Application of gaseous detectors for full-field EDXRF imaging of works of art

Pawel Wrobel
Faculty of Physics and Applied Computer Science
AGH UST, Krakow, Poland

Joint ICTP-IAEA Workshop on Advances in X-ray Instrumentation for Cultural Heritage Applications, 17 July 2015, Trieste
Presentation outline

• Introduction to gaseous detectors

• Position-sensitive gaseous detectors

• The idea of full field EDXRF imaging - optics

• The gaseous detector based FF-EDXRF imaging systems

• Conclusions
Signal generation in gas detectors

Simplest gas detector – flat ionisation chamber

1) Photoelectric absorption of X ray photon in gas medium
2) Photoelectron and Auger electron ionize gas

\[N = \frac{E}{W}, W \approx 25 \text{ eV/pair} \]

\[N \approx 200 \text{ (for 5 keV)} \]

3) Ions and electrons drifts towards electrodes in electric field
Drift of charge induce current:

\[i_k(t) = Nq v_k(t) \cdot \Psi(\vec{r}) \quad v_k(t) = \mu_k E(\vec{r}(t)) \]

mobility:

\[\mu_{\text{electron}} \approx \text{cm/\mu s} \]
\[\mu_{\text{ion}} \approx \text{cm/ms} \]

For flat ionisation chamber:

Charge collection time:

\[T_{\text{ion}} \gg T_{\text{electron}} \]

Very long tail pulse that depends on:
- interaction position
- detector size
Proportional counter – avalanche multiplication

- higher HV
- stronger electric field
- greater energy of drifting electrons / ions
- electrons causes secondary ionisation
- avalanche multiplication – gas gain

typical gain: $10^2 - 10^6$

huge number of ion pairs – high current pulse still dependant on energy of photon
Proportional counter

Typical cylindrical geometry:

- strong electric field ($\sim 10^6 \text{ V/m}$) near very thin anode (<100µm) without very high voltage
- the multiplication occurs near the anode wire
Space-charge effects

- Avalanche multiplication create ion cloud around the anode
- Electrons are rapidly collected (~1ns)
- Cloud of positive ions create space charge that moves slowly towards cathode

- Space charge attenuate electric field and thus decreases the gas multiplication

nonlinearity, gain fluctuations

Stronger field – stronger multiplication – more ions – more space charge effect
Geiger-Müller counter

at very high electric field (high voltages):

- Ionisation + excitation of gas molecules/atoms
- Deexcitation of molecules – creation of UV photons
- Absorption of UV photons – creation of new ion pairs
- New avalanche and so on...

Until:
- **ALL** gas around anode wire (~10^{-5}s) is ionised
- The process is stopped by space charge effect
- (Electric field becomes weak – charge multiplication impossible)

Can be reduced by addition of quenching gas i.e. CO$_2$, CH$_4$

Very strong impulse but energy information lost
Gaseous vs solid state detectors

Energy resolution

fluctuations of N and gas gain gives

\[\frac{\Delta E}{E} \approx 15\% \]

Detection efficiency

low density medium – limited quantum efficiency at high energy

BUT – they are cheap and does not requires sensitive signal processing electronics
Position sensitive gaseous detectors

- Multi-Wire Proportional Chamber (MWPC) - 1968

Micro Pattern Gas Detectors (MPGD):
- Micro Strip Gas Chamber (MSGC) - 1988
- MicroMEGAS – 1996
- Gas Electron Multiplier (GEM) – 1997
 - THGEM, TGEM, MHSP, THCOBRA

all of them developed for detection of charged particles in high energy physics experiments!
Multi Wire Proportional Chamber

G. Charpak – 1968 (Nobel prize 1992)

Typical dimensions

- Thickness : 10 mm
- Anode wires separation: 1 mm
- Anode wires length : 20 mm
- Spatial resolution limit : 300 μm
 (pitch / \sqrt{12})

