PROBLEM LIST 2. EXAMPLES.

SYLVAIN CROVISIER AND RAFAEL POTRIE SCHOOL ON DYNAMICAL SYSTEMS, ICTP, JULY 2015

- (1) Given $1 \le \ell_c < d$, start with $A \in SL(d, \mathbb{Z})$ with all eigenvalues of different modulus and construct by deformation on one fixed point a partially hyperbolic diffeomorphism with a central bundle E^c of dimension ℓ_c which cannot be splitted into more subbundles and which is neither uniformly contracted nor uniformly expanded.
- (2) Characterize the pairs A ∈ SL(d, Z), v ∈ R such that x → Ax + v in T^d is transitive (i.e. it has a dense forward orbit).
 (*Hint:* f is transitive if and only if for every U, V ⊂ T^d non-empty open sets, there exists n ≥ 1 such that fⁿ(U) ∩ V ≠ Ø.)
- (3) Show that left translation by $\begin{pmatrix} e^t & 0 \\ 0 & e^{-t} \end{pmatrix}$ in $PSL(2,\mathbb{R})/_{\Gamma}$ is partially hyperbolic where Γ is isomorphic to the fundamental group of a closed surface and $\Gamma \subset PSL(2,\mathbb{R})$ is discrete.