Federal University of Bahia, Brazil

On the Finiteness of Attractors for Piecewise C^2 Maps of the Interval

Vilton Pinheiro

School and Conference on Dynamical Systems, Trieste, Italy , August, 27, 2015 This is a joint work with P. Brandão and J. Palis

Let $f:[0,1] \rightarrow [0,1]$ be a map of the interval.

Definition (Attractor)

A compact transitive set $A \subset [0,1]$ is an attractor if its *basin of attraction*

$$\beta_f(A) = \{x; \omega_f(x) \subset A\}$$

has positive Lebesgue measure.

Problem:

How many attractors a map of the interval with some regularity can have? Can it be zero? Infinitely many?

Problem:

Has the union of the basins of attraction of all attractors of f full Lebesgue measure?

That is,

$$\mathsf{Leb}\bigg(\bigcup_{A \in \mathsf{attractors}} \beta_f(A)\bigg) = 1?$$

Problem:

It is possible to classify the attractors?

Theorem (Singer, 1978)

If f is a C^3 map whit negative Schwarzian derivative, Sf < 0 then f has at most $\#C_f + 2$ periodic attractors.

Schwarzian derivative

$$Sf(x) = \frac{f'''(x)}{f'(x)} - \frac{3}{2} \left(\frac{f''(x)}{f'(x)}\right)^2$$

Critical set

$$C_f = \{c \in [0,1]; f'(c) = 0\}$$

Definition (S-unimodal map)

A C^3 map $f:[0,1] \to [0,1]$, with f(0) = f(1) = 0, is called a S-unimodal if Sf < 0, it has at most two fixed points and a single critical point $c \in (0,1)$.

Example (Logistic family)

$$f_t(x) := 4 t x (1 - x)$$
, with $t \in (0, 1)$

Theorem (Blokh and Lyubich, \sim 1989)

If f is a non-flat S-unimodal map with Sf < 0 then f has a single attractor A and $\omega_f(x) = A$ for almost every $x \in [0,1]$. In particular,

$$Leb(\beta_f(A)) = 1.$$

Furthermore,

- 1. either A is a periodic attractor (an attracting periodic orbit)
- 2. or A is a cycle of intervals
- 3. or A is a cantor set with $A = \omega_f(c)$, with c being the critical point of f.

Non-flat (or non-degenerated)

A map is non-flat if

$$f(x) \approx f(c) + a|x - c|^{\alpha}$$

 $a \neq 0$, $\alpha > 1$, for every $c \in C_f$.

Figura: Let $0 < t \le 1$ and $f_t : [0,1] \to [0,1]$ be given by $f_t(1/2) = t$ and $f_t(x) = t(1 - e^{2-1/|x-1/2|})$ if $x \ne 1/2$. The only critical point of f_t is c = 1/2. In the picture, we draw the graphic of f_t with t = 0.9. Notice that f_t is C^{∞} , $f_t^{(n)}(1/2) = 0 \ \forall \ n \ge 1$ and $Sf(x) = -(8/(1-2x)^4)$. Thus, f_t is a family of flat S-unimodal maps.

Cycle of intervals

Finite union of compact $I_1 \cup \cdots \cup I_s$ such that $f|_{I_1 \cup \cdots \cup I_s}$ is transitive.

Definition (S-multimodal map)

A C^3 map $f:[0,1]\to [0,1]$ is called a S-multimodal if Sf<0, $\mathcal{C}_f\subset (0,1),\ \#\mathcal{C}_f<+\infty$ and every $c\in \mathcal{C}_f$ is a local maximum or minimum .

Theorem (Blokh and Lyubich, \sim 1989)

If f is a non-flat S-multimodal map then f has at most $\#C_f + 2$ attractors,

$$Leb\left(\bigcup_{A \in attractors} \beta_f(A)\right) = 1$$

and $\omega_f(x) = A$ for almost every $x \in \beta_f(A)$ and $A \in$ attractors.

Furthermore, if A is one of the attractors then

- 1. either A is a periodic attractor (an attracting periodic orbit)
- 2. or A is a cycle of intervals
- 3. or A is a cantor set with $A = \omega_f(c)$, for some $c \in C_f$.

Maps with discontinuities

A particular interesting type of maps with discontinuities are those one with discontinuous critical points.

Piecewise C^r maps with non-flat discontinuous critical points can be obtained as the quotient by stable manifolds of a Poincaré map of some dissipative flow.

A particular interesting type of maps with discontinuities are those one with discontinuous critical points.

