Good universal weights for non-conventional ergodic averages

Idris Assani

University of North Carolina at Chapel Hill, USA Department of Mathematics Work in part with Ryo Moore

ICTP School and Conference in Dynamical Systems, 2015

The Erdös-Turan conjecture (1936) states that if $A \subset \mathbb{N}$ such that

$$\sum_{n\in A}\frac{1}{n}=\infty,$$

then A contains arbitrarily long arithmetic progressions.

The Erdös-Turan conjecture (1936) states that if $A \subset \mathbb{N}$ such that

$$\sum_{n\in A}\frac{1}{n}=\infty,$$

then A contains arbitrarily long arithmetic progressions.

The converse of the statement needs not be true. For instance, the set

 $\{1, 10, 11, 100, 101, 102, 1000, 1001, 1002, 1003, 10000, \ldots\}$

has arbitrarily long arithmetic progressions, although the sum of the reciprocals of the elements of this set is finite. We denote $[N] = \{1, 2, ..., N\}.$

We denote $[N] = \{1, 2, ..., N\}$. We say a set $A \subset \mathbb{N}$ with **positive upper density** if there exists $\alpha \in (0, 1)$ such that

$$\limsup_{N\to\infty}\frac{|A\cap[N]|}{N}>\alpha.$$

We denote $[N] = \{1, 2, ..., N\}$. We say a set $A \subset \mathbb{N}$ with **positive upper density** if there exists $\alpha \in (0, 1)$ such that

$$\limsup_{N\to\infty}\frac{|A\cap[N]|}{N}>\alpha.$$

It is known that a set with positive upper density satisfies the hypothesis of the Erdös-Turan conjecture, and we know from **Szemerédi's Theorem** that the set has arbitrarily long arithmetic progressions.

We also note that the set of all the prime numbers P satisfies the hypothesis of the E.-T. conjecture as well.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

We also note that the set of all the prime numbers P satisfies the hypothesis of the E.-T. conjecture as well.

Theorem (Euler, 1737)

$$\sum_{n\in P}\frac{1}{n}=\infty$$

In fact, it is also known that

$$\sum_{n\in P\cap [N]} \frac{1}{n} \geq \log\log(N+1) - \log\frac{\pi^2}{6}$$

We also note that the set of all the prime numbers P satisfies the hypothesis of the E.-T. conjecture as well.

Theorem (Euler, 1737)

$$\sum_{n\in P}\frac{1}{n}=\infty$$

In fact, it is also known that

$$\sum_{n\in P\cap[N]}\frac{1}{n}\geq \log\log(N+1)-\log\frac{\pi^2}{6}$$

We also know that the set of primes P contains arbitrarily long arithmetic progressions. This is shown by Green and Tao [19].

In 1977 [17], H. Furstenberg showed that for any probability measure-preserving system (Y, \mathcal{G}, ν, S) , and $E \in \mathcal{G}$ with $\nu(E) > 0$, then for any positive integer $k \ge 1$,

$$\liminf_{N\to\infty}\frac{1}{N}\sum_{n=0}^{N-1}\nu\left(\bigcap_{i=0}^{k-1}S^{-in}E\right)>0.$$

In 1977 [17], H. Furstenberg showed that for any probability measure-preserving system (Y, \mathcal{G}, ν, S) , and $E \in \mathcal{G}$ with $\nu(E) > 0$, then for any positive integer $k \ge 1$,

$$\liminf_{N\to\infty}\frac{1}{N}\sum_{n=0}^{N-1}\nu\left(\bigcap_{i=0}^{k-1}S^{-in}E\right)>0.$$

Furstenberg used this to provide an ergodic theoretic proof of Szemerédi's theorem: If a set $\tilde{E} \subset \mathbb{Z}$ has a positive upper-density, then \tilde{E} contains an arbitrary long arithmetic progression.

