Measurement of (n,xn) reactions

Xavier Ledoux Ganil

Grand Accélérateur National d'Ions Lourds

OUTLINE

Introduction

- 1. Applications
- 2. Facilities
- 3. Cross-section measurements
 - 1. Activation technique
 - 2. n,xnγ gamma
 - 3. Direct measurement of secondary neutrons
- 4. Double differential measurements
- 5. Examples of experiments

n,xn reactions

$$n + {}^{A}_{Z}X \rightarrow {}^{A-x+1}_{Z}X + x n$$

Production of an isotope

Same element (no chemical separation)

 $_{\odot}$ Can decay on other element (β decay....)

Threshold

 \circ n,n' the energy of the first excited level \circ n,xn depends on the Q-value

$$Q = {}^{A-x+1}_{Z}M + xM_n - \left({}^{A}_{Z}M + M_n\right)$$

$$Q = \Delta(A-1,Z) + (x-1)\Delta n - \Delta(A,Z)$$

$$E_{th} = -Q \frac{M_n + M_X}{M_X} \cong -Q \frac{A+1}{A}$$

 $\Delta(A,Z)$ The mass excess of nuclei A,Z

	Ethres	Q
²⁰⁸ Pb(n,2n) ²⁰⁷ Pb	7,403	-7,367
²⁰⁸ Pb(n,3n) ²⁰⁶ Pb	14,174	-14,105
²⁰⁸ Pb(n,4n) ²⁰⁸ Pb	22,299	-22,192

Reaction process

(n,xn) reactions represent the main part of the reaction cross-section above MeV

Reactions on ²³⁸U

Role of the pre-equilibrium process in (n,xn) reaction

The pre-equilibrium process is an important process of the n,xn reactions

OUTLINE

Introduction

1. Applications

- 2. Facilities
- 3. Cross-section measurements
 - 1. Activation technique
 - 2. n,xnγ gamma
 - 3. Direct measurement of secondary neutrons
- 4. Double differential measurements
- 5. Examples of experiments

Applications

□ Reactor and accelerator driven systems: n,xn contributes to

- Energy loss mechanism
- Neutron multiplication
- Production of radioactive isotopes
- □ Production of nuclear waste (fusion technology)

□ Nuclear data evaluation (all the channels have to be studied)

- Neutron field characterization
 - Fluence
 - Energy and angular distribution

Reliable evaluated data bases are request \rightarrow accurate measurements

Neutron field characterization

Threshold reactions including (n,n') and (n,xn) reactions are used for determining the differential flux from neutron sources by activation techniques.

 \Box Irradiation of a set of material i in a flux Φ :

□ Measurement of the activity of each sample i :

$$A_{i}^{mes} = k \int_{E_{s}}^{E_{m}} \frac{d\Phi}{dE}(E_{n})\sigma_{i}(E_{n})dE_{n}$$

 $\Box \text{ Use a simulated neutron spectrum: } \psi(E) \text{ to calculate } A_i^{sim} = k \int_{E_s}^{E_m} \frac{d\Psi}{dE}(E_n) \sigma_i(E_n) dE_n$

 \Box Adjust $\psi(E)$ in order to minimize

$$\chi^2 = \frac{1}{m} \sum_i \frac{\left(A_i^{mes} - A_i^{sim}\right)^2}{\varepsilon_i^2}$$

The choice of the reactions depends on:

- Energy threshold in order to cover the energy range of interest
- Product of reaction measurable (radioactive, period, decay mode)
- Reaction (n,p), (n,α), (n,n'), (n,xn)

Accurate knowledge of the cross-section reactions is required

N. Jovančević* et al., Physics Procedia 59 (2014) 154 – 159 Göran Lövestam et al., Radiation Measurements 44 (2009) 72–79

Above 20 MeV

Experimental determination of neutron spectra produced by bombarding thick targets: (100 MeV/u) D + ⁹Be, ²³⁸U and (95 MeV/u) ³⁶Ar + ¹²C

