate: 5x10⁵ photons/s

Typical dwell time: 100 ms/pixel

386 detector elements 1 mm² active area/element Solid angle ~1.3 sr

Count rate: 10⁷ photons/s

Typical dwell time: 1 ms/pixel

AXO thin film standard @ 19.5 keV (Sum of 1904 x 1370 scanned pixels, 9130 s live time)

Energy resolution (Mn- K_{α}): ~300 eV

Image: © www.axo-dresden.de

$$LOD = 3 \cdot c \cdot \frac{\sqrt{I_{back}}}{I_{signal}} \cdot \sqrt{t}$$

Element	Concentrati on [ng/mm ²]	LOD [ng/mm ²] for 1 s	LOD [ng/mm ²] for 1 ms	Thickness of pure metal layer for 1 ms [nm]
Pb-L $_{\alpha}$ (10.6 keV)	7.7±1.3	0.045	1.4	12
La-L _a (4.6 keV)	9.0±1.9	0.880	28	460
Cu (8.0 keV)	2.4±0.5	0.047	1.6	18
Fe (6.4 keV)	4.0±0.4	0.110	3.4	43
Ca (3.7 keV)	11.4±5.5	0.760	24	1500

Notes on the limits of detection:

- LODs are energy dependent
- LODs are sample matrix dependent
- The LODs shown present the "best case"

For i pixels do begin

- 1. Sample is moved
- 2. Spectrum is acquired Endfor

> Data treatment by least squares (χ^2) fitting

A selected range of cha

$$f_i = a_0 B_i + \sum_{k=1}^k a_k$$
linear intensit factors a

background

10⁶

10⁶

10⁸

10⁹

10¹

10¹

10²

10

non-linear parameters p. (e.g. energy calibration and detector settings)

$$\chi^{2} = \sum_{i=0}^{l} w_{i} (S_{i} - f(a_{0}, a_{1}, ..., p_{0}, p_{1}, ...))^{2}$$

> Data treatment by linear least squares (χ) fitting

- The Maia detector produces a steady stream of 32-bit "events".
- These events are processed on a custom FPGA, which also allows for online data evaluation via DA.
- On special occaision, e.g. when the beam enters a new pixel, a special 32-bit event is created that documents this.

FIGURE 3. Photon event processing pipeline in the FPGA in the Processing subsystem.

From: R. Kirkham, et al., The Maia spectroscopy detector system: engineering for integrated pulse capture, low-latency scanning and real-time processing, AIP Conf. Proc. 1234 (2010) 240-243.

The Maia detector

- Advantages of the Maia detector system:
 - High sensitivity: Large solid angle
 - High sensitivity: Low dead time per detector element
 - Fast scanning due to efficient control hard-and software
- Disadvantage:
 - Moderate energy resolution (280-300 eV @ Mn-K_α)
 - Enhanced scatter contribution (compensated by enhanced sensitivity)

Outline

- Motivation: XRF imaging at SR sources
- Beamline P06 of DESY
- The Maia detector
- Application examples
 - U-contaminated Salmo Salar gills studied with XRF imaging
 - As in Ceratophyllum demersum studied with XRF tomography
 - Degradation of Cr yellow studied with XANES imaging
 - Degradation of minium studied with XRD tomography
- Conclusions

Application Examples

Question: Is U actively taken up in the gills of Atlantic Salmon (Salmo Salar)?

- Atlantic Salmon was exposed for 96 hours to U (6 mg/L)
- Gills were removed from the fish and freeze dried
- Scanned with Maia at P06:
 - 0.5x0.5 µm step size
 - 4x1.165 mm² Area
 - 1.2 ms dwell time
 - 18 keV
 - ~8 hours measurement time

In collaboration with:

S. Cagno, O. Lind, B. Salbu: Norwegian University of Life Sciences (NO

G. Nuyts, F. Vanmeert, K. Janssens: University of Antwerp (BE)

Application Examples

The Maia system at P06 allows to acquire high resolution images of large areas.