Later, H. Furstenberg and Y. Katznelson (1978 [18]) showed that for commuting measure-preserving transformations S_1, S_2, \ldots, S_k , we have

$$\liminf_{N\to\infty}\frac{1}{N}\sum_{n=0}^{N-1}\nu\left(\bigcap_{i=1}^{k}S_{i}^{-n}E\right)>0$$

Later, H. Furstenberg and Y. Katznelson (1978 [18]) showed that for commuting measure-preserving transformations S_1, S_2, \ldots, S_k , we have

$$\liminf_{N\to\infty}\frac{1}{N}\sum_{n=0}^{N-1}\nu\left(\bigcap_{i=1}^k S_i^{-n}E\right)>0$$

They used this result to prove a generalized Szemerédi's theorem on \mathbb{Z}^k .

Later, H. Furstenberg and Y. Katznelson (1978 [18]) showed that for commuting measure-preserving transformations S_1, S_2, \ldots, S_k , we have

$$\liminf_{N\to\infty}\frac{1}{N}\sum_{n=0}^{N-1}\nu\left(\bigcap_{i=1}^k S_i^{-n}E\right)>0$$

They used this result to prove a generalized Szemerédi's theorem on \mathbb{Z}^k .

Question: Can we get a better understanding of the structure of set of positive upper density in \mathbb{N} ?

Motivation

One way of obtaining more information would be to look at these averages with weights.

Example: Can we show that for weights $(c_n)_n$ of nonnegative numbers, we still have

$$\liminf_{N\to\infty}\frac{1}{N}\sum_{n=0}^{N}c_n\cdot\nu\left(\bigcap_{i=1}^{k}S_i^{-n}E\right)>0?$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Motivation

One way of obtaining more information would be to look at these averages with weights.

Example: Can we show that for weights $(c_n)_n$ of nonnegative numbers, we still have

$$\liminf_{N\to\infty}\frac{1}{N}\sum_{n=0}^N c_n\cdot\nu\left(\bigcap_{i=1}^k S_i^{-n}E\right)>0?$$

The first natural case is to look at a randomized weight, e.g. given a measure-preserving (ergodic) system (X, \mathcal{F}, μ, T) with a set $A \in \mathcal{F}$ of positive measure, does there exists a set of full-measure $X_A \subset X$ such that for any $x \in X_A$,

$$\liminf_{N\to\infty}\frac{1}{N}\sum_{n=1}^{N}\mathbf{1}_{A}(T^{n}x)\cdot\nu\left(\bigcap_{i=1}^{k}S_{i}^{-n}E\right)>0?$$

Motivation: Return Times

Since

$$\mathbf{1}_{A}(T^{n}x) = \left\{ egin{array}{cc} 1 & ext{if } T^{n}x \in A, \\ 0 & ext{otherwise.} \end{array}
ight.$$

we can look at the subsequences $\{n_j(x)\}$ of the multiple recurrent averages, where $n_j(x)$ is the *j*-th return time of $T^n x$ to A (i.e. $\mathbf{1}_A(T^{n_j(x)}x) = 1$ for all $j \in \mathbb{N}$). So the previous question would be equivalent of asking whether

$$\liminf_{N\to\infty}\frac{1}{N}\sum_{n_j(x)< N}\nu\left(\bigcap_{i=1}^k S_i^{-n_j(x)}E\right)>0$$

Motivation: Return Times

Since

$$\mathbf{1}_{A}(T^{n}x) = \left\{ egin{array}{cc} 1 & ext{if } T^{n}x \in A, \\ 0 & ext{otherwise.} \end{array}
ight.$$

we can look at the subsequences $\{n_j(x)\}$ of the multiple recurrent averages, where $n_j(x)$ is the *j*-th return time of $T^n x$ to A (i.e. $\mathbf{1}_A(T^{n_j(x)}x) = 1$ for all $j \in \mathbb{N}$). So the previous question would be equivalent of asking whether

$$\liminf_{N\to\infty}\frac{1}{N}\sum_{n_j(x)< N}\nu\left(\bigcap_{i=1}^k S_i^{-n_j(x)}E\right)>0.$$

Behaviors of averages with random weights have been observed extensively in the study of the **return times**, which was initiated by A. Brunel in his Ph.D. thesis from 1966 [10].