Experimental set-up

Incident beam	Energy (MeV/u)	Intensity (p.p.s)	Target	Irradiation time (min)	Activation detectors	Detector position
³⁶ Ar	95	6.42×10 ¹¹	Carbon	88	Al, Ni, Bi	0°, 20°, 45°, 90°
Deuterons	100	6.72×1010	Beryllium	373	Al, Ni, Co, Bi	0°, 11°, 36°, 60°, 84°
Deuterons	100	6.47×10^{10}	Uranium	376	Al, Ni, Co, Bi	0°, 11°, 36°, 60°, 84°

Reaction and isotopes characteristics

Detector	Reaction	Radionuclide	Half-life	Threshold energy (MeV)	γ-ray (keV)
Al	(n, α)	²⁴ Na	15 h	6	1368.6
Al	(n, spall)	²² Na	2.6 yr	30	1274.5
Ni	(n, p)	⁵⁸ Co	70.78 d	1	810.75
Co	(n, 2n)	⁵⁸ Co	70.78 d	11	810.75
Co	(n, 3n)	⁵⁷ Co	270 d	20	122.07
Co	(n, p)	⁵⁹ Fe	45.1 d	4	1099.22
Bi	(n, 3n)	²⁰⁷ Bi	31.55 yr	14.42	1063.6
Bi	(n, 4n)	²⁰⁶ Bi	6.24 d	22.55	803
Bi	(n, 5n)	²⁰⁵ Bi	15.31 d	29.62	703.3
Bi	(n, 6n)	²⁰⁴ Bi	11.3 h	38.13	984
Bi	(n, 7n)	²⁰³ Bi	11.8 h	45.37	820.2
Bi	(n, 8n)	²⁰² Bi	1.8 h	54.24	960.7
Bi	(n, 9n)	²⁰¹ Bi	1.85 h	61.69	629.1
Bi	(n, 10n)	²⁰⁰ Bi	36 min	70.89	1026.5

X. Ledoux, ICTP-School, Trieste, 19-30 Oct 2015 N. Pauwels et al. / Nucl. Instr. and Meth. in Phys. Res. B 160 (2000) 315–327

Neutron spectra produced by bombarding thick targets: $(100 \text{ MeV/u}) \text{ D} + {}^{9}\text{Be}$, ${}^{238}\text{U}$ and $(95 \text{ MeV/u}) {}^{36}\text{Ar} + {}^{12}\text{C}$

OUTLINE

- 1. Definition
- 2. Application

3. Facilities

- 4. Cross-section measurements
 - 1. Activation technique
 - 2. n,xn gamma
 - 3. Direct measurement of secondary neutrons
- 5. Double differential measurements
- 6. Particular cases

Facilities

Neutron production

- \circ Nuclear reaction \rightarrow accelerator
- \circ Photofission \rightarrow e⁻ accelerator + converter
- \circ Nuclear fission \rightarrow Reactor

Parameters

- Energy range 5-50 MeV for (n,xn) reactions
- Energy distribution mono-kinetic or white spectrum
- \circ Fluence
- Time structure pulsed beam for tof measurement

Types of facilities

- \circ Open field
- $\circ~$ Collimated beam

Reactor

- Neutron fission
- High flux
- No time spectrum
- Energy limited to 10 MeV
- Energy spectrum (fast neutrons for n,xn)

Photo-production of neutrons with bremsstrahlung

- Electron beam
- Photon production by Bremsstrahlung
- Neutron production by (γ,xn) or (γ,f) reaction

- Continuous neutron energy spectrum
- "Low cost" accelerator
- High power Accelerator

nELBE yield: $3*10^{11}$ n/s with 30 MeV 15 μ A (Target:Pb, liquid) 200 kHz GELINA yield: $3*10^{13}$ n/s with100 MeV 96 μ A (Target: U(Hg cooled)) 800 Hz

Intermediate energy 20-200MeV

Quasi-mono-energetic spectrum:

