Delayed neutrons: measurements and usage

Xavier Ledoux Ganil

Grand Accélérateur National d'Ions Lourds

Large National Heavy Ions Accelerator

Short Curriculum Vitae

1992-1995 : PhD Thesis at GANIL

 Formation and de-excitation hot nuclei produced in reactions induced by proton (475MeV and 2 GeV) and ³He (2 GeV) beams

1996-1998 : Post-doctoral position at CEA/DIF (Bruyères-le-Châtel)

Measurement of neutron emission in spallation reaction between 800 MeV and 1600 MeV

1998-2012 : Permanent position at CEA/DIF (Bruyères-le-Châtel)

- n,xn reaction studies
- Production of isomeric nuclei by neutron capture in the resonances
- Delay neutrons measurements in fission induce by neutrons and photon
- Spokesperson of the Neutrons For Science Facility

Since 1992 : Permanent position at GANIL

Responsible of the Neutrons For Science facility at GANIL/SPIRAL-2

X. Ledoux, ICTP school lecture, 19-30 oct 2015

GANIL-Spiral2 facility

Neutrons For Science facility: intense fast neutron time-of-flight facility

Delayed neutrons: measurements and usage

OUTLINE

- I. Definition and characteristics
 - I. Yield
 - II. Time distribution
- II. Applications :
 - I. Active interrogation techniques
 - II. Reactor
- III. Measurement
 - I. Neutrons detectors for DN
 - II. Microscopic measurements
 - I. Techniques
 - II. Examples of experiments
 - III. Macroscopic measurements
 - I. v_d measurement
 - II. Time distribution measurement
- IV. Examples of experiments

□Nuclear power control and safety:

Some fission products undergo Beta Delayed Neutron Emission which is essential to control the reaction.

□Interrogation techniques :

Some active interrogation techniques are based on the detection of delayed neutrons and/or photons. It is the signature of the presence of actinide.

QRapid neutron-capture process of stellar nucleosynthesis:

Short and very high neutron flux produces very neutron rich nuclei in short time. β decay determines the speed of the process. β -n shapes the abundance of the distribution

Nuclear Structure:

Additionally the measured half-lives ($T_{1/2}$) and β -delayed neutron-emission probabilities (Pn) can be used as first probes of the structure of the β -decay daughter nuclei in this mass region.

OUTLINE

I. Definition and characteristics

I. Yield

II. Time distribution

- II. Applications :
 - I. Active interrogation techniques
 - II. Reactor
- III. Measurement
 - I. Neutrons detectors for DN
 - II. Microscopic measurements
 - I. Techniques
 - II. Examples of experiments
 - III. Macroscopic measurements
 - I. v_d measurement
 - II. Time distribution measurement
- IV. Examples of experiments

Beta – n decay

For enough neutrons rich nuclei, $Q_b > B_n$

- If the decay proceeds to states above B_n : neutron emission dominates over γ -ray de-excitation
- Emission of a β , a neutron and sometimes photons
- These nucleus are called precursors (more than 300 exist)
- P_n probability that a precursor emits a neutrons
- The emission time distribution follows the precursor half-life

Neutron rich nuclei

Far from stability, β -delayed neutron emission becomes the dominant process

Neutrons emission in fission

- After a fission induced by n or γ , 2 large excited fragment are emitted
- They de-excite by neutrons and photons emission (prompt neutrons and photons)
- Leading to fission products, stable or radioactive
- The radioactive fission products de-excite mainly by Beta decay

Number of prompt neutrons (per fission) $\upsilon or \upsilon_p$ 2 to 4Number of delayed neutrons υ_d 0.1 to 5% β fraction of delayed neutrons $\beta = v_d / v_p$

Neutron induced fission

Fission fragments are neutron rich nuclei $\rightarrow \beta$ and β -n decay

Delayed Neutron characteristics

More than 300 precursors exist after a fission

- \odot Life time between 10 ms and 1 min
- \circ DN yield: from 0,1 to 5 per 100 fissions
- Usually merged in groups depending of the precursor half-live

	v delayed	v prompt	β=vd / vp
239-Pu	0,0061	2,87	0,0021
238-U fast	0,0450	2,84	0,01584
241-Pu	0,0154	3,14	0,0049
235-U thermal	0,0166	2,43	0,00683

Energy spectrum softer than prompt fission neutrons:

Delayed Neutrons E<1,5 MeV

Prompt neutrons <E>≈ 2 MeV

Groups of delayed neutrons

Due to the number of precursors, the yield and time distribution can not be treated individually
Groups depending of the time decay are defined.