An one dimensional piecewise C^r map induced by a Cherry flow.

The contracting Lorenz maps are the simplest case of maps the interval with Sf < 0 and a discontinuous critical point.

Wandering intervals

An interval $I = (a, b) \subset [0, 1]$ is a called a *wandering interval* if

- 1. $f^j(I) \cap f^k(I) = \emptyset \ \forall \ 0 \le j < k$.
- 2. $f^{j}(I) \cap C_{f} = \emptyset \ \forall j \geq 0$;
- 3. *I* does not intersect the basin of attraction of a periodic attractor.

Remark

One of the main ingredients of most of the proofs of finiteness of attractors was the non-existence of wandering intervals.

Theorem (Denjoy, 1932)

A C^1 diffeomorphism f of the circle such that $\log |f'|$ has bounded variation does not admit wandering intervals.

Theorem (Guckenheimer, 1979)

A non-flat S-unimodal map does not admit wandering intervals.

Theorem (Yoccoz, 1984)

A C^{∞} homeomorphisms of the circle having only non-flat critical points does not admit wandering intervals.

Theorem (Lyubich, 1987)

A non-flat S-multimodal map does not admit wandering intervals.

Theorem (de Melo and van Strien, 1989)

A non-flat C² unimodal map does not admit wandering intervals.

Theorem (Blokh and Lyubich, 1989)

A non-flat C^2 multimodal map does not admit wandering intervals.

Theorem (Martens, de Melo and van Strien, 1992)

A non-flat C^2 map does not admit wandering intervals.

Warning!

We know almost nothing about wandering intervals even for the contracting Lorenz maps with negative Schwarzian derivative.

- 1. There are simple examples of contracting Lorenz maps with wandering intervals associated to Cherry attractors.
- 2. It was conjectured that all wandering intervals are associated to Cherry attractors, but except for very few cases this conjecture is open.
- 3. Even for ∞ -renormalizable maps it is not known if there exist wandering intervals.

Using an induced map in a Hoffbauer-Keller tower:

Theorem (Keller and St. Pierre, 2000)

If f is a C^3 non-flat contracting Lorenz map with Sf < 0 then f has almost a single non periodic attractor. Furthermore, if A is a non periodic attractor for f then $\omega_f(x) = A$ for almost every $x \in [0,1]$. In particular, $Leb(\beta_f(A)) = 1$.

Theorem (Brandão, Palis, P, 2013)

Let $f:[0,1] \to [0,1]$, be a C^3 local diffeomorphism with negative Schwarzian derivative in the whole interval, except for a finite set $\mathcal{C}_f \subset (0,1)$. Then, there is a finite collection of attractors A_1, \dots, A_n , such that

$$Leb(\beta_f(A_1) \cup \cdots \cup \beta_f(A_n)) = 1.$$

Furthermore, for almost all points x, we have $\omega_f(x) = A_j$ for some $j = 1, \dots, n$.

Maps without negative Schwarzian derivative condition

WARNING: non-flat C^{∞} maps of the interval

- 1. may not have attractors (ex.: the identity map f(x) = x);
- 2. may have infinitely many attractors (picture on the left).

It can also occur that $0 < \text{Leb} \big(\bigcup_{A \in \text{attractors}} \beta_f(A) \big) < 1$ (picture on the right).

$\mathbb{B}_0(f)$

Let $\mathbb{B}_0(f)$ be the union of the basins of attraction of all attracting periodic orbits.

Per(f)

Let Per(f) be the set of periodic points of f and $\mathcal{O}_f^-(Per(f))$ the set of all *pre-periodic* points, i.e.,

$$\mathcal{O}_f^-(\operatorname{Per}(f)) = \bigcup_{n>0} f^{-n}(\operatorname{Per}(f)).$$

Theorem (Vargas and van Strien, 2004)

If $f:[0,1]\to [0,1]$ is a non-flat C^3 map then f has at most $\#\mathcal{C}_f$ non-periodic attractors $A_1,...,A_s$, $0\leq s\leq \#\mathcal{C}_f$,

$$Leb\bigg(\mathbb{B}_0(f)\cup\mathcal{O}_f^-(\mathsf{Per}(f))\cup\bigcup_{j=1}^s\beta_f(A_j)\bigg)=1$$

and $\omega_f(x) = A_j$ for almost every $x \in \beta_f(A_j)$ and $0 \le j \le s$.