G. Charpak, D. Rahm, H. Steiner, NIM 80, Issue 1, 1970, 13-34
Multi Wire Proportional Chamber

Secondary coordinate

- Crossed wire planes

- Charge division (resistive wires)

\[\frac{y}{L} = \frac{Q_B}{Q_B + Q_A} \]

\[\sigma \left(\frac{y}{L} \right) \approx 0.4\% \]
Secondary coordinate

- Segmented cathode – second coordinate given by ions
 - Ions not only drift but also diffuse – but center of gravity method!

http://www.desy.de/~garutti
Multi Wire Proportional Chamber

Problems:

• Long ion path (few mm) = long pulses = low rate (10^4 Hz/mm2)

• Electrostatic repulsion –
 anode displacement effect that reduces field quality

• Space charge effect

G. Charpak, D. Rahm, H. Steiner, NIM 80, Issue 1, 1970, 13-34
Micro Strip Gas Chamber

A.Oed – 1988

usually Cr/Au strips on glass substrate (300 µm) photolithography

second coordinate – segmenting of bottom side of the insulator

Micro Strip Gas Chamber

- Large area 100 X 100 mm²
- Small distance between strips – spatial resolution ~30 µm
- Short path to travel for ions – short pulses – high speed (10⁶ Hz/mm²)
- Very high field – sparks (aging or damage)
- Charging of substrate material – gain fluctuations

https://gdd.web.cern.ch/GDD/msgc.html
I. Giomatri - 1996

- Small gap – high homogenous field
- Fast movement of ions (~100 ns)
- Very high count rates (10^7 Hz/cm2)
- Small space charge effect
- Resolution up to 60 µm
- Possible sparks between strips and mesh

Fig. 1. Micromegas electric field map.
F. Sauli – 1997

- Cu electrodes separated with kapton (litography + etching)
- 100 holes / mm²
- typical pitch ~140 µm
- typical voltage 350 – 500 V – E field ~50 kV/cm
- avalanche multiplication inside holes (10^2)

ThickGEM

- 400 µm kevlar / fiberglass
- 0.3 mm drilled holes / 0.7 mm pitch
- 50 µm Cu electrodes
- voltage up to 2 kV – high gain (10^5)
- worse spatial resolution

F. Sauli, Nucl. Instr. and Meth. A386(1997)531
Single GEM gives small gain (up to 10^2) – solution: use several GEM foils

- ion movement negligible – very fast electron signal (<40 ns)
- count rate up to 10^6 Hz/mm2
- resolution < 80 µm
Combination of GEM and MSGC = GEM with segmented electrodes
Secondary multiplication – high gain with one GEM-like structure

MHSP based on thin GEM, ThCOBRA based on ThickGEM
Position sensitive gaseous detectors - summary

- Large area
- Low cost
- High count rate (10^6 Hz/mm2)
- Resolution up to 60µm
- High amplitude of output signal (avalanche multiplication)
- Moderate energy resolution
- Time/spatial gain fluctuations (easy to compensate)
- Gas flow required
Full field EDXRF imaging

- FF-EDXRF systems based on silicon detectors
- Pinhole optics
- FF-EDXRF systems based on gaseous detectors
- Conclusions
Full field EDXRF imaging – early examples

CCD
25.9x27.5 mm²
1242x1152px
res: ~400 eV

hybrid-pixel
14x14 mm²
256x256px
res: 3 – 5 keV

Photo of the sample in the optical range
Resulting spectral-selective image of the sample surface

pure metallic Ti/Cu/Ge sample

V. Tichy et al. NIMA 591 (2008) 67–70

FF-EDXRF imaging of art works (a short reminder)

CCD based FF systems in CH investigation

BI-DD-CCD
13x13 mm² 1024x1024 px
FOV: 2.5x2.5mm² - 4x4 cm²

Polychrome pottery from Nasca (V A.D.)
5000s, 50µm pinhole, 170 µm resolution

Polychrome wave frieze (VIII B.C.) ivory
40 – 100 min, PC optics, 48 µm resoluton

Full field EDXRF imaging – pinhole optics

Magnification: \[M = \frac{d}{D} \]