- Proton beam on thin ⁷Li converter
- \circ ⁷Li(p,n)⁷Be reaction Q= -1,64 MeV → at 0° En ≈ Ep 2 MeV
- o Forward peak
- o Limitations :
 - Spectrum not purely mono-energetic -> pulsed beam
 - Low melting point of Lithium (limited intensity) -> liquid target
 - Target highly activated (7Be)

Continuous spectrum:

- Proton or deuteron beam on thick converter Be or C
- Continuous spectrum up to beam energy
- o Flux increasing with energy
 - The beam stops in the converter
 - Large power deposition \rightarrow cooling is challenging

Several facilities proposes both types of spectra

Some Quasi-Monoenergetic facilities

Mono-kinetic neutron sources

Nuclear reactions (The big four)

- p + ⁷Li → n + ⁷Be p + ³H → n + ³He d + ²H → n + ³He d + ³H → n + ⁴He
- Proton and deuteron beams with E< 4 MeV
- Purely mono-energetic neutrons for E<7 MeV and 14<E<17 MeV

Spallation reaction

Proton beam with energy > 800MeV

Very intense neutrons source Proton accelerator 1 GeV x 1 mA = 1 MW \Rightarrow 10¹⁷ n/s

- Neutron production up to the proton energy
- Use of moderator to increase neutrons flux at low energy thermal or cold
- N-tof, WNR, SNS, ESS, JPARC

1000

Type of beam

Open field

- \circ Neutron emission in 4π
- \circ Background in the experimental area
- $\circ \mbox{The sample can be placed very close to the source}$

 \circ VdG, PTB

Collimated beam

- $\circ~$ The detectors can be placed close to the sample
- o Low flux because of the distance source-sample
- \circ WNR, N-TOF, NFS

□ "Conical" beam

- $_{\odot}$ Kinematic effect
- \circ Neutrons are emitted in a cone in the forward direction
- LICORNE, FRANZ

OUTLINE

Introduction

- 1. Applications
- 2. Facilities

3. Cross-section measurements

1. Activation technique

- 2. n,xnγ gamma
- 3. Direct measurement of secondary neutrons
- 4. Double differential measurements
- 5. Examples of experiments

Activation technique

Activation and off-line gamma ray spectrometric technique

$$n + {}^{A}_{Z}X \rightarrow {}^{A-x+1}_{Z}X + x n$$

Advantages:

- \circ Target do not need to be isotopic if $E_n < B_n$ (A+1)
- \circ No need of pulsed beam

Drawbacks :

- \circ Incident energy is not measured \rightarrow need mono-energetic beam
- o One measurement for each energy
- One target for each energy

Cross-section of the ²⁴¹Am(n,2n) reaction

X. Ledoux, ICTP-School, Trieste, 19-30 Oct 2015

OUTLINE

Introduction

- 1. Applications
- 2. Facilities

3. Cross-section measurements

1. Activation technique

2. n,xnγ gamma

- 3. Direct neutrons detection
- 4. Double differential measurements
- 5. Examples of experiments

Prompt γ-ray spectroscopy

Detection of the y-rays stemming from the decay of excited states of nucleus created by the (n,xn) reaction.

Measure on line of prompt gamma spectroscopy of the $\frac{A-x+1}{Z}X$

Inelastic scattering and (n,xn) experimental studies

4 HPGe Planar (110°,150°) Actinides samples ΔEn = 10 keV @ En = 1 MeV

GRAPHEME @ FP16/30 m

Pulsed white neutron beam 10 meV - 20 MeV Multi-users facility 10 m to 400 m

¹²C, ²³Na, ²⁴Mg, ²⁸Si, ⁵²Cr, ⁵⁶Fe, ⁵⁸Ni, ⁷⁶Ge, ^{nat}Zr, ^{nat,182,183,184,186}W, ^{206,207,208}Pb, ²⁰⁹Bi, ²³²Th, ^{235,238}U