□ The delayed neutrons are characterized by :

- the yield (per/fission)
- the time distribution depending on the half live of the precursors

- Depending on the library and applications : 5,6 or 8 groups have been defined.
- In case of six groups 12 parameters allow characterizing the yield and time distribution

DN of ²³⁹Pu and ²³⁵U neutron induced fission

Sometime 1 dominant precursor for the group

G. R. Keepin et al, PR107, vol 107, num 4, 1957

OUTLINE

- I. Definition and characteristics
 - I. Yield
 - II. Time distribution
- II. Applications :
 - I. Active interrogation techniques
 - II. Reactor
- III. Measurement
 - I. Neutrons detectors for DN
 - II. Microscopic measurements
 - I. Techniques
 - II. Examples of experiments
 - III. Macroscopic measurements
 - I. v_d measurement
 - II. Time distribution measurement
- IV. Examples of experiments

Actinide detection

Goal : detection of the presence of actinide in a container, waste,....

Safeguard

- detection of nuclear weapon
- nuclear material traffic
- dirty bomb

Monitoring the processes in nuclear fuel reprocessing

Uwaste management :

➢ presence of actinide in nuclear industry waste

>verification of "old" container or concrete bloc

1. Passive detection gamma detection -> suspicious object

2. Radiography

The detection of high density material gives the area to investigate

3. Active interrogation

Pulsed radiation fields can investigate time-correlated signatures which passive signature techniques generally cannot

Active interrogation technique

- 1. The "package" is irradiated by neutrons or photons
 - Emission of prompt neutrons and photons
 - Detection difficult : background induced by the beam
- 2. Neutrons and/or photons time distributions are measured after the irradiation
 - Delayed neutrons detection: very probably emitted by fission fragments
 - Yield and time dependence measurement : identification and mass of the actinide in the package
 - Delayed photons are also used in addition to DN

Simulations of the whole set-up including attenuation of induced and emitted neutrons and photons

Relevant data and especially accurate data of $a_i\,\lambda_i$ for all actinides

Reactor control

Nuclear reactor run with chain reaction :

K_{eff} nb of neutrons inducing a fission from one neutron

 $K_{eff} < 1$ subcritical $K_{eff} > 1$ supercritical

K_{eff}=1 in reactor

²³⁵U + neutron = 2,43 prompt neutrons + 0,0166 delayed neutrons (β=0,00685) ²³⁹Pu + neutron = 2,91 prompt neutrons + 0,0061 delayed neutrons (β=0,0021)

Reactivity: $\rho = \frac{k_{eff} - 1}{k}$

Neutrons generation time

• Average generation time $\Lambda =$

time between the birth of two fission neutrons in successive generations

• Population :

$$N(t+\Lambda) = k_{eff} N(t) \qquad \frac{dN(t)}{dt} = \frac{N(t+\Lambda) - N(t)}{\Lambda} = \frac{k_{eff} - 1}{\Lambda} N(t) \qquad N(t) = N(0) \exp\left(\frac{k_{eff} - 1}{\Lambda}t\right)$$

- Prompt neutrons
 - ➢ Fast reactors Λ_{prompt}≈1µs ➤Thermal reactor

²³⁵U n induced fission $\Lambda_{delayed} \approx 12,5 \text{ s}$ Delayed neutrons:

$$\Lambda_{average} = \Lambda_{prompt} (1 - \beta) + \Lambda_{delayed} (\beta)$$

Neutrons multiplication in 1 sec in the case of PWR and ²³⁵U with k=1,0001 β =0,0065 $\rightarrow \Lambda_{average} = 25.10^{-6} \text{ s x } (1-0,0065) + 12,5 \text{ s x } 0,0065$ $\Lambda_{average} = 0,0813 \text{ s}$

- Only prompt neutrons : $\Lambda_{\text{prompt}} \approx 25 \mu s$

$$\frac{N(t=1s)}{N(0)} = \exp\left(\frac{1,0001-1}{25.10^{-6}}\right) = \exp(4) = 55$$

