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The Erdös-Turan conjecture

The Erdös-Turan conjecture (1936) states that if A ⊂ N such that

�

n∈A

1

n
= ∞,

then A contains arbitrarily long arithmetic progressions.

The converse of the statement needs not be true. For instance, the
set

{1, 10, 11, 100, 101, 102, 1000, 1001, 1002, 1003, 10000, . . .}

has arbitrarily long arithmetic progressions, although the sum of
the reciprocals of the elements of this set is finite.
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The E.-T. conjecture: Sets with positive upper density

We denote [N] = {1, 2, . . . ,N}.

We say a set A ⊂ N with positive upper density if there exists
α ∈ (0, 1) such that

lim sup
N→∞

|A ∩ [N]|
N
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It is known that a set with positive upper density satisfies the
hypothesis of the Erdös-Turan conjecture, and we know from
Szemerédi’s Theorem that the set has arbitrarily long arithmetic
progressions.
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The E.-T. conjecture: The set of prime numbers

We also note that the set of all the prime numbers P satisfies the
hypothesis of the E.-T. conjecture as well.

Theorem (Euler, 1737)
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We also know that the set of primes P contains arbitrarily long
arithmetic progressions. This is shown by Green and Tao [19].
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Multiple Recurrence (Furstenberg)

In 1977 [17], H. Furstenberg showed that for any probability
measure-preserving system (Y ,G, ν, S), and E ∈ G with ν(E ) > 0,
then for any positive integer k ≥ 1,

lim inf
N→∞

1

N

N−1�

n=0

ν

�
k−1�

i=0

S
−in

E

�
> 0.

Furstenberg used this to provide an ergodic theoretic proof of
Szemerédi’s theorem: If a set Ẽ ⊂ Z has a positive upper-density,
then Ẽ contains an arbitrary long arithmetic progression.
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Multiple Recurrence (Furstenberg-Katzlenson)

Later, H. Furstenberg and Y. Katznelson (1978 [18]) showed that
for commuting measure-preserving transformations S1, S2, . . . , Sk ,
we have

lim inf
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They used this result to prove a generalized Szemerédi’s theorem
on Zk .
Question: Can we get a better understanding of the structure of
set of positive upper density in N?
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Motivation

One way of obtaining more information would be to look at these
averages with weights.
Example: Can we show that for weights (cn)n of nonnegative
numbers, we still have

lim inf
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S
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�
> 0?

The first natural case is to look at a randomized weight, e.g. given
a measure-preserving (ergodic) system (X ,F , µ,T ) with a set
A ∈ F of positive measure, does there exists a set of full-measure
XA ⊂ X such that for any x ∈ XA,

lim inf
N→∞
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Motivation: Return Times

Since

1A(T
n
x) =

�
1 if T n

x ∈ A,
0 otherwise.

we can look at the subsequences {nj(x)} of the multiple recurrent
averages, where nj(x) is the j-th return time of T n

x to A (i.e.
1A(T nj (x)x) = 1 for all j ∈ N). So the previous question would be
equivalent of asking whether

lim inf
N→∞

1

N

�

nj (x)<N

ν

�
k�

i=1

S
−nj (x)
i E

�
> 0.

Behaviors of averages with random weights have been observed
extensively in the study of the return times, which was initiated
by A. Brunel in his Ph.D. thesis from 1966 [10].
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Convergence of multiple recurrent averages

We note that
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We can get more information about the multiple recurrent
averages by studying the following: Given g1, g2, . . . , gk ∈ L

∞(ν),
do the averages
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converge weakly? In L
2(ν)-norm? Almost everywhere?
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Non-conventional ergodic averages

The study of non-conventional ergodic averages, i.e.

1

N
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i=1

gi ◦ Sn
i

have been studied extensively for norm convergence.

For instance,

The case Si = S
i : Host and Kra (2005, [20])

The case Si ’s commuting: Tao (2008, [25])

The case Si ’s generate a nilpotent group: Walsh (2012, [26])

For the pointwise convergence, we have the double recurrence
result by Bourgain, for the case k = 2 and Si = S

ai (1990 [8]).
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Good universal weights

Definition

We say (Xn)n is a process if for all nonnegative integers n ≥ 0, Xn

is a bounded and measurable function on some probability measure

space (Ω,S,P).

Definition

We say the sequence (an)n is a good universal weight for a process

(Xn)n pointwise (resp. in norm) if for every probability

measure-preserving space (Ω,S,P) for which the process (Xn)n is

defined, then the averages

1

N

N−1�

n=0

anXn(ω)

converges for P-a.e. ω ∈ Ω (resp. in L
2(P)).



Good universal weights

Definition

We say (Xn)n is a process if for all nonnegative integers n ≥ 0, Xn

is a bounded and measurable function on some probability measure

space (Ω,S,P).

