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Lecture I: Introduction

1. What is homogeneous dynamics?

2. What is measure rigidity?

3. Three stunning applications of measure rigidity

(a) Margulis’ proof of the Oppenheim conjecture

(b) Quantum chaos

(c) Randomness mod 1

4. Overview of the remaining 9 “chalk and talk” lectures
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What is homogeneous dynamics?
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Homogeneous dynamics (= dynamics on a homogeneous space)

Consider a homogeneous space of the form

X = Γ\G = {Γg : g ∈ G}

where

• G a Lie group
• Γ a lattice in G

A lattice Γ in G is a discrete subgroup such that there is a fundamental domain
FΓ of the (left) Γ-action on G with finite left Haar measure. This in turn implies
that G is unimodular, i.e. left Haar measure = right Haar measure.
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We can generate dynamics on X = Γ\G by right multiplication by a fixed element
Φ ∈ G:

X → X, x �→ xΦt

where t = 0,1,2,3, . . . (discrete time dynamics)

or t ∈ R≥0 (continuous time dynamics = “homogeneous flow”).

Note that {Φt}t∈R is a one-parameter subgroup of G.
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Example: The simplest finite-volume homogeneous space

• G = R (viewed as the additive group of translations of R; abelian!)

• Γ = Z (the group of integer translations)

• X = T = Z\R = R/Z
(= [0,1] glued at opposite sides = circle of length one)

• Haar measure = Lebesgue measure = dx

• Φ = α (translation by α)

• x �→ xΦ = x+ α mod 1 (rotation by α)
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What is measure rigidity?
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An illustration: Two proofs of a classic equidistribution theorem

Theorem (Weyl, Sierpinsky, Bohl 1909-10).
If α ∈ R \ Q then, for any continuous
f : T → R,

lim
N→∞

1

N

N�

n=1
f(nα) =

�

T
f(x) dx.
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Hermann Weyl (1885-1955)
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Proof #1—“harmonic analysis” (after Weyl 1914)

By Weierstrass’ approximation theorem (trigonometric polynomials are dense in
C(T)) it is enough to show that

lim
N→∞

1

N

N�

n=1
f(nα) =

�

T
f(x) dx (1)

holds for finite Fourier series f of the form

f(x) =
K�

k=−K

ck e
2πikx

.

To establish eq. (1) we have to check that

lim
N→∞

1

N

N�

n=1
c0 = c0 =

�

T
f(x) dx (2)

and secondly that for every k �= 0

lim
N→∞

1

N

N�

n=1
e2πik nα = lim

N→∞
e2πikα

N

1− e2πikNα

1− e2πikα
= 0. (3)

Eq. (2) is obvious and (3) follows from the formula for the geometric sum (which
requires α /∈ Q).
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Proof #2—“measure rigidity”

The linear functional

f �→ νN [f ] :=
1

N

N�

n=1
f(nα)

defines a Borel probability measure on T. Since T is compact, the sequence
(νN)N is relatively compact, i.e., every subsequence contains a convergent∗

subsequence (νNj
)j. Suppose

νNj
→ ν.

What do we know about the probability measure ν?

∗in the weak*-topology
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Define the map

Tα : T → T, x �→ x+ α.

For each f ∈ C(T) we have

νN [f ◦ Tα] =
1

N

N�

n=1
f((n+1)α)

=
1

N

N�

n=1
f(nα) +

1

N
f((N +1)α)−

1

N
f(α)

and so νNj
[f ] → ν[f ] implies

νNj
[f ◦ Tα] → ν[f ].

Since f ◦ Tα ∈ C(T) we also have

νNj
[f ◦ Tα] → ν[f ◦ Tα]

and so

ν[f ◦ Tα] = ν[f ] for all f ∈ C(T)
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Conclusion: ν is Tα-invariant, and hence also invariant under the group

�Tα� = {Tn
α : n ∈ Z}.

If α /∈ Q, it is well known that given any y ∈ T there is a subsequence of integers
ni such that

niα → y mod 1.

This implies that ν is in fact invariant under the group of all translations of T,

{Ty : y ∈ T}.

The only probability measure invariant under this group is Lebesgue measure,
i.e. ν[f ] =

�
f(x)dx. Thus the limit measure ν is unique, and therefore the full

sequence must converge:

νN [f ] =
1

N

N�

n=1
f(nα) →

�

T
f(x) dx.
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Why measure rigidity?