We note that

$$\frac{1}{N}\sum_{n=0}^{N-1}c_n\cdot\nu\left(\bigcap_{i=1}^kS_i^{-n}E\right)=\int\frac{1}{N}\sum_{n=0}^{N-1}c_n\prod_{i=1}^k\mathbf{1}_E(S_i^ny)d\nu(y).$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

We note that

$$\frac{1}{N}\sum_{n=0}^{N-1}c_n\cdot\nu\left(\bigcap_{i=1}^kS_i^{-n}E\right)=\int\frac{1}{N}\sum_{n=0}^{N-1}c_n\prod_{i=1}^k\mathbf{1}_E(S_i^ny)d\nu(y).$$

We can get more information about the multiple recurrent averages by studying the following: Given $g_1, g_2, \ldots, g_k \in L^{\infty}(\nu)$, do the averages

$$\frac{1}{N}\sum_{n=0}^{N-1}c_n\prod_{i=1}^k g_i\circ S_i^n$$

converge weakly? In $L^2(\nu)$ -norm? Almost everywhere?

$$\frac{1}{N}\sum_{n=0}^{N-1}\prod_{i=1}^{k}g_{i}\circ S_{i}^{n}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

have been studied extensively for norm convergence.

$$\frac{1}{N}\sum_{n=0}^{N-1}\prod_{i=1}^{k}g_{i}\circ S_{i}^{n}$$

have been studied extensively for norm convergence. For instance,

• The case $S_i = S^i$: Host and Kra (2005, [20])

$$\frac{1}{N}\sum_{n=0}^{N-1}\prod_{i=1}^{k}g_{i}\circ S_{i}^{n}$$

have been studied extensively for norm convergence. For instance,

- The case $S_i = S^i$: Host and Kra (2005, [20])
- The case S_i's commuting: Tao (2008, [25])

$$\frac{1}{N}\sum_{n=0}^{N-1}\prod_{i=1}^{k}g_{i}\circ S_{i}^{n}$$

have been studied extensively for norm convergence. For instance,

- The case $S_i = S^i$: Host and Kra (2005, [20])
- The case S_i 's commuting: Tao (2008, [25])
- The case S_i 's generate a nilpotent group: Walsh (2012, [26])

$$\frac{1}{N}\sum_{n=0}^{N-1}\prod_{i=1}^{k}g_{i}\circ S_{i}^{n}$$

have been studied extensively for norm convergence. For instance,

- The case $S_i = S^i$: Host and Kra (2005, [20])
- The case S_i 's commuting: Tao (2008, [25])

• The case S_i 's generate a nilpotent group: Walsh (2012, [26]) For the pointwise convergence, we have the double recurrence result by Bourgain, for the case k = 2 and $S_i = S^{a_i}$ (1990 [8]).

Good universal weights

Definition

We say $(X_n)_n$ is a **process** if for all nonnegative integers $n \ge 0$, X_n is a bounded and measurable function on some probability measure space (Ω, S, \mathbb{P}) .

Definition

We say $(X_n)_n$ is a **process** if for all nonnegative integers $n \ge 0$, X_n is a bounded and measurable function on some probability measure space (Ω, S, \mathbb{P}) .

Definition

We say the sequence $(a_n)_n$ is a good universal weight for a process $(X_n)_n$ pointwise (resp. in norm) if for every probability measure-preserving space (Ω, S, \mathbb{P}) for which the process $(X_n)_n$ is defined, then the averages

$$\frac{1}{N}\sum_{n=0}^{N-1}a_nX_n(\omega)$$

converges for \mathbb{P} -a.e. $\omega \in \Omega$ (resp. in $L^2(\mathbb{P})$).

Brunel and Keane in 1969 [11] showed that measure-preserving system (X, \mathcal{F}, μ, T) from a certain class and a set of positive measure $A \subset \mathcal{F}$, there exists a set of full-measure $X_A \subset X$ such that for any $x \in X'$ and any other measure-preserving system (Y, \mathcal{G}, ν, S) and any $g \in L^1(\nu)$, then

$$\lim_{N\to\infty}\frac{1}{N}\sum_{n=0}^{N-1}\mathbf{1}_A(T^nx)g(S^ny)$$

exists for ν -a.e. $y \in Y$.

