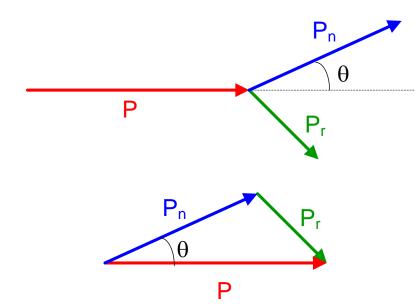
Accelerator based monoenergetical neutron sources Khryachkov Vitaly

Institute for physics and power engineering (IPPE) Obninsk, Russia

Why do we need monoenergetic neutrons?

- Measurement carry out with broad neutron spectra (reactor, PuBe source, ²⁵²Cf) is important for some applications, but result is impossible to use to predict something for another neutron spectra.
- Using data obtained for monoenergetic neutrons we can predict a reaction rate for any other neutron spectrum.


How are monoenergetic neutrons produced by accelerator?

- There are a lot of nuclear reactions with neutron in the output cannel proceed by charge particles.
- Energy of neutrons depend on incoming charge particle energy.
- Accelerator can provide a big flux of monoenergetic charge particles (p, d).
- Irradiation of some targets by charge particles can produced you a flux of monoenrgetic neutrons.

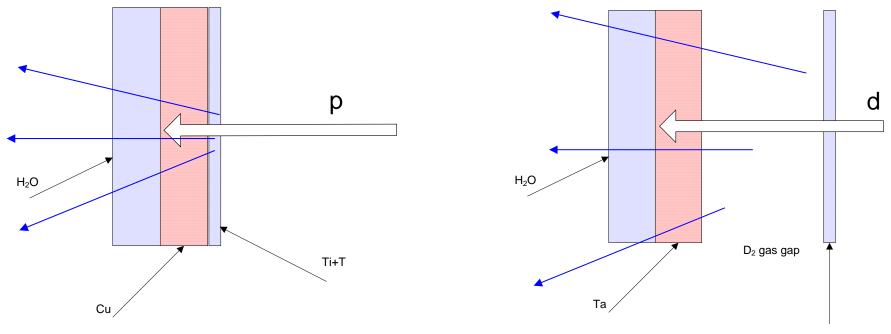
Main reactions which are used for monoenergetic neutron production

- $^{7}\text{Li}+p \rightarrow ^{7}\text{Be}+n 1.644 \text{ MeV}$
- ${}^{3}\text{H}+p \rightarrow {}^{3}\text{H}e+n 0.764 \text{ MeV}$
- ${}^{2}H+{}^{2}H \rightarrow {}^{3}He+n + 3.269 \text{ MeV}$
- ${}^{2}\text{H}+{}^{3}\text{H} \rightarrow {}^{4}\text{He}+n + 17.59 \text{ MeV}$

Reaction kinematics

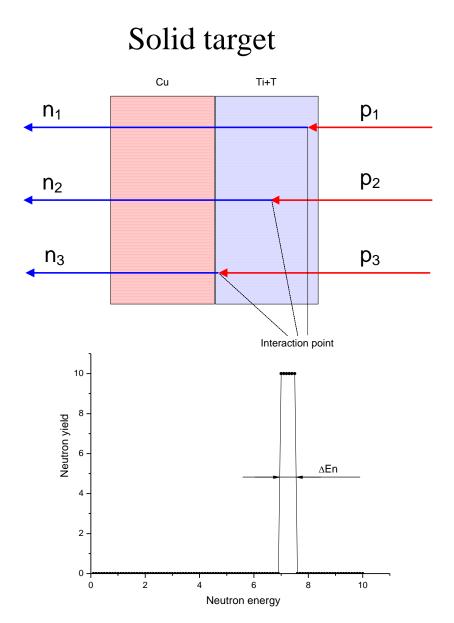
- No index projectile ion
- n index neutron
- r index residual nucleus

 $E+Q=E_r+E_n$, $p_r^2 = p^2 + p_n^2 - 2pp_n \cos\theta$ Momentum conservation law $E = \frac{P^2}{2M}$

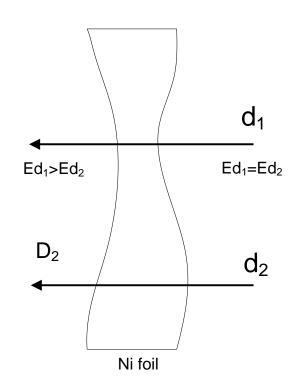

Energy conservation law

$$Q = \left(1 + \frac{m_n}{M_b}\right) E_n - \left(1 - \frac{m}{M_b}\right) E - \frac{2}{M_b} \sqrt{mm_n EE_n} \cos\theta$$