In the above example there is only one measure ν that is invariant under the
transformation T . We call this phenomenon unique ergodicity. This is a special
case of measure rigidity = invariant ergodic measures are not abundant; each
such measure has a strong algebraic structure.
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The modular group

A rich and famous example of a homogeneous
space is X = Γ\G with

• G = SL(n,R)
(real n× n matrices with determinant one)

• Γ = SL(n,Z)
(the modular group)

The volume of X = Γ\G (with respect to Haar)
was first computed for general n by Minkowski.

Hermann Minkowski

(1864-1909)

Examples of one-parameter subgroups:
�
diag(eλ1t, . . . , eλnt)

�

t∈R (λ1 + . . .+ λn = 0)

or
��

1 At

0 1

��

t∈R
(A a fixed matrix)
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The space of Euclidean lattices

Every Euclidean lattice L ⊂ Rn of covolume one can be written as

L = Zn
M

for some M . The bijection

Γ\G ∼−→ {lattices of covolume one}
ΓM �→ Zn

M.

allows us to identify the space of lattices with Γ\G.

To find the inverse map, note that, for any basis b1, . . . , bn of L, the matrix

M =




b1...
bn



 is in SL(n,R); the substitution M �→ γM , γ ∈ Γ corresponds to a

base change of L.
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Margulis’ proof of the Oppenheim conjecture

. . . was the first application of the theory of homogenous flows to a long-standing
problem which had resisted attacks from analytic number theory. As we shall
see, quantitative versions of the Oppenheim conjecture can be proved by means
of measure rigidity.

Alexander Oppenheim (1903-1997) Gregory Margulis (*1946)
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Let

Q(x1, . . . , xn) =
n�

i,j=1
qijxixj

with qij = qji ∈ R. We say Q is indefinite if the matrix (qij) has both positive
and negative eigenvalues, and no zero eigenvalues. If there are p positive and
q = n − p negative eigenvalues, we say Q has signature (p, q). We say Q is
irrational if (qij) is not proportional to a rational matrix.

Theorem (Margulis 1987). If Q is irrational* and indefinite with n ≥ 3 then

inf |Q(Zn \ {0})| = 0.

Oppenheim’s original conjecture (PNAS 1929) was more cautious—it assumed
n ≥ 5. The assumption n ≥ 3 in the above is however necessary; consider e.g.
Q(x1, x2) = x

2
1 − (1 +

√
3)2 x22.

*only required when n = 3 or 4
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Values of quadratic forms vs. orbits of homogeneous flows

The key first step in Margulis’ proof is to translate the problem to a question in
homogeneous flows. This observation goes back to a paper by Cassels and
Swinnerton-Dyer (1955) and was rediscovered by Raghunatan in the mid-1970s,
leading him to formulate his influential conjectures on orbit closures of unipotent
flows.

It is instructive to explain this first step in the case n = 2.
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• Observation 1: Basic linear algebra shows that there is M ∈ SL(2,R) and
λ �= 0 so that

Q(x) = λQ0(xM), Q0(x1, x2) := x1x2.

(x = (x1, x2) is viewed as a row vector)
• Observation 2:

Q0(xΦ
t) = Q0(x), for all Φt =

�
et 0
0 e−t

�

, t ∈ R

• Need to show: Given any � > 0 find t > 0 so that the lattice Z2
MΦt

contains a non-zero vector y such that

|Q0(y)| < �.

• Observation 3: The above holds if the orbit

{Z2
MΦt}t∈R � {ΓMΦt}t∈R

is dense in Γ\G . . . and this is where things go wrong for n = 2 (but works
out for n ≥ 3 since then the action of the orthogonal group of Q0 produces
a dense orbit in Γ\G).
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Quantitative versions of the Oppenheim conjecture

Margulis in fact proved the stronger statement that for any irrational indefinite
form Q in n ≥ 3 variables Q(Zn) = R. Apart from being dense, can we say
more about the distribution of the values of Q? The following theorem gives the
answer for forms of signature (p, q) with n ≥ 4 and p ≥ 3.

Theorem (Eskin, Margulis & Mozes, Annals of Math 1998). If Q is irrational
and indefinite with p ≥ 3 then for any a < b

lim
T→∞

#{m ∈ Zn : �m� < T, a < Q(m) < b}
vol{x ∈ Rn : �x� < T, a < Q(x) < b}

= 1.