It is well suited for "Needle in a haystack" problems

700x190 μm

h elemental

> Explain tomography???XXX

Distribution of As in Ceratophyllum demersum

- •Ceratophyllum demersum was grown in 0 to 5 µM As solution.
- •After harvesting leafs and cleaning: Transfer to glass capillaries
- Shock-freezing in supercooled isopentane
- •First XRF tomography experiment with Maia at P06

Data acquired in collaboration with: Seema Mishra (University of Konstanz, DE) Hendrik Kuepper (Academy of Sciences of the Czech Republic, CZ)

Images reproduced from:

Mishra S et al. Plant Physiol. 2013;163:1396-1408

4 sinograms were acquired:

- 4709 x 240 nm steps
- 900 x 0.4 degree steps
- 0.1 degree offset
- 1.2 ms dwell time
- 2 hours each

The sinograms were drift corrected and joined:

- 4709 x 240 nm steps
- 3600 x 0.1 degree steps

Image reconstruction: MLEM routine from XRDUA (W. De Nolf, F. Vanmeert and K. Janssens, J. Appl. Crystallogr. 2014, 47, 1107-1117)

Scan area: 420x150 µm

Step size: 1 µm

Dwell time: 3 ms/pixel

Measurement time of one image: 3.5 minutes Energy range: 5.96 to 6.088 keV in **125 scans**

Measurement time: ~8 hours

- The full spectral data allows to identify the species present throughout the sample.
- > From this data "degradation depth profiles" can be obtained.
- As this can be done on any location the results are more representative than a simple line scan.

52 artifically aged samples of Cr yellow mounted on one plate. (10 µm step size, 1 ms dwell time, 900x330 pixels, 6 minutes)

Full spectral XANES imaging with the Maia detector allows for the investigation of multiple, closely mounted samples in randomly chosen areas.

(c) K. Janssens; F. Vanmeert, G. Van der Snickt, K. Janssens, Angew. Chem. 2015, 127, 3678 –3681

(c) K. Janssens; F. Vanmeert, G. Van der Snickt, K. Janssens, Angew. Chem. 2015, 127, 3678 –3681

Sample Van Gogh F563 μ-XRF/μ-XRD

(c) K. Janssens, T. Varimeert, G. Van der Snickt, K. Janssens, Angew. Chem. 2015, 127, 3678 –3681

(c) K. Janssens; F. Vanmeert, G. Van der Snickt, K. Janssens, Angew. Chem. 2015, 127, 3678 –3681

(c) K. Janssens; F. Vanmeert, G. Van der Snickt, K. Janssens, Angew. Chem. 2015, 127, 3678 –3681

Similar distribution as plumbonacrite

Minium degradation pathway

Investigation of historical paintings

Set-up with a Maia at the Australian Synchrotron. 3 ms/pixel dwell time, 50 µm pixel size, 25 Mpixel image total time 22.5 hours.

See: Howard, D. L. et al., *Anal. Chem.* (2012). **84**, 32, 3286.

Alternatives to the Maia system

Recent developments brought up fast Multi Channel Analyzers, such as the FalconX (XIA) and the Xspress3 (Quantum detectors), which

Cutting Edge Throughput - OCR vs ICR

Source: www.xia.com

Conclusions

- With the Maia Beamline P06 features:
 - An high intensity sub-micron beam
 - A very sensitive detector
 - A flexible sample environment
- This allows for:
 - The fast acquisition of high resolution elemental distribution images
 - High resolution XRF tomography
 - XANES imaging
 - XRD imaging and XRD tomography
- These capabilities are suitable for the investigation of samples from a wide range of scientific fields, including cultural heritage.
- The beamline is available to outside users. Deadline for beamtime application is in SeptemberXXX.
- The Maia system was quickly integrated in the beamline environment and available for user operation.

Acknowledgements

Financial Support:

The German Federal

Ministry of Education and

Research (BMBF) -

Verbundprojekt 05K2012.

(2013-2015)

Former colleagues at P06: Frederik Vanmeert

Gerald Falkenberg

Ulrike Bösenberg

Christian Schroer

Walter Schröder

Juliane Reinhardt

Maria Scholz

Andreas Schropp

Mateusz Czyzycki

Thorsten Claussen

Preety Bhargava

Users of P06:

Koen Janssens

Geert Van der Snickt

Letizia Monico

Seema Mishra

Hendrik Küpper

Simone Cagno

Ole Lind

Brit Salbu

Gert Nuyts

Maia detector development:

D. Pete Siddons (BNL)

Chris Ryan (CSIRO)

Robin Kirkham (CSIRO)

You – Attention!

