

Optical Coatings Laboratory

Optical materials resistance in the Space environment

Dr. Salvatore Scaglione ENEA, CR Casaccia Via Anguillarese 301, 00123 Rome, Italy Salvatore.scaglione@enea.it

Winter College on Optics Light: a bridge between Earth and Space 09 - 20 February 2015, Trieste, Italy.

outline

- Space radiation
- Low energy protons
- High energy protons
- Experimental results
- •SRIM simulation of proton bombardment
- •γ ray irradiation
- Atomic oxygen erosion (LEO)

Earth orbits

G. Pippin / Progress in Organic Coatings 47 (2003) 424–431

Space environment

Space radiation: protons

Space radiation: low energy protons

ENE

AGENZIA NAZIONALE

Space radiation: high energy protons 30 MeV

AGENZIA NAZIONALE PER LE NUOVE TECNOLOGIE, L'ENERGIA E LO SVILUPPO ECONOMICO SOSTENIBILE

The two most well known elements of satellite systems most susceptible to damage by solar protons are microelectronics and solar cells.

Robert J. Walters et al. SPIE, 10.1117/2.1201012.003417

Charge Transfer Inefficiency (CTI)

Image smearing caused by CTI in a Hubble Space Telescope image shown as the raw image (left) and after image correction has been applied (right). Hubble's radiation mitigation strategy was unique, send up astronauts to replace the sensors. (R Masey)

(R Masey), Mon. Not. R. Astron. Soc. 000, 1-6 (2010)

low energie protons : 60 keV, fluence: 10¹³ p⁺/cm²

AGENZIA NAZIONALE PER LE NUOVE TECNOLOGIE, L'ENERGIA E LO SVILUPPO ECONOMICO SOSTENIBILE

Rudjer Boskovic Institute, Zagreb, Croatia

low proton energies : 60 keV, fluence: 10¹³ p⁺/cm²

Sample	Design	Material (thickness)
#1	substrate (thickness 1 mm)	Fused silica
#2	Single layer	HfO ₂ (690 nm)
#3	Single layer	TiO ₂ (720 nm)
#4	Fabry-Perot [(HL) ⁷ HH (LH) ⁷]	$L=SiO_2$ $H=HfO_2$ $\lambda_0=316 \text{ nm}$

ENER

PER LE NUOVE TECNOLOGIE, L'ENERGIA E LO SVILUPPO ECONOMICO SOSTENIBILE

AGENZIA NAZIONALE

low proton energies : 60 keV, fluence: 10¹³ p⁺/cm²

Transmittance curves of HfO₂ layer (#2), before and after the proton irradiation.

Transmittance curves of TiO_2 layer (#3), before and after the proton irradiation.

low proton energies : 60 keV, fluence: 10¹³ p⁺/cm²

low energy protons: 60 keV, fluence: 10¹³ p⁺/cm²

proton damage : 60 keV, fluence: 10¹³ p⁺/cm²

 Z_1 = atomic number of incident ion with energy E E_1 = energy of incident ion after the collision E_2 = energy of struck atoms E_d = displacement energy

SRIM 2013 (The Stopping and Range of Ions in the Matter)

PER LE NUOVE TECNOLOGIE, L'ENERGI

J. F. Ziegler and J.P.Biersack, www.srim.org

A *displacement* occurs if E2>Ed (the hit atom is given enough energy to leave the site). A *vacancy* occurs if both E1>Ed and E2>Ed (both atoms have enough energy to leave the site). Both atoms then become moving atoms of the cascade. The energy, E2, of atom Z2 is reduced by Eb before it has another collision. If E2<Ed, then the struck atom does not have enough energy and it will vibrate back to its original site, releasing E2 as *phonons*.

If E1<Ed and E2>Ed and Z1 = Z2, then the incoming atom will remain at the site and the collision is called a *replacement collision* with E1 released as *phonons*. The atom in the lattice site remains the same atom by exchange. This type of collision is common in single element targets with large recoil cascades. If E1<Ed and E2>Ed and Z1 \neq Z2, then Z1 becomes a stopped *interstitial* atom.

Finally, if E1<Ed and E2<Ed, then Z1 becomes an *interstitial* and E1+E2 is released as *phonons*. If a target has several different elements in it, and each has a different displacement energy, then Ed will change for each atom of the cascade hitting different target atoms.

proton damage : 60 keV, fluence: 10¹³ p⁺/cm²

fused silica substrate

SRIM 2012 (The Stopping and Range of Ions in the Matter)

J. F. Ziegler and J.P.Biersack, www.srim.org

Hypothesis: the low refractive index layers, SiO₂, subjected to protons irradiation, are responsible for the change in the transmittance curves.