Brunel and Keane in 1969 [11] showed that measure-preserving system (X, \mathcal{F}, μ, T) from a certain class and a set of positive measure $A \subset \mathcal{F}$, there exists a set of full-measure $X_A \subset X$ such that for any $x \in X'$ and any other measure-preserving system (Y, \mathcal{G}, ν, S) and any $g \in L^1(\nu)$, then

$$\lim_{N\to\infty}\frac{1}{N}\sum_{n=0}^{N-1}\mathbf{1}_A(T^nx)g(S^ny)$$

exists for ν -a.e. $y \in Y$.

Later, Bourgain showed [7] that for any given measure-preserving system (X, \mathcal{F}, μ, T) and $f \in L^{\infty}(\mu)$, $a_n = f(T^n x)$ is also a good universal weight for the pointwise ergodic theorem. A simpler proof was later provided by Bourgain, Furstenberg, Katznelson, and Ornstein [9].

Extensions of the return times theorem

The return times theorem has been extended in multiple directions. For example...

- Rudolph (Multi-term return times theorem, 1998, [24])
- A. (Multiple recurrence and the multi-term return times theorem, 2000, [1])
- Host and Kra (Good universal weight for the norm convergence of non conventional ergodic averages, 2009, [21])

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The return times theorem has been extended in multiple directions. For example...

- Rudolph (Multi-term return times theorem, 1998, [24])
- A. (Multiple recurrence and the multi-term return times theorem, 2000, [1])
- Host and Kra (Good universal weight for the norm convergence of non conventional ergodic averages, 2009, [21])
 More precisely, Host and Kra showed that given an ergodic dynamical system (X, F, µ, T) and a function f ∈ L[∞](µ), there exists a set of full-measure X_f ⊂ X such that for any x ∈ X_f, for any positive integer k, and for any other measure-preserving system (Y, G, ν, S) with g₁,..., g_k ∈ L[∞](ν), the averages

$$\frac{1}{N}\sum_{n=0}^{N-1}f(T^nx)g_1\circ S^n\cdot g_2\circ S^{2n}\cdots g_k\circ S^{kn}$$

converge in $L^2(\nu)$.

The result by Host and Kra shows that if $c_n = f(T^n x)$, then for μ -a.e. $x \in X$,

$$\lim_{N\to\infty}\frac{1}{N}\sum_{n=0}^{N-1}c_n\cdot\nu(E\cap S^{-n}E\cap\cdots\cap S^{-(k-1)n}E)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

exists for any other measure-preserving system (Y, \mathcal{G}, ν, S) .

The result by Host and Kra shows that if $c_n = f(T^n x)$, then for μ -a.e. $x \in X$,

$$\lim_{N\to\infty}\frac{1}{N}\sum_{n=0}^{N-1}c_n\cdot\nu(E\cap S^{-n}E\cap\cdots\cap S^{-(k-1)n}E)$$

exists for any other measure-preserving system (Y, \mathcal{G}, ν, S) . Question: Can c_n be generalized? For instance, can we have $c_n = f_1(T^{an}x)f_2(T^{bn}x)$ for some $f_1, f_2 \in L^{\infty}(\mu)$? Recall that given a measure-preserving system (X, \mathcal{F}, μ, T) , the Cesaro averages of $f_1(T^{an}x)f_2(T^{bn}x)$ converge for μ -a.e. $x \in X$ due to Bourgain [8].

Recall that given a measure-preserving system (X, \mathcal{F}, μ, T) , the Cesaro averages of $f_1(T^{an}x)f_2(T^{bn}x)$ converge for μ -a.e. $x \in X$ due to Bourgain [8].

In 2001, D. Duncan provided a Wiener-Wintner extension of Bourgain's result in his Ph.D. Thesis [14] before the appearance of Host-Kra-Ziegler factor.

Recall that given a measure-preserving system (X, \mathcal{F}, μ, T) , the Cesaro averages of $f_1(T^{an}x)f_2(T^{bn}x)$ converge for μ -a.e. $x \in X$ due to Bourgain [8].

In 2001, D. Duncan provided a Wiener-Wintner extension of Bourgain's result in his Ph.D. Thesis [14] before the appearance of Host-Kra-Ziegler factor.