Definition

We say the sequence (an)n is a good universal weight for a process

(Xn)n pointwise (resp. in norm) if for every probability

measure-preserving space (Ω,S,P) for which the process (Xn)n is

defined, then the averages

1

N

N−1�

n=0

anXn(ω)

converges for P-a.e. ω ∈ Ω (resp. in L
2(P)).



Good universal weights can be randomized

Brunel and Keane in 1969 [11] showed that measure-preserving
system (X ,F , µ,T ) from a certain class and a set of positive
measure A ⊂ F , there exists a set of full-measure XA ⊂ X such
that for any x ∈ X

� and any other measure-preserving system
(Y ,G, ν, S) and any g ∈ L

1(ν), then

lim
N→∞

1

N

N−1�

n=0

1A(T
n
x)g(Sn

y)

exists for ν-a.e. y ∈ Y .

Later, Bourgain showed [7] that for any given measure-preserving
system (X ,F , µ,T ) and f ∈ L

∞(µ), an = f (T n
x) is also a good

universal weight for the pointwise ergodic theorem. A simpler
proof was later provided by Bourgain, Furstenberg, Katznelson,
and Ornstein [9].
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Extensions of the return times theorem

The return times theorem has been extended in multiple directions.
For example...

Rudolph (Multi-term return times theorem, 1998, [24])

A. (Multiple recurrence and the multi-term return times
theorem, 2000, [1])

Host and Kra (Good universal weight for the norm
convergence of non conventional ergodic averages, 2009, [21])

More precisely, Host and Kra showed that given an ergodic
dynamical system (X ,F , µ,T ) and a function f ∈ L

∞(µ), there
exists a set of full-measure Xf ⊂ X such that for any x ∈ Xf , for
any positive integer k , and for any other measure-preserving
system (Y ,G, ν, S) with g1, . . . , gk ∈ L

∞(ν), the averages

1

N

N−1�

n=0

f (T n
x)g1 ◦ Sn · g2 ◦ S2n · · · gk ◦ Skn

converge in L
2(ν).
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Universal Weights

The result by Host and Kra shows that if cn = f (T n
x), then for

µ-a.e. x ∈ X ,

lim
N→∞
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−(k−1)n

E )

exists for any other measure-preserving system (Y ,G, ν, S).

Question: Can cn be generalized? For instance, can we have
cn = f1(T an

x)f2(T bn
x) for some f1, f2 ∈ L

∞(µ)?
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Double Recurrence Wiener-Wintner averages

Recall that given a measure-preserving system (X ,F , µ,T ), the
Cesaro averages of f1(T an

x)f2(T bn
x) converge for µ-a.e. x ∈ X

due to Bourgain [8].

In 2001, D. Duncan provided a Wiener-Wintner extension of
Bourgain’s result in his Ph.D. Thesis [14] before the appearance of
Host-Kra-Ziegler factor.

Later in 2014, this result was extended further in a following way:
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Double Recurrence Wiener-Wintner averages

Theorem 1 (A., Duncan, Moore 2014, [3])

Let (X ,F , µ,T ) be a standard ergodic dynamical system. Let

f1, f2 ∈ L
∞(X ). Let

WN(f1, f2, x , t) =
1

N

N−1�

n=0

f1(T
an
x)f2(T

bn
x)e(nt). Then there exists

a set of full-measure Xf1,f2 such that for all x ∈ Xf1,f2 and for any

t ∈ R, the sequence WN(f1, f2, x , t) converges.
Also, if either f1 or f2 belongs to Z⊥

2
, then for any x ∈ Xf1,f2 ,

lim sup
N→∞

sup
t∈R

|WN(f1, f2, x , t)| = 0,

where Zk is the k-th Host-Kra-Ziegler factor.



Remarks on the D.R.W.W. result

This Wiener-Wintner result already shows that the sequence
cn = f1(T an

x)f2(T bn
x) is µ-a.e. a good universal weight for

the mean ergodic theorem, i.e. for any other dynamical
system (Y ,G, ν, S) and g ∈ L

∞(ν), the averages

1

N

N−1�

n=0

f1(T
an
x)f2(T

bn
x)g ◦ Sn

converge in L
2(ν).

The l-th Host-Kra-Ziegler factor Zl of X is the inverse limit
of l-step nilsystems of X .

Definition

Let G be a l-step nilpotent Lie group, and Γ be a discrete

co-compact subgroup of G . Then G/Γ is called an l-step

nilmanifold. A measure-preserving system (X ,F , µ,T ), where
X = G/Γ, F a Borel sigma-algebra with Haar measure µ, and
Tx = g · x for some g ∈ G , is called an l-step nilsystem.
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Double recurrence and nilsequence Wiener-Wintner

In 2014 Ergodic Theory Workshop at UNC-Chapel Hill, B. Weiss
asked whether Theorem 1 can be extended to nilsequences.

