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Abstract. The three gap theorem (or Steinhaus conjecture) states that there are at
most three distinct gap lengths in the fractional parts of the sequence α, 2α, . . . , Nα,
for any integer N and real number α. The statement was proved in the 1950s inde-
pendently by various authors, see e.g. [N.B. Slater, Gaps and steps for the sequence
nθ mod 1, Proc. Camb. Phil. Soc. 63 (1967), 1115–1123]. This hand-out presents a
different proof using the space of two-dimensional Euclidean lattices.

For fixed α ∈ R, let ξk = {kα} be the fractional part of kα. We are interested
in the gaps between the elements of the sequence (ξk)

N
k=1 on R/Z. [These gaps

are, in other words, the lengths of the N intervals that R/Z is partitioned into by
(ξk)

N
k=1. Shifting by −α, this is the same as the lengths of the N intervals that R/Z is

partitioned into by (ξk)
N−1
k=0 , and therefore the same as the lengths of the N intervals

that [0, 1] is partitioned into by (ξk)
N−1
k=1 .] The gap between ξk and its next neighbour

on R/Z (this is not necessarily the nearest neighbour, as the gap to the element
preceding ξk may be the smaller one) is

sk,N = min{(�− k)α + n ≥ 0 | (�, n) ∈ Z2, 0 < � ≤ N, � �= k}
= min{mα + n ≥ 0 | (m, n) ∈ Z2, −k < m ≤ N − k, m �= 0}
= min{mα + n ≥ 0 | (m, n) ∈ Z2 \ {0}, −k < m ≤ N − k}.

(1)

The last minimum is taken over a larger set than that in the second line, where the
additional elements correspond to m = 0 and n �= 0. For these values

(2) min{mα + n ≥ 0} = 1,

which means they do not contribute to the minimum in (1). This justifies the last
equality in (1). Now

(3) sk,N =
1
N

min
�

y ≥ 0
���� (x, y) ∈ L \ {0}, − k

N
< x ≤ 1 − k

N

�
.

where

(4) L = Z2M, M =

�
1 α
0 1

��
N−1 0

0 N

�
.
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More generally, for every M ∈ G := SL(2, R) we obtain a lattice L = Z2M of
covolume one. If

(5) M =

�
a b
c d

�
,

a basis of this lattice is given by

(6) b1 = e1M = (a, b), b2 = e2M = (c, d),

where e1 = (1, 0), e2 = (0, 1) for the standard basis of Z2. All other bases of L with
the same orientation can be obtained by replacing M by γM provided γ ∈ Γ :=
SL(2, Z). The space of lattices can in this way be identified with the coset space
Γ\G. The “modular group” Γ is a lattice in G.

For M ∈ G and 0 < t ≤ 1 define

(7) F(M, t) = min
�

y ≥ 0
���� (x, y) ∈ Z2M \ {0}, −t < x ≤ 1 − t

�
.

Then

(8) sk,N =
1
N

F
��

1 α
0 1

��
N−1 0

0 N

�
,

k
N

�
.

We first check F is well defined.

Proposition 1. F is well defined as a function Γ\G × (0, 1] → R≥0.

Proof. We first show that

(9)
�

y ≥ 0
���� (x, y) ∈ Z2M \ {0}, −t < x ≤ 1 − t

�

is non-empty for every M ∈ G, t ∈ (0, 1]. Let

(10) M =

�
a b
c d

�
,

and assume first that a = 0. Then c �= 0 and b = −1/c, and (9) becomes

(11)
�

bm + dn ≥ 0
���� (m, n) ∈ Z2 \ {0}, −t < cn ≤ 1 − t

�
⊃ |b|N,

which is non-empty. If a �= 0, we have

(12) M =

�
a b
c d

�
=

�
a 0
c a−1

��
1 ba−1

0 1

�
,

and so (9) equals

(13)
�

y + ba−1x ≥ 0
���� (x, y) ∈ Z2

�
a 0
c a−1

�
\ {0}, −t < x ≤ 1 − t

�
.

Since −t < x ≤ 1 − t implies |x| ≤ 1, the set in (13) contains the set

(14)
�

y + ba−1x
���� (x, y) ∈ Z2

�
a 0
c a−1

�
\ {0}, −t < x ≤ 1 − t, y ≥ |ba−1|

�

=

�
bm + dn

���� (m, n) ∈ Z2 \ {0}, −t < am + cn ≤ 1 − t, n ≥ |b|
�

.
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Figure 1. Illustration of the lattice configuration in the proof of Propo-
sition 2

If c/a is rational, there exist (m, n) ∈ Z2 \ {0} with n ≥ |b| such that am + cn = 0.
If c/a is irrational, then the set {am + cn|(m, n) ∈ Z2 \ {0}, n ≥ |b|} is dense in R.
Therfore, in both cases, (14) is nonempty, and the minimum of (9) exists due to the
discreteness of Z2M.

Finally, we note that F( · , t) is well defined on Γ\G since F(M, t) = F(γM, t) for
all M ∈ G, γ ∈ Γ. �

The following assertion implies the classical three gap theorem.

Proposition 2. For every given M, the function F(M, · ) is piecewise constant and takes
at most three distinct values. If there are three values, then the third is the sum of the first
and second.

Proof. Among all points of the set L \ {0} with L = Z2M in the region A =
(−1, 1)× [0, ∞), let r = (r1, r2) be a point with minimal second coordinate r2. See
Figure 1. Let us assume r2 > 0 (the case r2 = 0 is treated at the end of the proof).
Next let s = (s1, s2) be a point in A∩L \ Zr with s2 minimal. Then s2 ≥ r2 > 0.

The choice of r and s implies that the closed triangle with vertices 0, r, s does not
contain an additional lattice point. It follows that the parallelogram with vertices
0, r, s, r + s does not contain an additional lattice point, and hence r, s form a basis
of L.

Note that r1 and s1 must have opposite signs, i.e. r1s1 < 0, since otherwise s −
r ∈ A with a second coordinate that is smaller than s2, contradicting the assumed
minimality of s2. It follows that if we set Jr = (0, 1] ∩ (−r1, 1 − r1] and Js =
(0, 1] ∩ (−s1, 1 − s1], then one of these intervals is of the form (0, q] and the other is
of the form (q�, 1], for some q, q� ∈ (0, 1). Now in view of definition (7), we obtain

(15) F(M, t) =






r2 if t ∈ Jr

s2 if t ∈ Js \ Jr

r2 + s2 if t ∈ (0, 1] \ (Jr ∪ Js).

(Here the set (0, 1] \ (Jr ∪ Js) may be empty.) Thus, for any fixed M, the function
F(M, · ) can only take one of the three values r2, s2, r2 + s2.
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Now consider the remaining case r2 = 0. Let us then also require that r is a
primitive lattice point, and again let s = (s1, s2) be a point in A ∩ L \ Zr with s2
minimal (then s2 > 0). If |r1| ≤ 1/2 then F(M, t) = 0 for all t ∈ (0, 1]. On the other
hand, if |r1| > 1/2 then F(M, t) = s2 for t ∈ (1 − |r1|, |r1|] and F(M, t) = 0 for all
other t in (0, 1]. �
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