Later in 2014, this result was extended further in a following way:

Theorem 1 (A., Duncan, Moore 2014, [3])

Let (X, \mathcal{F}, μ, T) be a standard ergodic dynamical system. Let $f_1, f_2 \in L^{\infty}(X)$. Let $W_N(f_1, f_2, x, t) = \frac{1}{N} \sum_{n=0}^{N-1} f_1(T^{an}x) f_2(T^{bn}x) e(nt)$. Then there exists a set of full-measure X_{f_1, f_2} such that for all $x \in X_{f_1, f_2}$ and for any $t \in \mathbb{R}$, the sequence $W_N(f_1, f_2, x, t)$ converges. Also, if either f_1 or f_2 belongs to \mathbb{Z}_2^{\perp} , then for any $x \in X_{f_1, f_2}$,

$$\limsup_{N\to\infty}\sup_{t\in\mathbb{R}}|W_N(f_1,f_2,x,t)|=0,$$

where \mathcal{Z}_k is the k-th Host-Kra-Ziegler factor.

Remarks on the D.R.W.W. result

This Wiener-Wintner result already shows that the sequence $c_n = f_1(T^{an}x)f_2(T^{bn}x)$ is μ -a.e. a good universal weight for the mean ergodic theorem, i.e. for any other dynamical system (Y, \mathcal{G}, ν, S) and $g \in L^{\infty}(\nu)$, the averages

$$\frac{1}{N}\sum_{n=0}^{N-1}f_1(T^{an}x)f_2(T^{bn}x)g\circ S^n$$

(日) (同) (三) (三) (三) (○) (○)

converge in $L^2(\nu)$.

Remarks on the D.R.W.W. result

This Wiener-Wintner result already shows that the sequence $c_n = f_1(T^{an}x)f_2(T^{bn}x)$ is μ -a.e. a good universal weight for the mean ergodic theorem, i.e. for any other dynamical system (Y, \mathcal{G}, ν, S) and $g \in L^{\infty}(\nu)$, the averages

$$\frac{1}{N}\sum_{n=0}^{N-1}f_1(T^{an}x)f_2(T^{bn}x)g\circ S^n$$

converge in $L^2(\nu)$.

The *l*-th Host-Kra-Ziegler factor Z_l of X is the inverse limit of *l*-step nilsystems of X.

Definition

Let G be a l-step nilpotent Lie group, and Γ be a discrete co-compact subgroup of G. Then G/Γ is called an l-step nilmanifold. A measure-preserving system (X, \mathcal{F}, μ, T) , where $X = G/\Gamma$, \mathcal{F} a Borel sigma-algebra with Haar measure μ , and $Tx = g \cdot x$ for some $g \in G$, is called an l-step nilsystem. In 2014 Ergodic Theory Workshop at UNC-Chapel Hill, B. Weiss asked whether Theorem 1 can be extended to nilsequences.

Definition

Let $(X = G/\Gamma, \mathcal{F}, \mu, T)$ be an I-step nilsystem. If $F \in C(X)$ and $g \in G$, we say the sequence $a_n = F(g^n x)$ is a basic I-step nilsequence. An I-step nilsequence is a uniform limit of basic I-step nilsequences.

In 2014 Ergodic Theory Workshop at UNC-Chapel Hill, B. Weiss asked whether Theorem 1 can be extended to nilsequences.

Definition

Let $(X = G/\Gamma, \mathcal{F}, \mu, T)$ be an I-step nilsystem. If $F \in C(X)$ and $g \in G$, we say the sequence $a_n = F(g^n x)$ is a basic I-step nilsequence. An I-step nilsequence is a uniform limit of basic I-step nilsequences.

We note that $e(nt) = e^{2\pi int}$ is a 1-step nilsequence, and for any real polynomial p of degree l, e(p(n)) is an l-step nilsequence.

We answered to this question positively.

Theorem 2 (A. 2015 [2])

Let (X, \mathcal{F}, μ, T) be a measure-preserving system, and $f_1, f_2 \in L^{\infty}(\mu)$. Then there exists a set of full-measure $X_{f_1, f_2} \subset X$ such that for any $x \in X_{f_1, f_2}$ and for any nilsequence $(b_n)_n$, the averages

$$\frac{1}{N}\sum_{n=0}^{N-1}f_1(T^{an}x)f_2(T^{bn}x)b_n$$

converge.

We answered to this question positively.