- With delayed neutrons $\rightarrow \Lambda_{average} = 0.0813 \text{ s}$

$$\frac{N(t=1s)}{N(0)} = \exp\left(\frac{1,0001-1}{0,0813}\right) = \exp(0,00123) = 1,00123$$

Delayed neutrons are responsible for the ability to control the rate at which power can rise in a reactor. If only prompt neutrons existed, reactor control would not be possible due to the rapid power changes

X. Ledoux, ICTP school lecture, 19-30 oct 2015

Vd/Vtot

1.89%

0.22%

0.13%

0.13%

When actinide mass increases :

•Yield of important delayed neutrons emitters (Br) decreases

β decreases

Number of prompt fission neutrons increases

□ Fast reactors are more nervous than thermal ones
□ When Pu, Am or Cm ∧ in the fuel β ∨

Valeurs des proportions de neutrons retardés (β effectif) par isotope, pour un spectre neutronique rapide

Isotopes	eta effectif en pcm
U 235	670
U 238	1 680
Pu 239	220
Pu 240	270
Pu 241	490
Pu 242	640
Np 237	440
Am 241	110
Am 243	250
Cm 244	100
Cm 245	130

OUTLINE

- I. Definition and characteristics
 - I. Yield
 - II. Time distribution
- II. Applications :
 - I. Active interrogation techniques
 - II. Reactor

III. Measurement

- I. Neutrons detectors for DN
- II. Microscopic measurements
 - I. Techniques
 - II. Examples of experiments
- III. Macroscopic measurements
 - I. v_d measurement
 - II. Time distribution measurement
- IV. Examples of experiments

Liquid scintillator

- Cell of liquid scintillator coupled to a phototube
- Detection :
 - diffusion (n,p)
 - scintillation
 - light conversion to electric signal by the phototube
- Sensitive to gamma, neutrons and charged particles
- neutron- $\boldsymbol{\gamma}$ discrimination by pulse shape analysis
- Fast detector ($\simeq 1 \text{ ns}$)
- $\boldsymbol{\cdot}$ The intrinsic efficiency depends on the size of the cell
- Compromise between efficiency and energy resolution

³He gas detector

 \rightarrow The neutron must be slowed down to increase the reaction drop s-section

X. Ledoux, ICTP school lecture, 19-30 oct 2015

4π neutrons detector

□ How to increase the detection ?

- The ³He tubes are placed in a matrix of polyethylene
- Increase the number of tubes
- \succ Use a 4π geometry
- Slow detector
 - The slowing down process takes several hundredths of microseconds
 - Energy measurement by TOF technique impossible
 - Fast enough compare to precursors half-live

Designed to have an efficiency constant in the energy range of delayed neutrons

BELEN: Beta deLayEd Neutron detector

Two crowns of (8+12) ³He detectors embedded in a polyethylene matrix with total dimensions 90x90x80 cm³ and a r=5cm beam hole

The thickness of CH2 and the position of the tube are optimized for an efficiency quite constant with En in below 1 MeV

BRIKEN

International collaboration using a large number of 3He tubes of different size

BRIKEN stands for Beta delayed neutron measurements at RIKEN.

174 ³He tubes of 6 different types:

Ring	Radius (cm)	# ³ He Tubes	Pressure (atm)	Diameter (inch)	Institute
1	9.4	14	10	1	ORNL
2	13	12+12	5.13	1	RIKEN
3	16.8	10+26	10/8	1	GSI/UPC
4	20	18+18	5/8	1.18/1	JINR/UPC
5	27	26	10	2	ORNL
6	35	38	10	2	ORNL

\bullet High average efficiency of > 60 %

• Flat efficiency 6% up to 4 MeV, 12% up to 5 MeV.