PER LE NUOVE TECNOLOGIE, L'ENERGIA LO SVILUPPO ECONOMICO SOSTENIBILE

Proton damage $Si:O_2 = Si:O + O$

proton damage : 60 keV, fluence: 10¹³ p⁺/cm²

fused silica substrate

SRIM 2012 (The Stopping and Range of Ions in the Matter)

J. F. Ziegler and J.P.Biersack, www.srim.org

proton damage : 60 keV, fluence: 10¹³ p⁺/cm²

SRIM 2012 (The Stopping and Range of Ions in the Matter)

J. F. Ziegler and J.P.Biersack, www.srim.org

 $Si:O_2 = Si:O + O$

SiO_2/HfO_2 SRIM simulation

ENE

PER LE NUOVE TECNOLOGIE, L'ENERGIA E LO SVILUPPO ECONOMICO SOSTENIBILE

Space radiation: high energy protons 30 MeV

AGENZIA NAZIONALE PER LE NUOVE TECNOLOGIE, L'ENERGIA E LO SVILUPPO ECONOMICO SOSTENIBILE high energy protons : 30 MeV, fluence: 10⁸ p⁺/cm²

INFN-LNS (National Institute of Nuclear Physics, National South Laboratory, Italy)

high energy protons : 30 MeV, fluence: 10⁸ p⁺/cm²

AGENZIA NAZIONALE

PER LE NUOVE TECNOLOGIE, L'ENERGIA E LO SVILUPPO ECONOMICO SOSTENIBILE

Trieste – Elettra, BEAR

Bending magnet for Emission, Absorption and Reflectivity beamline

UV irradiation

UV irradiation

SiO₂ E' color center formation

The **E'-center** is stable and is related to Oxygen vacancy with an electron trapped in the 3p orbital of Si-Si bond.

 γ - rays

UV radiation

PER LE NUOVE TECNOLOGIE, L'ENERGIA E LO SVILUPPO ECONOMICO SOSTENIBILE

AO energy = 5-7 eV

Finally, if E1<Ed and E2<Ed, then Z1 becomes an *interstitial* and E1+E2 is released as *phonons*. If a target has several different elements in it, and each has a different displacement energy, then Ed will change for each atom of the cascade hitting different target atoms.

Spherical thermal spike

Transport equation

$$J_E = -D \, grad \rho_E$$

Conservation of energy

$$\frac{\partial \rho_E}{\partial t} + div J_E = 0$$

$$\frac{\partial \rho_E}{\partial t} = D \nabla^2 \rho_E$$

J_E : flux of energy at the sphere surface*D* :costante of diffusion

$$T_{cyl}(\rho,t) = \frac{E_C}{4\pi c dDt} e^{\frac{-\rho^2}{4Dt}}$$

 $D = diffusion \ coefficient$ $E = phonon \ energy$ $r = distance \ from \ the \ place \ where \ the \ phonons \ are \ generated$ t = time

Table I: physical constant of Kapton material.

c (specific heat)	1090	$\frac{J}{Kg K}$	
d (mass density	1.42	$\frac{Kg}{m^3}$	
D (diffusion coeff.)	2.39·10 ⁻⁷	$\frac{m^2}{\sec}$	
C _C (critical temperature)	800	K	

A critical spike volume can be defined as the volume in which the atoms posses a high probability of being involved in a rearrangement process. In this volume, the temperature is higher than the melting temperature T_c of the material

$$r_{C}(t, E_{oxy}) = 2 \cdot \left(-\ln \left(4.5 \cdot 10^{-8} \cdot \pi^{\frac{3}{2}} \cdot T_{C} \ cd \cdot t \ \frac{(D \cdot t)^{\frac{1}{2}}}{E_{ph}(E_{oxy})} \right) \cdot D t \right)^{\frac{1}{2}}$$

Measurement of step by a surface pro-filometer (model P8 , manufactured by Tencor Instruments)

$$d(t) = t \cdot \int_{0}^{E_{\text{max}}} \frac{n_{K}(E_{oxy})}{\rho_{K} \cdot 10^{-4}} dE_{oxy}$$

[cm ³ /at]	Kapton	Aluminium	Glass
literature	2-3.5x10 ⁻²⁴	2.29x10 ⁻²⁷	0.4-2.3x10 ⁻²⁸
Spherical thermal spike	3.3x10 ⁻²³	4.5x10 ⁻²⁵	2.4 x10 ⁻²⁶