Theorem 2 (A. 2015 [2])

Let (X, \mathcal{F}, μ, T) be a measure-preserving system, and $f_1, f_2 \in L^{\infty}(\mu)$. Then there exists a set of full-measure $X_{f_1, f_2} \subset X$ such that for any $x \in X_{f_1, f_2}$ and for any nilsequence $(b_n)_n$, the averages

$$\frac{1}{N}\sum_{n=0}^{N-1}f_1(T^{an}x)f_2(T^{bn}x)b_n$$

converge.

This result was also obtained by Zorin-Kranich independently [27].

If $b_n = e(p(n))$ for some real polynomial p, we would have the polynomial Wiener-Wintner result for the double recurrence. This result was obtained prior to the nilsequence result by A. and Moore in 2014 [6].

If $b_n = e(p(n))$ for some real polynomial p, we would have the polynomial Wiener-Wintner result for the double recurrence. This result was obtained prior to the nilsequence result by A. and Moore in 2014 [6].

This would imply that the sequence $c_n = f_1(T^{an}x)f_2(T^{bn}x)$ is a μ -a.e. good universal weight for the process $X_n(y) = g(S^{p(n)}y)$ in norm for any measure-preserving system $(Y, \mathcal{G}, \nu, S), g \in L^{\infty}(\nu)$ and any polynomial $p : \mathbb{Z} \to \mathbb{Z}$

If $b_n = e(p(n))$ for some real polynomial p, we would have the polynomial Wiener-Wintner result for the double recurrence. This result was obtained prior to the nilsequence result by A. and Moore in 2014 [6].

- This would imply that the sequence $c_n = f_1(T^{an}x)f_2(T^{bn}x)$ is a μ -a.e. good universal weight for the process $X_n(y) = g(S^{p(n)}y)$ in norm for any measure-preserving system $(Y, \mathcal{G}, \nu, S), g \in L^{\infty}(\nu)$ and any polynomial $p : \mathbb{Z} \to \mathbb{Z}$
- The polynomial Wiener-Wintner averages (with a single function) were studied previously by E. Lesigne (1990 [22], 1993 [23]), N. Frantzikinakis (2006 [16]), and recently by T. Eisner and B. Krause (polynomial power of *T*, 2014 [15]).

Recently, we have shown that $a_n = f_1(T^{an}x)f_2(T^{bn}x)$ for any $a, b \in \mathbb{Z}$ distinct is a good universal weight for the Furstenberg averages.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Recently, we have shown that $a_n = f_1(T^{an}x)f_2(T^{bn}x)$ for any $a, b \in \mathbb{Z}$ distinct is a good universal weight for the Furstenberg averages.

Theorem 3 (A., Moore 2015, [5])

Let (X, \mathcal{F}, μ, T) be a measure-preserving system, and suppose $f_1, f_2 \in L^{\infty}(\mu)$. Then there exists a set of full-measure $X_{f_1, f_2} \subset X$ such that for any $x \in X_{f_1, f_2}$, for any $a, b \in \mathbb{Z}$ distinct, for any positive integer k, and for any other dynamical system (Y, \mathcal{G}, ν, S) with functions $g_1, \ldots, g_k \in L^{\infty}(\nu)$, the averages

$$\frac{1}{N}\sum_{n=0}^{N-1}f_1(T^{an}x)f_2(T^{bn}x)\prod_{i=1}^kg_i\circ S^{in}$$

converge in $L^2(\nu)$.

This is a strengthening of the results of Host and Kra and of Bourgain's double recurrence theorem. In fact, we can show that for any A, B ∈ F, we know that there exists a set of full-measure X_{A,B} ⊂ X such that for any x ∈ X_{A,B}, for any other measure-preserving system (Y, G, ν, S) and E ∈ G, the limit

$$\lim_{N\to\infty}\frac{1}{N}\sum_{n=0}^{N-1}\mathbf{1}_{A}(T^{an}x)\mathbf{1}_{B}(T^{bn}x)\nu\left(\bigcap_{i=1}^{k}S^{-in}E\right)$$

exists.

Commuting Case

Furthermore, Theorem 3 can be extended to the case with commuting transformations. This result combines and extends the previous work of Bourgain and Tao.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Furthermore, Theorem 3 can be extended to the case with commuting transformations. This result combines and extends the previous work of Bourgain and Tao.