C. Domingo-Pardo, BRIKEN Construction Proposal, NP-PAC, RIKEN Nishina Center

13-14/12/2013

CEA Deleayed Neutrons detector

Characteristics :

- efficiency $\varepsilon > 20\%$ (sample in centre)
- constant efficiency between 0.1 and 1 MeV
- not sensitive to gamma
- Cylinder of CH_2 (Φ_{int} =6 cm, Φ_{ext} =16 cm, L=37cm)
- 12 tubes ³He
- Also used for photofission studies

Efficiency :

X. Ledoux, ICTP school lecture, 19-30 oct 2015

OUTLINE

- I. Definition and characteristics
 - I. Yield
 - II. Time distribution
- II. Applications :
 - I. Active interrogation techniques
 - II. Reactor

III. Measurement

- I. Neutrons detectors for DN
- II. Microscopic measurements
 - I. Techniques
 - II. Examples of experiments
- III. Macroscopic measurements
 - I. v_d measurement
 - II. Time distribution measurement
- IV. Examples of experiments

Microscopic measurement

The β and the neutron are measured in coincidence

- Beta detection: thin target or implantation on Si detector
- Precursor identification :
 - ≻Spectrometry
 - Mass spectrometer
- Neutron detector : Low energy threshold
 - Large to ensure En measurement
 - > Possibility of β ,2n measurement
- Time stamping

Example : experiment at GSI

U238 fragmentation on Be target -> production of large number of nuclei Implantation of fragments in Si detector

Time-of-Flight technique

The measurement of the time between the beta and the neutrons allows to determine En

L : flight path (cm) t : time of flight ΔL : flight path resolution Δt : time resolution

Optimization of the energy resolution :

- short Δt : fast detectors (β and neutrons) \approx ns
- small ΔL : thin detector -> reduced efficiency
- large L: small solid angle -> need to increase number or area of detector
- Drawback: Evaluation of Cross-talk between several detectors
- Advantage: Possibility of efficiency correction ε=f(E)
- Neutron detector not sensitive to photons or (n, γ) discrimination capability

→ Liquid scintillator or plastic scintillator

Detector with plastic scintillator

- Detectors with a large number of plastic scintillator bars equipped with 2 Phototubes
- Neutron localization by the ratio of the PM signals
- Energy measurement by TOF

A. Buta et al., NIMA455, p412 (2000) 32 BC400 plastic scintillator 50% of 4π E=30% at 2MeV, δ E/E=10%

VANDLE Versatile Array of Neutron Detectors at Low Energy

Proceeding on 10th symposium on Nuclei in cosmos, 2008, Mackinac Island, Michigan, USA, Proceeding of Science

Spectrometer with multiple cells

The DESPEC MOdular Neutron SpectromeTER

- •Cylindrical cell of 20 x 5 cm filled with BC501A/EJ301
- •Reasonable intrinsic efficiency (~50% @ 1MeV)
- •Energy threshold ~ 30 keVee (E_n ~100 keV)
- •Reasonable energy resolution < 10% up to 5 MeV:
- Good neutron timing ~1ns
- Good β timing: < 4ns
- Reasonable flight path 2-3 m TOF
- Good total efficiency: 150 200 detectors

Design similar to other projects (DESIR @ SPIRAL II)

200 de 10cm	tectors, radius	ΔE/E @ 1 MeV		
TOF distance (m)	Geometric efficiency	1ns	4ns	
2 12.5%		3.5%	6.0%	
3	5.6%	2.5%	4.2%	

X. Ledoux, ICTP school lecture, 19-30 oct 2015

OUTLINE

- I. Definition and characteristics
 - I. Yield
 - II. Time distribution
- II. Applications :
 - I. Active interrogation techniques
 - II. Reactor
- III. Measurement
 - I. Neutrons detectors for DN
 - II. Microscopic measurements
 - I. Techniques
 - II. Examples of experiments
 - III. Macroscopic measurements
 - I. v_d measurement
 - II. Time distribution measurement

IV. Examples of experiments

The beta and neutron are not detected in coincidence

□What is needed :

□ The fission rate:

- Calculated from
 - sample characteristics (mass and purity are requested)
 - flux and energy distribution (monitoring)
- Measured (detector based on fission of the same actinide)

A beam time cut-off quite fast (with respect to the shorter half life group)

Neutron detector(s)

- High efficiency
- Not sensitive to photons
- Efficiency independent of neutrons energy

 4π neutrons detector

v_d measurement

A sample of masse m is irradiated by a flux ϕ of neutrons or photons

The fission rate:

σ(E) fission cross-sectionA atomic number of the actinide,

a_i nb of DN yield of group i

The delayed neutrons rate of group i

- Emitted during the irradiation: $Y_{n,i}(t) = R a_i (1 e^{-\lambda_i t})$
- During the decay after an irradiation time T_{irr} : $Y_{n,i}(t) = R a_i (1 e^{-\lambda_i T_{irr}}) e^{-\lambda_i (t T_{irr})}$