Furthermore, for each $0 \le j \le s$

- 1. either A_j is a cycle of intervals
- 2. or A_j is a Cantor set (and a minimal set) with $A_j = \omega_f(c)$, for some $c \in C_f$.

Maps with the number of non periodic attracts equal to $\#\mathcal{C}_f$.

Non-flat

 $f:[0,1] \to \mathbb{R}$ is called *non-flat* at $c \in [0,1]$ if $\exists \varepsilon > 0$, $\alpha, \beta \geq 1$ and C^2 diffeomorphisms $\phi_0:[c-\varepsilon,c] \to \operatorname{Im}(\phi_0)$ and $\phi_1:[c,c+\varepsilon] \to \operatorname{Im}(\phi_1)$ such that

$$f(x) = \begin{cases} a + (\phi_0(x - c))^{\alpha} & \text{if } x \in (c - \varepsilon, c) \cap (0, 1) \\ b + (\phi_1(x - c))^{\beta} & \text{if } x \in (c, c + \varepsilon) \cap (0, 1) \end{cases},$$

where $a = \lim_{0 < \varepsilon \to 0} f(c - \varepsilon)$ and $b = \lim_{0 < \varepsilon \to 0} f(c + \varepsilon)$.

Critical/non-regular set

If $f:[0,1]\to [0,1]$ is a non-flat piecewise C^2 map, then \exists a finite set \mathcal{C}_f (we may assume that $\mathcal{C}_f\subset (0,1)$) s.t. f is a local C^2 diffeomorphism on $[0,1]\setminus \mathcal{C}_f$.

The set C_f is called *Critical/non-regular set*.

Critical/non-regular values

$$V_f = \{f(c_\pm); c \in C_f\}.$$

Theorem (Brandão, Palis, P, 2015)

If $f:[0,1] \to [0,1]$ is a non-flat piecewise C^2 map then f has at most $\#\mathcal{V}_f$ non-periodic attractors $A_1,...,A_s$, $0 \le s \le \#\mathcal{V}_f$,

$$Leb\bigg(\mathbb{B}_0(f)\,\cup\,\mathcal{O}_f^-(\mathsf{Per}(f))\,\cup\,\bigcup_{j=1}^seta_f(A_j)\bigg)=1$$

and $\omega_f(x) = A_j$ for almost every $x \in \beta_f(A_j)$ and $0 \le j \le s$.

Furthermore, for each $0 \le j \le s$

- 1. either A_j is a cycle of intervals
- 2. or A_j is a Cantor set with $A_j = \omega_f(c_-)$ or $\omega_f(c_+)$, for some $c \in C_f$.

Main steps of the proof

Step 1 (Dichotomy)

If $I=(a,b)\subset [0,1]$ is such that $I\cap \mathcal{O}_f^+(\mathcal{V}_f)=\emptyset$ then

- 1. either $\omega_f(x) \cap I = \emptyset$ for almost all $x \in I \setminus \mathbb{B}_0(f)$
- 2. or $\omega_f(x) \supset I$ for almost every $x \in I$.

Step 2

$$\omega_f(x) \subset \overline{\mathcal{O}_f^+(\mathcal{V}_f)},$$
 for almost every $x \in [0,1] \setminus (\mathbb{B}_0(f) \cup \mathbb{B}_1(f) \cup \mathcal{O}_f^-(\mathsf{Per}(f)).$

 $\mathbb{B}_1(f)$ is the set of $x \in [0,1]$ such that $\omega_f(x)$ is a cycle of intervals.

Step 3

$$\omega_f(x) = \bigcup_{\substack{c_{\pm} \in \omega_f(x) \\ c \in C_f}} \overline{\mathcal{O}_f^+(c_{\pm})},$$

for almost every $x \in [0,1] \setminus (\mathbb{B}_0(f) \cup \mathbb{B}_1(f) \cup \mathcal{O}_f^-(\mathsf{Per}(f)))$.

Step 4

If $\mathcal{U} \subset \{c_{\pm}; c \in \mathcal{C}_f\}$ such that

$$\operatorname{\mathsf{Leb}}igg(igg\{x\in[0,1]\setminus\mathbb{B}_0(f)\,;\,\omega_f(x)=igcup_{u\in\mathcal{U}}\overline{\mathcal{O}_f^+(u)}igg\}igg)>0$$

then $\exists u_0 \in \mathcal{U}$ such that

$$\omega_f(u_0) = \overline{\mathcal{O}_f^+(u_0)} = \bigcup_{u \in \mathcal{U}} \overline{\mathcal{O}_f^+(u)}.$$

Thanks!