Theorem 4 (A., Moore 2015, [4])

Let (X, \mathcal{F}, μ, T) be a measure-preserving system, and suppose $f_1, f_2 \in L^{\infty}(\mu)$. Then there exists a set of full-measure $X_{f_1, f_2} \subset X$ such that for any $x \in X_{f_1, f_2}$, for any $a, b \in \mathbb{Z}$ distinct, for any positive integer k, and for any other dynamical system with commuting transformations $(Y, \mathcal{G}, \nu, S_1, \ldots, S_k)$ with functions $g_1, \ldots, g_k \in L^{\infty}(\nu)$, the averages

$$\frac{1}{N}\sum_{n=0}^{N-1}f_1(T^{an}x)f_2(T^{bn}x)\prod_{i=1}^kg_i\circ S_i^n$$

converge in $L^2(\nu)$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

For the first case, we inductively prove that there exists a set of full-measure X_1 such that the averages converge to zero by applying the spectral theorem and the Wiener-Wintner result above to show that the averages converge to 0 (on a universal set of full-measure in X).

For the first case, we inductively prove that there exists a set of full-measure X_1 such that the averages converge to zero by applying the spectral theorem and the Wiener-Wintner result above to show that the averages converge to 0 (on a universal set of full-measure in X).

For the second case, we look at the appropriate factors of Y.

For the first case, we inductively prove that there exists a set of full-measure X_1 such that the averages converge to zero by applying the spectral theorem and the Wiener-Wintner result above to show that the averages converge to 0 (on a universal set of full-measure in X).

For the second case, we look at the appropriate factors of Y.

If one of the functions g₁,..., g_k belongs to Z_k(S)[⊥], then the averages converge to 0 in norm.

For the first case, we inductively prove that there exists a set of full-measure X_1 such that the averages converge to zero by applying the spectral theorem and the Wiener-Wintner result above to show that the averages converge to 0 (on a universal set of full-measure in X).

For the second case, we look at the appropriate factors of Y.

- If one of the functions g₁,..., g_k belongs to Z_k(S)[⊥], then the averages converge to 0 in norm.
- If all of them belong to Z_k(S), we apply Leibman's convergence theorem.

Next Steps

1. Nilpotent case. Can the double recurrence good universal weight results be extended to the systems $(Y, \mathcal{G}, \nu, S_1, \ldots, S_k)$, where the transformations S_1, \ldots, S_k are generating a nilpoteng group?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Next Steps

1. Nilpotent case. Can the double recurrence good universal weight results be extended to the systems $(Y, \mathcal{G}, \nu, S_1, \ldots, S_k)$, where the transformations S_1, \ldots, S_k are generating a nilpoteng group?

2. Positivity. Given a measure-preserving system (X, \mathcal{F}, μ, T) , with some $f_1, f_2 \in L^{\infty}(\mu)$, does there exist a set of full-measure $X_{f_1, f_2} \subset X$ such that for any $x \in X_{f_1, f_2}$ and for any other measure-preserving system $(Y, \nu, S_1, \ldots, S_k)$ with any $E \in \mathcal{G}$ a set with positive measure, we have

$$\liminf_{N\to\infty}\frac{1}{N}\sum_{n=0}^{N-1}f_1(T^{an}x)f_2(T^{bn}x)\nu\left(\bigcap_{i=1}^kS_i^{-n}E\right)>0?$$

Any properties on f_1 and f_2 (beyond the clear requirement that $\lim_{N\to\infty} \frac{1}{N} \sum_{n=0}^{N-1} f_1(T^{an}x) f_2(T^{bn}x) > 0$)? What about a positive lower bound? Syndeticity?

[1] I. Assani.

Multiple return times theorems for weakly mixing systems. Ann. Inst. Henri Poincaré, Probabilités et Statistiques, 36:153–165, 2000.

[2] I. Assani.

Pointwise double recurrence and nilsequences. Preprint, 2015.

 [3] I. Assani, D. Duncan, and R. Moore.
 Pointwise characteristic factors for Wiener-Wintner double recurrence theorem.

Ergod. Th. and Dynam. Sys., 2015. Available on CJO 2015 doi:10.1017/etds.2014.99.