For signature (2,2) the statement only holds if Q is not too well approximable by
rational forms (Eskin, Margulis, Mozes 2005) (which is true for almost all forms).
The problem is open for signature (2,1).
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Ratner’s theorem (Annals of Math, 1991)

The key ingredient in the previous theorem is
Ratner’s celebrated classification of measures
that are invariant and ergodic under unipotent
flows. Ratner proves that any such measure ν

is supported on the orbit

Γ\ΓHg0 ⊂ Γ\G

for some g0 ∈ G and some (unique) closed con-
nected subgroup H of G such that ΓH := Γ∩H

is a lattice in H and thus

Γ\ΓH � ΓH\H

is an embedded homogeneous space with finite
H-invariant measure ν = νH (the Haar measure
of H).

Marina Ratner (*1938)

Examples of Φt:��
1 t

0 1

��

t∈R
unipotent

��
et 0
0 e−t

��

t∈R
not
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Quantum chaos
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Quantum ergodicity vs. scars

−∆ϕj = λjϕj, ϕj

���
∂D

= 0, 0 < λ1 < λ2 ≤ λ3 ≤ . . . → ∞

Numerics: A. Bäcker, TU Dresden
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Random matrix conjecture (Bohigas, Giannoni & Schmit 1984)
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Berry-Tabor conjecture (Berry & Tabor 1977)

25



Quantum (unique) ergodicity

Let ∆ be the Laplacian on a compact
surface of constant negative curvature

−∆ϕj = λjϕj, �ϕi�2 = 1

0 < λ1 < λ2 ≤ λ3 ≤ . . . → ∞

What are possible limits of the sequence
of probability measures |ϕj(z)|2dµ(z)?
We know (by microlocal analysis): Any
(microlocal lift) of a limit measure must
be invariant under the geodesic flow.
(Doesn’t help much—many measures
have this property!)

Numerics: R. Aurich, U Ulm
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Quantum (unique) ergodicity

• Rudnick & Sarnak (Comm Math Phys 1994) : conjecture

|ϕj(z)|2dµ(z) → dµ(z)

along full sequence (“quantum unique ergodicity” or QUE).

• Shnirelman-Zelditch-Colin de Verdiere Theorem:

|ϕji
(z)|2dµ(z) → dµ(z)

along a density-one subsequence ji (“quantum ergodicity”); holds in much
greater generality and only requires ergodicity of geodesic flow.

• E. Lindenstrauss (Annals Math 2006): If surface is arithmetic (of congruence
type) then we have QUE. Proof uses measure rigidity of action of Hecke cor-
respondences and geodesic flow.

• Anantharaman (Annals Math 2008) & with Nonnenmacher (Annals Fourier
2007): Kolmogorov-Sinai entropy of any limit is at least half the entropy of
dµ(z). This means no strong scars.
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Berry-Tabor conjecture: eigenvalue statistics for flat tori

Let ∆ be the Laplacian on the flat torus Rd
/L (L =lattice of covolume 1)

−∆ϕj = λjϕj, �ϕi�2 = 1

with eigenfunctions

{ϕj(x)} = {e2πix·y : y ∈ L∗
/±}

and eigenvalues (counted with multiplicity)

{λj} = {�m�2 : m ∈ L∗
/±}

Note

#{λj < λ} ∼ 1
2Vd λ

d/2 (λ → ∞), Vd :=
π
d/2

Γ(d2 + 1)

To compare the statistics with a Poisson process of intensity one, rescale the
spectrum by setting

ξj =
1
2Vd λ

d/2
j

so that #{ξj < ξ} ∼ ξ (ξ → ∞)
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Gap distribution

Assume the lattice L is “generic”. Is it true that for any interval [a, b]

lim
N→∞

#{j ≤ N : a < ξj+1 − ξj < b}
N

=
�

b

a

e−s
ds ?

(which is the answer for a Poisson process)

0.5 1.0 1.5 2.0 2.5 3.0

0.2

0.4

0.6

0.8

1.0

gap distribution for the recaled {λj} = {m2 +
√
2 n

2 : m,n ∈ N}, N = 2,643,599

WE DON’T KNOW HOW TO PROVE THIS!
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Simpler but still not easy: Two-point statistics

Is it true that for any interval [a, b]

lim
N→∞

#{(i, j) : i �= j ≤ N, a < ξi − ξj < b}
N

= b− a ?

• Eskin, Margulis & Mozes (Annals Math 2005): YES for d = 2 and under
diophantine conditions on L—this reduces to quantitative Oppenheim for
quadratic forms of signature (2,2)

• VanderKam (Duke Math J 1999, CMP 2000): YES for any d and almost all L
(in measure); follows idea by Sarnak for d = 2

• Marklof (Duke Math J 2002, Annals Math 2003): YES for

{ξj} = {Vd�m−α�d : m ∈ Zd}
and any d ≥ 2, provided α ∈ Rd is diophantine of type (d − 1)/(d − 2).