• For all the groups :
$$Y_n(t) = \sum_i R a_i (1 - e^{-\lambda_i T_{irr}}) e^{-\lambda_i (t - T_{irr})}$$

v_d measurement strategy ($T_{irr} >> T_i$)

 \textbf{F}_n number of detected neutrons with efficiency $\boldsymbol{\epsilon}$

$$Y_n(t) = \frac{F_n(t)}{\varepsilon}$$

If $T_{irr} >> T_i$, all the precursors are at equilibrium (infinite irradiation) $1 - e^{-\lambda_i T_{irr}} = 1$

X. Ledoux, ICTP school lecture, 19-30 oct 2015

v_d measurement strategy ($T_{irr} \ll T_i$)

X. Ledoux, ICTP school lecture, 19-30 oct 2015

DN time distribution

The irradiation – detection times must be adapted to the half life of the group to be measured

- Short irradiation < 1 s for groups 5 and 6
- Medium 10 s for groups 4 and 3
- Long irradiation for groups 1and 2

Strategy for group parameters determination

X. Ledoux, ICTP school lecture, 19-30 oct 2015

OUTLINE

- I. Definition and characteristics
 - I. Yield
 - II. Time distribution
- II. Applications :
 - I. Active interrogation techniques
 - II. Reactor
- III. Measurement
 - I. Neutrons detectors for DN
 - II. Microscopic measurements
 - I. Techniques
 - II. Examples of experiments
 - III. Macroscopic measurements
 - I. v_d measurement
 - II. Time distribution measurement

IV. Examples of experiments

Study of multi-neutron emission in the β -decay of ¹¹Li

Lynda Achouri LPC Caen

for the IS525 Collaboration

XIXth COLLOQUE GANIL, October 12th-16th, Anglet

X. Ledoux, ICTP school lecture, 19-30 oct 2015

Experimental set up @ ISOLDE

Experimental set up @ ISOLDE

DN of ²³⁵U and ²³⁹Pu in n induced fission

Reactor GODIVA, Los Alamos, Instantaneous pulse 10¹⁶ fissions

- no short time cut
- · detection set-up should be placed far away
- only thermal or fast neutron

nematic diagram of the experimental arrangement for delayed-neutron studies at Los Alamos.

G. Keepin et al., PRC 107, num 4 (1957)

Keepin's results

DN yield measurement on ²³²Th(n,f)

Goal : measurement of DN yield in neutrons induced fission on Th 232 between 1 and 16 MeV

- Facility : PIAF (PTB)
- Detector : 4π ³He + CH₂
- Technique : pulsed beam 7s beam-1 s off
- Measurement of Y(t=0)
- •N_{fissions} : flux measurement + MCNPX

X. Ledoux, ICTP school lecture, 19-30 oct 2015

DN yield measurement on ²³²Th(n,f)

Corrections to be performed :

- Open source : some neutrons deflected by the detector can induce fission
- Thick target : fission induced by secondary fission
- Not infinite irradiation time

X. Ledoux, ICTP school lecture, 19-30 oct 2015

DN measurements in fission induced by photons

Repetetive cycles of irradiation and counting

DN in photofission of ²³⁸U

Differencies have been measured in comparison with data from Nikotin Very important for applications : identification by activation technique

D. Doré et al., ND2007, ACCAPP 2007

Measurement of DN in spallation reaction

- 1 GeV p + thick lead target
- Detection of neutrons yield and time distribution
- Measurement of cross-section production of ⁸⁷Br, ⁸⁸Br, ⁹Li and ¹⁷N
- Comparison with spallation codes

DN yield in liquid target (1)

- MegaPie target (PSI)
- Production of neutrons by spallation reaction in thick target
- 1 MW liquid metal target
- Loop of Pb-Bi liquid -> DN are emitted outside of the core of the target : displacement of the neutrons dose in the facility

DN flux at the top of the target is of the same order than prompt neutrons

DN yield in liquid target (2)

Summary

Delayed neutrons play an important role in several topics

- Control of fission reactors
- Active interrogation
- Astrophysics
- Nuclear structure

Microscopic measurements

- Pn of an identified nuclei
- Energy spectrum of the DN

□ Macroscopic measurements

- Delayed neutrons yield
- Time distribution
- Groups parameters