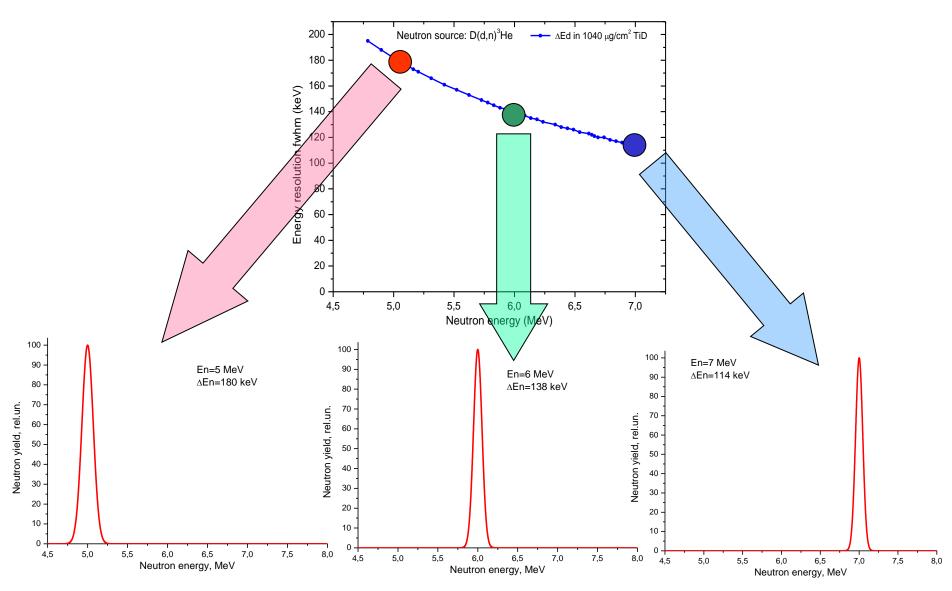
Types of target for neutron production

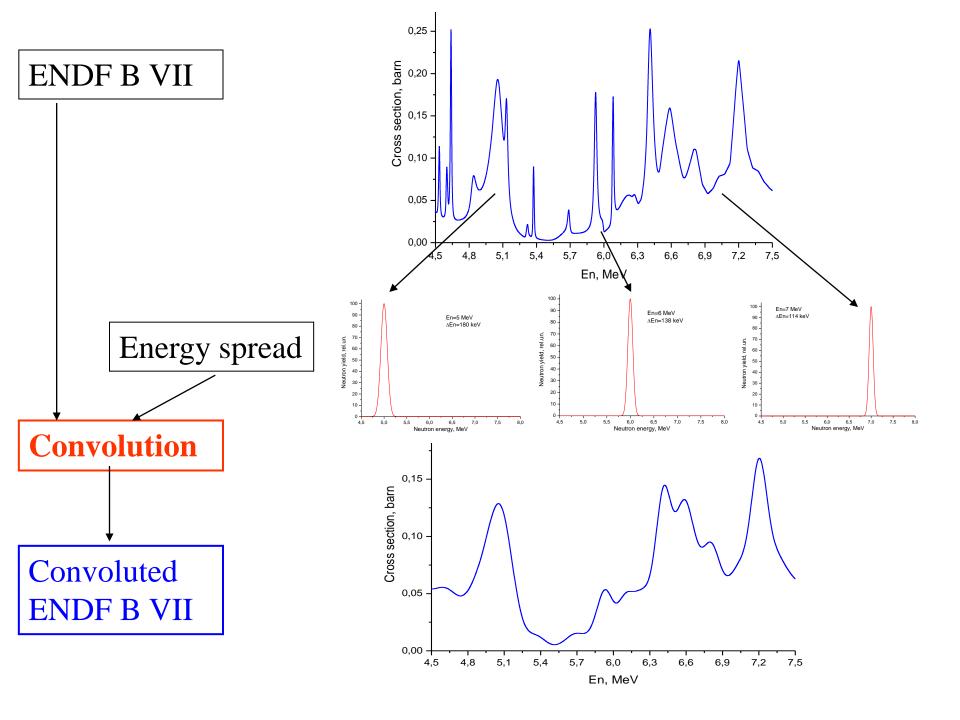

Solid target

Gas target

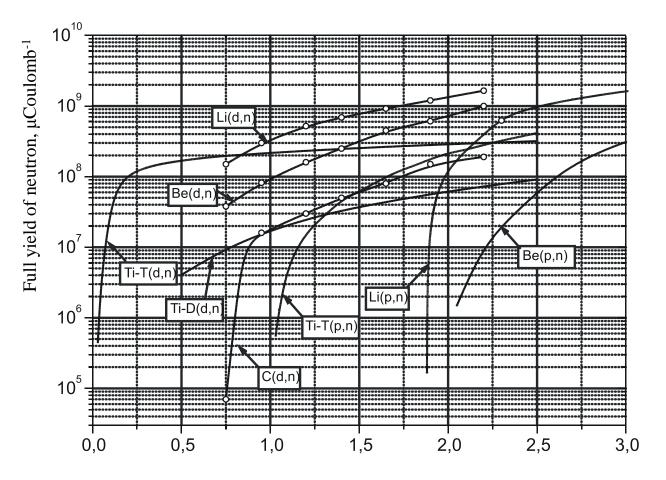


Ni foil


The nature of neutron energy spread



Gas target



Neutron source - EG-1 accelerator (d,D) reaction En=4-7 MeV

Yield of neutrons from different reaction vs incoming particle energy (normalized to 1 µCoulomb).