Resolution: \[\sigma_{\text{system}} = \sqrt{\sigma_{\text{pinhole}}^2 + \frac{\sigma_{\text{det}}^2}{M^2} + \sigma_{\Delta x}^2} \]

\[\sigma_{\text{pinhole}} = \frac{d_p}{\sqrt{8\ln(2)}} \left(1 + \frac{1}{M} \right) \]

\[\sigma_{\text{det}} = \frac{p}{\sqrt{12}} \]

\[\sigma_{\Delta x} = \frac{d'\Delta x/d_{T}}{\sqrt{8\ln(2)M}} \left(1 + \frac{1}{M} \right) \]

Sensitivity:

\[S = \frac{\text{detected } X - \text{rays}}{\text{all emitted } X - \text{rays}} \approx \frac{d_T^2 \cos^3 \theta}{16D^2} \]

vignetting!

R. Accorsi, S. D. Metzler IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 23, NO. 6, JUNE 2004
Full field EDXRF imaging – pinhole optics

- Low cost
- Infinite depth of field
- Adjustable magnification
- Very low efficiency
- Vignetting
Gaseous detectors in X-ray imaging – early works

M. Li et al. / NIM A 471 (2001) 215–221

single-GEM (3.9mm Xe)
13/30 keV radiography

double-GEM (3mm Ar)
8keV radiography of bat
Full field EDXRF with gaseous detectors

- 28 x 28 mm² MHSP detector
- 3 mm Xe
- σₓ = 130 µm; σᵧ = 250 µm
- Counting rate up to 0.5 Mhz
- E resolution: 825 eV (5.9 keV)

2D readout based on resistive signal division principle

![Diagram of EDXRF setup with MHSP detector and resistive layer connections.](image)
Full field EDXRF with gaseous detectors

MHSP detector experimental setup:
200 µm tungsten pinhole with telescopic tube
50 W molybdenum X-ray tube
Full field EDXRF with gaseous detectors

Cross sections of 18th century faiences from Coimbra (Portugal) 20kV / 1mA

M = 1.7

M = 2
Full field EDXRF with gaseous detectors

A. L. M. Silva et al. 2013 JINST 8 P05016
L. F. N. D Carramate et al. 2015 JINST 10 P01003

100x100 mm²
ThGEM + ThCOBRA
Ne/CH₄
Full field EDXRF with gaseous detectors

A. L. M. Silva et al. 2013 JINST 8 P05016

100x100 mm²
ThGEM + ThCOBRA
20.3% resolution for Cu-Kα
Detector intrinsic resolution:
\(\sigma_x = 0.97 \text{ mm}; \sigma_y = 1.16 \text{ mm} \)

50 W Mo X-ray tube

5.8 kV, 630 mA, 20 min

20 kV, 320 mA, 20 min
Full field EDXRF with gaseous detectors

100x100 mm2
ThGEM + ThCOBRA

OXFORD 50 W X-ray tube

Pinhole optics:
0.6 – 2 mm, 300µm lead foil

Multihole lead collimator:
honeycomb structure
2mm hole, 4cm thickness,
0.2 mm wall thickness

Full field EDXRF with gaseous detectors

Multihole collimator result:
40x more intensity than 1mm pinhole
poor resolution, honeycomb artefacts

Pinhole optics result:
500 µm resolution at M=3 and 0.5 mm pinhole

Cu+Ge, Ti, Fe
Full field EDXRF with gaseous detectors

ornaments from illuminated 15th–16th century Book of Tides

low power tube, 25kV, 1 mA, 15 min, M = 2.5

high power tube, 30kV, 50 mA, M = 2.7
Full field EDXRF with gaseous detectors

- 100x100 mm2 TGEM
- 3 mm Ar/CO$_2$
- 2D readout by crossed electrodes (0.4 pitch – effective pitch: 0.8 mm)
- 32-channel Application Specific Integrated Circuits – 4 per coordinate
- (2 x 128 readout channels)
- DAQ modules: ADC + FPGA
- Counting rate up to 5MHz
- Energy resolution: 20% (5.9 keV)
- $\sigma = 230 \mu$m
Full field EDXRF with gaseous detectors