Neutron Time of flight facility **GELINA@IRMM(Geel)**

⁵²Cr : L.C. Mihailescu *et al.* **NPA786(2007)1** ²⁰⁹Bi : L.C. Mihailescu *et al.* **NPA799(2008)1** ²⁰⁸Pb : L.C. Mihailescu *et al.* **NPA811(2008)1** ²³Na : C. Rouki *et al.* **NIMA672(2012)82** ²³⁵U : M. Kerveno *et al.* **PRC87(2013)024609** $0\nu2\beta$: A. Negret *et al.* **PRC88(2013)027601** ²⁸Si : A. Negret *et al.* **PRC88(2013)034604** ⁷⁶Ge : C.Rouki *et al.* **PRC88(2013)054613** ⁵⁶Fe : A. Negret *et al.* **PRC90(2014)034602** ²⁴Mg : A.Olacel *et al.* **PRC90(2014)034603** ²³²Th : M.Kerveno *et al.* **EPJA(2014) accepted** ^{7Li, ¹²C, ⁵⁸Ni, ^{nat,184,186}W,^{206,207}Pb, ²³²Th, ²³⁸U: conf.}

Measurement of ${}^{235}U(n,n'\gamma)$ and ${}^{235}U(n,2n\gamma)$ cross-section

X. Ledoux, ICTP-School, Trieste, 19-30 Oct 2015

Measurement of $\sigma(n,xn\gamma)$

From $(n, 2n\gamma)$ to (n, 2n) cross-section

Measurements :

Theoretical model :

(n,xnγ) measurement at nELBE

nELBE – double ToF detector setup

sample: ^{nat}**Fe** (99.8%) → 91.754% ⁵⁶Fe mass: 19.82 g → 18.15 g ⁵⁶Fe

R. Beyer, PhD Thesis

⁵⁶Fe(n,xn γ) measurement at nELBE

OUTLINE

Introduction

- 1. Applications
- 2. Facilities

3. Cross-section measurements

- 1. Activation technique
- 2. n,xnγ gamma
- 3. Direct measurement of secondary neutrons
- 4. Double differential measurements
- 5. Examples of experiments

Direct measurement of secondary neutrons

Measure the x neutrons emitted in the reaction

Advantages :

- Direct measurement
- o Applicable to all nuclei

Drawbacks:

- Need a mono-isotopic target
- Neutron detector of high efficiency

Detector type :

- o Neutron balls
- Neutron spectrometer

The neutron balls

- Measurement of neutron multiplicity event by event
- Composed of a tank filled by liquid scintillator
- Phototubes detected the prompt and delayed signal

CARMEN

Measurement of neutron Multiplicity distribution 4π , high efficiency High sensitivity to background

Application: n,xn cross-section measurements Nubar measurements Hot nuclei studies

The neutron balls : working process

Efficiency

n,xn cross section measurement

Measurement of Mn(x) :number of reactions with neutron multiplicity x

Efficiency : Cf source

simulations to take into account the energy and angular distributions

J. Fréhaut, Nuclear Instruments and Methods 135 (1976) 511-518

V. J. Ashby et al., Physical Review 111, num 2 (1958) p 616

Some $\sigma(n,2n)$ and $\sigma(n,3n)$ measured with neutron balls

Fréhaut et al.

L. R. Veeser et al., PRC 16, num 5 (1977) p 1792

Neutron spectrometer

Elastic and inelastic cross-section measurements

Spectrometer of CEA/Bruyères-le-Châtel

Sample and shadow bars

Energy measurement:

Flight path : d
$$\Rightarrow v = \frac{d}{tof_n} \Rightarrow \beta = \frac{v}{c} \Rightarrow \gamma = \frac{1}{\sqrt{1 - \beta^2}} \Rightarrow E = (\gamma - 1)mc^2$$

Start and stop signals : detector + accelerator or active target

Energy resolution:

$$\frac{\Delta E}{E} = \gamma(\gamma + 1)\sqrt{\left(\frac{\Delta t}{t}\right)^2 + \left(\frac{\Delta d}{d}\right)^2}$$