The proof is different from EMM’s approach. It uses theta series and Ratner’s
measure classification theorem.
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Randomness mod 1
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Gap and two-point statistics

Let
ξ11
ξ21 ξ22... ... . . .
ξN1 ξN2 . . . ξNN... ... . . .

be a triangular array of numbers ξj = ξNj in [0,1] which is ordered (ξj ≤ ξj+1)
and uniformly distributed, i.e. for any interval [a, b] ⊂ [0,1]

lim
N→∞

#{j ≤ N : a < ξj < b}
N

= b− a.

Do these have a Poisson limit? That is, for the gaps

lim
N→∞

#{j ≤ N : a

N
< ξj+1 − ξj <

b

N
}

N
=

�
b

a

e−s
ds ?

For the two point statistics

lim
N→∞

#{(i, j) : i �= j ≤ N,
a

N
< ξi − ξj <

b

N
}

N
= b− a ?

32



Some results for fractional parts

• For almost all α, ξj = {2jα} is Poisson for gaps and all n-point statis-
tics (Rudnick & Zaharescu, Forum Math 2002); applies to other lacunary
sequences in place of 2n

• For almost all α, ξj = {j2α} has Poisson pair correlation (Rudnick & Sarnak,
CMP 1998); applies also to other polynomials such as ξj = {j3α} etc

for certain well approximable α, there are subsequences of N such that the
gap statistics of ξj = {j2α} both converges to Poisson and at the same time
to a singular limit (Rudnick, Sarnak & Zaharescu, Inventiones 2001);

algorithmic characterization of those α for which the two-point statistics is
Poisson is given by Heath-Brown (Math Proc Camb Phil Soc 2010).

WE DON’T KNOW WHETHER EVEN THE TWO-POINT STATISTICS ARE
POISSON FOR α =

√
2
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Fractional parts of small powers

• For fixed 0 < β < 1, β �= 1
2, the gap and

two-point statistics of {nβ} look Poisson
numerically—-NO PROOFS! β = 1

3 →

• For β = 1
2, Elkies & McMullen (Duke Math J

2004) have shown that the gap distribution
exists, and derived an explicit formula which
is clearly different from the exponential.
Their proof uses Ratner’s measure classifi-
cation theorem!

At the same time, the two-point function
converges to the Poisson answer (El Baz,
Marklof & Vinogradov, Proc AMS 2015). The
proof requires upper bounds for the equidis-
tribution of certain unipotent flows with re-
spect to unbounded test functions.
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A great student project—gaps between logs

• Study the distribution of gaps between the fractional parts of logn:

0.5 1.0 1.5 2.0 2.5 3.0

0.2

0.4

0.6

0.8

1.0

0.5 1.0 1.5 2.0 2.5 3.0

0.2

0.4

0.6

0.8

1.0

gaps for natural base e —– gaps for base e1/5 vs. exponential distribution

The proof is elementary and exploits Weyl equidistribution.

For details see Marklof & Strömbergsson, Bull LMS 2013
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Overview of the remaining lectures
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2. Geometry and dynamics of SL(2,R)
(a) Hyperbolic geometry, fractional linear transformations, NAK
(b) Unit tangent bundle and SL(2,R), geodesic and horocycle flows,

stable/unstable manifolds, NAN
(c) SL(2,Z), generators, fundamental domain

3. Equidistribution
(a) Ergodicity, mixing (no proofs)
(b) Equidistribution of translates of horocycles from mixing
(c) Equidistribution of closed horocycles via Eisenstein series

4. The space of d-dimensional lattices
(a) SL(d,R) and ASL(d,R)
(b) Mahler’s criterion

5. Applications in distribution modulo one
(a) Statistics of Farey fractions, Hall distribution
(b) The three gap theorem for nα mod 1

(new proof using the space of lattices)
6. Statistics of directions and free path length
7. Siegel-Veech formula
8. Quasicrystals I
9. Quasicrystals II

10. Frobenius numbers and circulant graphs

37



The Lorentz gas (→ Lecture 6)

Arch. Neerl. (1905) Hendrik Lorentz (1853-1928)
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Quasicrystals (→ Lectures 8 & 9)
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Frobenius numbers and circulant graphs (→ Lecture 10)
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Recommended reading
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N.B. Slater, Gaps and steps for the sequence nθ mod 1. Proc. Cambridge Philos.
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