Definition

Let (X = G/Γ,F , µ,T ) be an l-step nilsystem. If F ∈ C(X ) and
g ∈ G , we say the sequence an = F (gn

x) is a basic l-step

nilsequence. An l-step nilsequence is a uniform limit of basic l-step

nilsequences.

We note that e(nt) = e
2πint is a 1-step nilsequence, and for any

real polynomial p of degree l , e(p(n)) is an l-step nilsequence.
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Double recurrence and nilsequence Wiener-Wintner

We answered to this question positively.

Theorem 2 (A. 2015 [2])

Let (X ,F , µ,T ) be a measure-preserving system, and

f1, f2 ∈ L
∞(µ). Then there exists a set of full-measure Xf1,f2 ⊂ X

such that for any x ∈ Xf1,f2 and for any nilsequence (bn)n, the
averages

1

N

N−1�

n=0

f1(T
an
x)f2(T

bn
x)bn

converge.

This result was also obtained by Zorin-Kranich independently [27].
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Remark: Polynomial Wiener-Wintner

If bn = e(p(n)) for some real polynomial p, we would have the
polynomial Wiener-Wintner result for the double recurrence. This
result was obtained prior to the nilsequence result by A. and Moore
in 2014 [6].

This would imply that the sequence cn = f1(T an
x)f2(T bn

x) is
a µ-a.e. good universal weight for the process
Xn(y) = g(Sp(n)

y) in norm for any measure-preserving system
(Y ,G, ν, S), g ∈ L

∞(ν) and any polynomial p : Z → Z
The polynomial Wiener-Wintner averages (with a single
function) were studied previously by E. Lesigne (1990 [22],
1993 [23]), N. Frantzikinakis (2006 [16]), and recently by T.
Eisner and B. Krause (polynomial power of T , 2014 [15]).
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Double recurrence and Furstenberg averages

Recently, we have shown that an = f1(T an
x)f2(T bn

x) for any
a, b ∈ Z distinct is a good universal weight for the Furstenberg
averages.

Theorem 3 (A., Moore 2015, [5])

Let (X ,F , µ,T ) be a measure-preserving system, and suppose

f1, f2 ∈ L
∞(µ). Then there exists a set of full-measure Xf1,f2 ⊂ X

such that for any x ∈ Xf1,f2 , for any a, b ∈ Z distinct, for any

positive integer k , and for any other dynamical system (Y ,G, ν, S)
with functions g1, . . . , gk ∈ L

∞(ν), the averages
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2(ν).
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Remark

This is a strengthening of the results of Host and Kra and of
Bourgain’s double recurrence theorem. In fact, we can show
that for any A,B ∈ F , we know that there exists a set of
full-measure XA,B ⊂ X such that for any x ∈ XA,B , for any
other measure-preserving system (Y ,G, ν, S) and E ∈ G, the
limit

lim
N→∞
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Commuting Case

Furthermore, Theorem 3 can be extended to the case with
commuting transformations. This result combines and extends the
previous work of Bourgain and Tao.

Theorem 4 (A., Moore 2015, [4])

Let (X ,F , µ,T ) be a measure-preserving system, and suppose

f1, f2 ∈ L
∞(µ). Then there exists a set of full-measure Xf1,f2 ⊂ X

such that for any x ∈ Xf1,f2 , for any a, b ∈ Z distinct, for any

positive integer k , and for any other dynamical system with

commuting transformations (Y ,G, ν, S1, . . . , Sk) with functions

g1, . . . , gk ∈ L
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Outline of the Proof of Theorem 3

The idea of the proof is to look at whether either f1 or f2 belongs
to the orthogonal complement of Zk+1(T ), or if they are both in
this factor (where k is the number of transformations from the
Furstenberg averages).

For the first case, we inductively prove that there exists a set of
full-measure X1 such that the averages converge to zero by
applying the spectral theorem and the Wiener-Wintner result
above to show that the averages converge to 0 (on a universal set
of full-measure in X ).

For the second case, we look at the appropriate factors of Y .

If one of the functions g1, . . . , gk belongs to Zk(S)⊥, then the
averages converge to 0 in norm.

If all of them belong to Zk(S), we apply Leibman’s
convergence theorem.
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Next Steps

1. Nilpotent case. Can the double recurrence good universal
weight results be extended to the systems (Y ,G, ν, S1, . . . , Sk),
where the transformations S1, . . . , Sk are generating a nilpoteng
group?

2. Positivity. Given a measure-preserving system (X ,F , µ,T ),
with some f1, f2 ∈ L

∞(µ), does there exist a set of full-measure
Xf1,f2 ⊂ X such that for any x ∈ Xf1,f2 and for any other
measure-preserving system (Y , ν, S1, . . . , Sk) with any E ∈ G a set
with positive measure, we have

lim inf
N→∞
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n=0
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> 0?

Any properties on f1 and f2 (beyond the clear requirement that
limN→∞
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f1(T an

x)f2(T bn
x) > 0)? What about a positive

lower bound? Syndeticity?
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