Δt time resolution detector + accelerator ≈1ns

 ΔL flight path uncertainty

TOF technique

¹⁹⁰Os(n,n')¹⁹⁰Os

²³⁸U(n,n')²³⁸U

Neutron source

 \circ I= 3 to 5 μ A

oTritrium target

Flux : Φ=3.10⁸ n.sr⁻¹.s⁻¹

Sample

 \circ m=30 g

○ A=190

 \circ Distance source sample d = 7 cm

 $d\sigma/d\Omega = 10 \text{ mb.sr}^{-1}$

Detector:

- \circ Surface detector = $\pi * r^2 = 122cm^2$
- \circ Intrinsic efficiency = 10%
- $_{\odot}$ Distance from sample L=800 cm

Number of neutrons detected by second :

$$N_{\rm det} = \frac{\Phi}{d^2} \frac{mN_{avo}}{A} \frac{d\sigma}{d\Omega} \frac{S}{L^2} \varepsilon$$

 $N_{det} \approx 1 \text{ counts/s}$

Multicells detectors

X. Ledoux, ICTP-School, Trieste, 19-30 Oct 2015

Nuclear Instruments and Methods in Physics Research A 523 (2004) 102-115

OUTLINE

Introduction

- 1. Applications
- 2. Facilities
- 3. Cross-section measurements
 - 1. Activation technique
 - 2. n,xnγ gamma
 - 3. Direct measurement of secondary neutrons
- 4. Double differential measurements
- 5. Examples of experiments

Measurement of double differential emission cross-section for incident neutrons of 14,1 MeV

The neutron spectrum is the sum of all the channels where at least one neutron is emitted

Pb(n,2n)

Nuclear Data for Science and Technology (1988 MITO), 229-232, Copyright © 1988 JAERI.

OUTLINE

Introduction

- 1. Applications
- 2. Facilities
- 3. Cross-section measurements
 - 1. Activation technique
 - 2. n,xnγ gamma
 - 3. Direct measurement of secondary neutrons
- 4. Double differential measurements
- 5. Examples of experiments

²³⁹Pu(n,2n) reaction cross-section measurement

 $T_{1/2}$ = 24110 y

T_{1/2}= 87,7 y

α emitter 5456 keV 5499 keV

□ Activation technique

Measurement of direct neutrons

 \Box n,xn γ measurement

²³⁹Pu(n,2n)²³⁸Pu cross-section by Activation technique

²³⁹Pu(n,2n) cross-section measurement near E_n=14MeV, R. W. Lougheed, Radiochim. Acta 90, 833-843 (2002)

□Irradiation :

- Neutrons produced by d+T reaction
- o Flux : 5,5.10¹¹ n.cm⁻².s⁻¹
- $_{\odot}$ Integrated fluence : 8,98.10^{17} n in 4π

Sample :

- o130µg.cm⁻², Φ=3 mm →10µg
- \circ ²³⁸Pu/²³⁹Pu ≈ 6.10⁻¹⁰ before irradiation
- Distance source sample 4mm

Monitoring : Au(n,2n) cross-section

Before irradiation: A(238 Pu) $\approx 0,004$ Bq Integrated fluence = 8,98.10¹⁷ n.cm⁻² After irradiation of m= 10µg σ =0,3 barn Nat 238 Pu = 10⁹ A(238 Pu) ≈ 2 Bq

239 Pu(n,2n) 238 Pu cross-section from partial γ -ray cross-sections (1)

LANSCE (Los Alamos Neutron Science Center)

- $_{\odot}$ Spallation source
- $_{\odot}$ White neutron beam
- \circ Pulsed beam

GEANIE

- $_{\odot}$ 26 high-resolution Ge detectors
- $_{\odot}$ BGO escape-suppression shields.