TGEM detector experimental setup:
High power Mo X-ray tube – beam size 3x10 cm2
30 kV / 40 mA
Source – sample ~ 90cm
0.5 - 2 mm Cd pinhole
Fixed M = 1

A. Zielinska et al. 2013 JINST 8 P10011
A. Zielinska, PhD thesis (in Polish), Krakow 2014
Full field EDXRF with gaseous detectors

Test samples on wooden panels:
• Stripe pattern with different pigments
• Mock-up painting „Man in a red coat”

30 x 20 cm²

22 x 16 cm²
Full field EDXRF with gaseous detectors

Results: stripe pattern 50 min exposure

A. Zielinska et al. 2013 JINST 8 P10011
A. Zielinska, PhD thesis (in Polish), Krakow 2014
Full field EDXRF with gaseous detectors

Results: stripe pattern 50 min exposure

average registered rate: 3.2 kHz

(a) Fe and Mn map (5.5-6.8 keV).
(b) Cu map (7.6-8.4 keV).
(c) Pb and Hg map (9.6-13 keV).
Results: mock-up painting 5.5 h exposure

average registered rate: 450 Hz

(a) Fe map (6.0-6.8 keV).
(b) Cu and Zn map (7.6-9.0 keV).
(c) Pb map (10.0-13.0 keV).
Full field EDXRF with gaseous detectors

Goals and perspectives:

- use of Xe
- replacement of entrance electrode (5 µm Cu)
 - problem with excitation of copper
- development of dedicated readout electronics
- optimisation of excitation system
- creation of portable device and scanner

radiography
W X-ray tube
20kV 40mA
10 min
23.8 kHz

A. Zielinska, PhD thesis (in Polish), Krakow 2014
Conclusions

<table>
<thead>
<tr>
<th></th>
<th>BI-DD-CCD</th>
<th>pnCCD</th>
<th>gaseous</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thickness</td>
<td>40 µm Si</td>
<td>450 µm Si</td>
<td>1-5 mm Ne/Ar/Xe</td>
</tr>
<tr>
<td>QE</td>
<td>90% (5 keV) 8.5% (15 keV)</td>
<td>100% (5 keV) 64% (15 keV)</td>
<td>86% (5 keV, Xe 5 mm) 15% (15 keV, Xe 5 mm)</td>
</tr>
<tr>
<td>Sensor size</td>
<td>13x13 mm²</td>
<td>12.7x12.7 mm²</td>
<td>100x100 mm²</td>
</tr>
<tr>
<td>Energy resolution</td>
<td>133 eV (at Mn-Kα)</td>
<td>152 eV (at Mn-Kα)</td>
<td>1180 eV (at Mn-Kα)</td>
</tr>
<tr>
<td>Pixel size</td>
<td>13 µm</td>
<td>48 µm</td>
<td>(0.4 mm)</td>
</tr>
<tr>
<td>Max count rate</td>
<td><10kcps</td>
<td>600 kcps</td>
<td>5 Mcps</td>
</tr>
<tr>
<td>System resolution</td>
<td>~150 µm</td>
<td>50 µm</td>
<td><500 µm (250 µm achievable)</td>
</tr>
<tr>
<td>(at 1:1 magnification)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Optics</td>
<td>Pinhole</td>
<td>Polycapillary</td>
<td>Pinhole</td>
</tr>
<tr>
<td>Cost</td>
<td>??</td>
<td>~300 000 €</td>
<td>~3000 € (TGEM) ~300 € (ThCOBRA)</td>
</tr>
</tbody>
</table>
Acknowledgements

AGH – UST
W. Dabrowski, M. Lankosz, A. Zielinska, B. Mindur, P. Wiacek,
K. Swietek

National Museum in Krakow
The Laboratory of Analysis and Nondestructive Investigation of Heritage Objects
L. Bratasz, B. Swiatkowska, P. Fraczek

National Centre for Research and Development (NCBR)
Applied Research Programme
Thank you for your attention!