Proton (deuteron) energy, keV

EnergySet program

Author - Goran Lovestam European Commission, Joint Research Centre, Institute for Reference Materials and Measurements Geel, Belgium

EnergySet program

EnergySet ver.3, EC-JRC-IRM	11.00.2015 10:17 MM, March-2006			
EXIT	lons and neutrons			
	7Li(p,n)7Be, LiF target			Ion energy is below threshold: 🔲
About				Ion energy in doubled value region: 🔲
Save spectrum	Ion energy (keV): 3000	Neutron emission	n angle: 0	Not in mono-energetic region:
List for angles			Þ	Neutron yield data. Note, x-sections for neutron centroid energy!
List for energies	Target thickness (ug/cm2): 2000	Neutron	n energies (MeV) – Mean fl	uence rate (n/(cm2 s)); 0.147E+08
	H/Ti or D/Ti ratio: 1.00	Max:	1.306	Mean yield (n/(sr s)): 0.147E+08
	Gas pressure (kPa); 100	Centroid:		otal cross section (mb): 239.8
	Gas cell length (mm): 40			
	,	Min:		Diff. cross section (mb): 50.790
	Ion en. loss in target (keV): 188.420	% width:	14.9	dEn/dEion: 1.031
Time stamp update	Ion en. loss in target (%): 6.3	TOF (ns) neutron / gamma:	0.7 / 0.0	dEn/dTh: 0.000
2015-09-29 12:10:21	Entrance foil and thickness: 0	ug/cm2 💌 D-TOF (ns):	0.1	
	Molybdenum	·	Distance (mm): 10	Current (uA): 1
	Ion en. loss in foil (keV): 0.	1	•	
Beam line and magnets settings			NMR probe data	
Ion beam:	De	am line:		equency range Magnetic field Hz) range (T)
NMR probe frequency:		O L1	B (2) 3.8	332 - 11.070 0.09 - 0.26
Magnetic field (T):	0.374445	00	C (3) 7.2	238 - 22.140 0.17 - 0.52
Analysing magnet ADC:	187209 Magnet: level 4.6	C R1 C R2		.902 - 44.706 0.35 - 1.05 .804 - 89.413 0.70 - 2.10
		O R3		
Switching magnet 4.6 ADC:	352730 Polarity: -		Calibration facto	ors (MeV/MHz^2): level 4.6 = 0.011822
NMR probe: B 🗖 C		C High Int.		level 0 = 0.030293

Problem specification:

In an experiment a solid D/Ti target with thickness of 2 mg/cm² is used. The target was irradiated by deuterons with energy 3 MeV.

Question:

What average neutron energy will be released for an angle of 0 degrees?

Problem specification:

In an experiment a solid T/Ti target with thickness of 1 mg/cm² is used. The target was irradiated by protons with energy 4 MeV.

Question:

What average neutron energy will be released for an angle of 60 degrees?

Problem specification:

In an experiment a solid D/Ti target with thickness of 2 mg/cm² is used. The target was irradiated by deuterons with energy of 2,5 MeV.

Question:

Obtain minimal and maximal energy of neutrons for an angle of 0 degree.

Problem specification:

The ⁷Li(p,n) reaction is used. The thickness of a metallic target is $500 \ \mu g/cm^2$.

Question:

What proton energy do we need to obtain 3,33 MeV neutron at 0 degree?

Problem specification:

Gas target fulfilled with deuterium at 0,5 atm pressure. The thickness of the target is 2 cm. The thickness of the entrance molybdenum foil is 500 mg/cm². The target is irradiated by 3,5 MeV deuterons. Beam current is 10 μ A.

Question:

What mean neutron energy is released at 30 degrees? What is the neutron energy spread? What is the neutron fluence rate at 1 m distance from the target at this angle?

Problem specification:

The D/Ti target with thickness of 2 mg/cm² is used. The target is irradiated by 3,5 MeV deuterons. Beam current is 10 μ A.

Question:

What is the mean neutron energy released at 30 degrees? What is the neutron energy spread? What is the neutron flux at 1 m distance from the target at this angle? Compare result with Problem 5 result. Make a conclusion.

Problem specification:

The T/Ti target with thickness of 5 mg/cm² is used. The target is irradiated by 0,3 MeV deuterons. Beam current is 100 μ A.

Question:

What is the mean neutron energy released at 90 degrees? What is the neutron flux at 1 m distance from the target at this angle?

Problem specification:

You have accelerator which is able to produce only 5 MeV deuterons. You have only one D/Ti target with 5 mg/cm² thickness. Question:

What neutron energy region can you cover in your experiment?