GErmanium Array for Neutron Induced Excitations

²³⁹Pu(n,2n)²³⁸Pu cross-section from partial γ -ray cross-sections (2)

L. A. Bernstein at al., PHYSICAL REVIEW C 65 021601(R)

Direct measurement of secondary neutrons

Difficulty : distinguishing fission neutrons from (n,2n)

 \Box Total neutrons multiplicity measurement (n,fis) + (n,2n) + (n,n')

- Neutron ball
- \circ Thick target
- o Trigger on prompt peak
- □ For Mn≥ 4 only fission contribution
 □ Mn=2

$$N_F = \frac{\sum_{i \ge 4} N(i)}{\sum_{\nu \ge 4} P(\nu)} .$$

P(i) fission multiplicity probability

Results on the ²³⁹Pu(n,2n)²³⁸Pu cross-section measurements

Cross-section measurement of the D(n,2n) reaction (1)

$n + D \rightarrow p + n + n$ Eth=3.34 MeV

- Three bodies system in the exit channel
- The emission of the 2 neutrons cannot be treated like evaporated neutrons
- Theoretical model based on the resolution of the Faddeev equations (J. Carbonell et B. Morillon)
 - Measurement of the 2 neutrons emitted -> Neutron ball
 - \circ Active target made of C₆D₆ :
 - \circ reaction tagged by the recoil of the proton
 - o incident neutron energy measured by time of flight
 - \circ Measurement with C₆H₆ target to subtract the carbon contribution

Cross-section measurement of the D(n,2n) reaction (2)

(n,3n) cross section measurement by two techniques

The (n,xny) cross-section measurements are used to extract (n,xn) cross section-> need of theoretical model At NFS the ⁹⁰Zr(n,3n) cross-section can be measured by TALYS 1.4 calculation 1000 prompt y spectroscopy and by activation technique at the same time Cross section (mb) 92Zr(n,3n) 90Zr(n,3n) \rightarrow validation of the theoretical models 800 94Zr(n,3n)

600

400

200

0

Quasi-mono-energetic neutrons from 26 to 32 MeV

M. Kerveno et al., Letter of Intents for NFS facility

Study of pre-equilibrium process in (n,xn) reaction

Measurement of (n,xn) double differential cross section in coincidence with neutron multiplicity.

Method :

- measurement of energy and angle of one neutron
- count of the (x-1) neutrons emitted simultaneously.

Experimental set-up :

- NE213 detectors
- CARMEN detector

Beam request:

- Quasi-monkinetic beam
- Pulsed
- Well collimated

X. Ledoux et al., Letter of Intents for NFS facility

Summary

□ n,xn reactions play an important role in the 1 MeV – 50 MeV range

- Reactor
- Waste production in high neutron flux
- Accurate library of nuclear data
- Several techniques exist
 - Activation
 - n,xnγ reactions
 - Direct outgoing neutron measurement
- □ All the techniques cannot be used in all cases
 - Specific detection set-up
 - Specific neutron facilities

Yttrium

Thus the (n, xn) reaction of 89Y is important, when the superconductor is used in the neutron field of higher energy such as in the fast reactor and accelerated driven sub-critical system (ADSs).

Measurement of cross-sections for 89Y(n,xn) reaction at average neutron energies of 15–36 MeV

X. Ledoux, ICTP-School, Trieste, 19-30 Oct 2015

(n,2n) and (n,3n) measurements

D(d,n)3He produces purely mono-energetic neutrons up to $\overline{7}$ MeV But The low energy component is below the (n,2n) threshold D(d,n)3He can be used up 10 MeV

Measurement on Carbon sample

Flux : Φ (n.cm⁻².s⁻¹)

Differential cross section : $d\sigma/d\Omega$ (barn.sr⁻¹)

Intrinsic efficiency : 20%

Sample : A=12, Φ =3cm, h=3cm, m=15g

$$N_{\rm det}(s^{-1}) = \Phi\left(\frac{m}{A}N_{avo}\right)\varepsilon\frac{d\sigma}{d\Omega}d\Omega$$

 $\Phi = 10^{6} \text{ n.cm}^{-2}.\text{s}^{-1}$ do/d $\Omega = 0,001 \text{ barn.sr}^{-1}$ Ndet = 0,02 count.s⁻¹