[4] I. Assani and R. Moore.

A good universal weight for multiple recurrence averages with commuting transformations in norm.

Preprint, available on arXiv:1506.05370, June 2015.

[5] I. Assani and R. Moore.

A good universal weight for nonconventional ergodic averages in norm.

Preprint, available on arXiv:1503.08863, submitted, March 2015.

[6] I. Assani and R. Moore.

Extension of Wiener-Wintner double recurrence theorem to polynomials.

Available on http://www.unc.edu/math/Faculty/assani/ WWDR_poly_final_abSept19.pdf, submitted, September 2014.

[7] J. Bourgain.

Return time sequences of dynamical systems. Unpublished preprint, 1988.

[8] J. Bourgain.

Double recurrence and almost sure convergence.

J. reine angew. Math., 404:140–161, 1990.

[9] J. Bourgain, H. Furstenberg, Y. Katznelson, and D. Ornstein. Appendix on return-time sequences. *Publ. Math. Inst. Hautes Études Sci*, 69:42–45, 1989.

[10] A. Brunel.
 Sur quelques problèmes de la thèorie ergodique ponctuelle.
 PhD thesis, 1966.

[11] A. Brunel and M. Keane.

Ergodic theorems for operator sequences.

Z. Wahrscheinlichkeitstheorie verw. Geb., 12:231–240, 1969.

[12] J.-P. Conze and E. Lesigne.

Théorèmes ergodiques pour des mesures diagonales. *Bull. Soc. Math. France*, 112:143–175, 1984.

[13] J.-P. Conze and E. Lesigne.

Sur un théorème ergodique pour des mesures diagonaless. *Publications de l'Institut de Recherche de Mathématiques de Rennes, Probabilitiés,* 1987-1:1–31, 1988.

[14] D. Duncan.

A Wiener-Wintner Double Recurrence Theorem.

PhD thesis, The University of North Carolina at Chapel Hill, 2001.

Advisor: I. Assani.

[15] T. Eisner and B. Krause. (Uniform) convergence of twisted ergodic averages. Preprint, arXiv:1407.4736, 2014.

[16] N. Frantzikinakis.

Uniformity in the polynomial Wiener-Wintner theorem. *Ergod. Th. and Dynam. Sys.*, 26(4):1061–1071, 2006.

[17] H. Furstenberg.

Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions.

J. Anal. Math, 31:204–256, 1977.

[18] H. Furstenberg and Y. Katznelson.
 An ergodic Szemerédi theorem for commuting transformations.
 J. Analyse Math., 34:275–291, 1978.

[19] B. Green and T. Tao.

The primes contain arbitrarily long arithmetic progressions. *Annals of Mathematics*, 167:481–547, 2008.

[20] B. Host and B. Kra.

Nonconventional ergodic averages and nilmanifolds. *Ann. of Math.*, 161:387–488, 2005.

[21] B. Host and B. Kra.

Uniformity seminorms on ℓ^{∞} and applications.

J. Anal. Math, 108:219-276, 2009.

[22] E. Lesigne.

Un théorème de disjonction de systèmes dynamiques et une généralisation du théorème ergodique de Wiener-Wintner. *Ergod. Th. and Dynam. Sys.*, 10:513–521, 1990.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

[23] E. Lesigne.

Spectre quasi-discret et théorème ergodique de Wiener-Wintner pour les polynômes.

Ergod. Th. and Dynam. Sys., 13:767-784, 1993.

[24] D. Rudolph.

Fully generic sequences and a multiple-term return-times theorem.

Invent. Math., 131(1):199-228, 1998.

[25] T. Tao.

Norm convergence for multiple ergodic averages for commuting transformations.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ・ うへぐ

Ergod. Th. and Dynam Sys., 28:657–688, 2008.

[26] M. Walsh.

Norm convergence of nilpotent ergodic averages. *Ann. of Math. (2)*, 175(3):1667–1688, 2012.

[27] P. Zorin-Kranich.

A nilsequence Wiener-Wintner theorem for bilinear ergodic averages.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Preprint. Available from arXiv:1504.04647, 2015.

Thank you for the invitation!

<□ > < @ > < E > < E > E のQ @