Ergodic theory of expanding Thurston maps

Zhiqiang Li

University of California, Los Angeles, USA (until Aug. 23, 2015)
Stony Brook University, USA (from Aug. 24, 2015)

School and Conference on Dynamical Systems
Abdus Salam International Centre for Theoretical Physics
Trieste, Italy
July 29, 2015
Thurston’s theorem on characterization of rational maps among topological self-branched covering of 2-sphere.

[Douady & Hubbard 1993]
Thurston’s Theorem

Thurston’s theorem on characterization of rational maps among topological self-branched covering of 2-sphere. [Douady & Hubbard 1993]
Expanding Thurston maps

To appear in AMS, Mathematical Surveys and Monographs soon... with over 500 pp.

To appear in AMS, Mathematical Surveys and Monographs soon... with over 500 pp.
Branched coverings on S^2

Branched covering map on S^2: A continuous map $f : S^2 \to S^2$ that satisfies

$$\deg_f(x) = d: \text{ the local degree}$$

x is a critical point if $\deg_f(x) = d \geq 2$
Branched coverings on S^2

Branched covering map on S^2: A continuous map $f : S^2 \rightarrow S^2$ that satisfies

$$\deg_f(x) = d : \text{the local degree}$$

x is a **critical point** if $\deg_f(x) = d \geq 2$
Branched coverings on S^2

Branched covering map on S^2: A continuous map $f : S^2 \to S^2$ that satisfies

$\deg_f(x) = d$: the local degree

x is a *critical point* if $\deg_f(x) = d \geq 2$
Branched coverings on S^2

Branched covering map on S^2: A continuous map $f : S^2 \to S^2$ that satisfies

\[\deg_f(x) = d \]: the local degree

x is a critical point if $\deg_f(x) = d \geq 2$
Thurston maps

Thurston map: A non-homeomorphic branched covering map $f : S^2 \to S^2$ with $\text{card}(\text{post } f) < +\infty$.

Postcritical set:
$\text{post } f = \{ f^n(x) | n \in \{ 1, 2, \ldots \}, x \text{ is a critical point of } f \}$.
Pillow: f, a Lattès map
Pillow: f, a Lattès map
Example

Pillow: \(f^2 \)
Example

Pillow: f^3
A Thurston map $f : S^2 \to S^2$ is expanding if there exist
- a metric d on S^2 that induces the standard topology on S^2,
- a Jordan curve $C \subseteq S^2$ containing post f

such that

$$\lim_{n \to +\infty} \max\{\text{diam}_d(X) \mid X \text{ is a conn. comp. of } S^2 \setminus f^{-n}(C)\} = 0.$$

Remark: the definition is independent of the choices of d and $C.$
Expanding Thurston maps

A Thurston map \(f : S^2 \to S^2 \) is \textit{expanding} if there exist

- a metric \(d \) on \(S^2 \) that induces the standard topology on \(S^2 \),
- a Jordan curve \(C \subseteq S^2 \) containing post \(f \)

such that

\[
\lim_{n \to +\infty} \max \{ \text{diam}_d(X) \mid X \text{ is a conn. comp. of } S^2 \setminus f^{-n}(C) \} = 0.
\]

Remark: the definition is independent of the choices of \(d \) and \(C \).
Proposition. Let $R: \hat{\mathbb{C}} \to \hat{\mathbb{C}}$ be a rational Thurston map. Then the following are equivalent:

1. R is expanding,
2. the Julia set of R is $\hat{\mathbb{C}}$,
3. R has no periodic critical points.
Invariant Jordan curves

Theorem (Cannon, Floyd, & Parry 01, Bonk & Meyer 10)

Let f be an expanding Thurston map. For each $n \in \mathbb{N}$ sufficiently large, there exists an f^n-invariant Jordan curve $C \subseteq S^2$ containing post f.
f - expanding Thurston map
\mathcal{C} - Jordan curve on S^2 containing post f

d - visual metric (with expansion factor $\Lambda > 1$)
characterized by

- $\text{diam}_d(X^n) \precsim \Lambda^{-n}$,
- $d(X^n, Y^n) \succeq \Lambda^{-n}$ if $X^n \cap Y^n = \emptyset$.

If f is rational, then $d \overset{\text{q.s.}}{\simeq}$ spherical metric.

\sim - quasisymmetrically equivalent
Visual metrics

\(f \) - expanding Thurston map
\(\mathcal{C} \) - Jordan curve on \(S^2 \) containing post \(f \)
\(d \) - visual metric (with expansion factor \(\Lambda > 1 \))

characterized by

- \(\text{diam}_d(X^n) \asymp \Lambda^{-n} \),
- \(d(X^n, Y^n) \gtrsim \Lambda^{-n} \) if \(X^n \cap Y^n = \emptyset \).

If \(f \) is rational, then \(d \) \(\varpropto \) spherical metric.

\(\varpropto \) - quasisymmetically equivalent
f - expanding Thurston map
C - Jordan curve on S^2 containing post f

d - visual metric (with expansion factor $\Lambda > 1$) characterized by

- $\text{diam}_d(X^n) \asymp \Lambda^{-n}$,
- $d(X^n, Y^n) \asymp \Lambda^{-n}$ if $X^n \cap Y^n = \emptyset$.

If f is rational, then $d \overset{\text{q.s.}}{\sim}$ spherical metric.

$q.s.$ - quasisymmetrically equivalent
Visual metrics

- expanding Thurston map

C - Jordan curve on S^2 containing post f

d - visual metric (with expansion factor $\Lambda > 1$)

characterized by

- $\text{diam}_d(X^n) \asymp \Lambda^{-n}$,

- $d(X^n, Y^n) \gtrsim \Lambda^{-n}$ if $X^n \cap Y^n = \emptyset$.

If f is rational, then $d \, \text{q.s.} \, \simeq$ spherical metric.

$q.s.$ - quasisymmetrically equivalent
f - expanding Thurston map
\mathcal{C} - Jordan curve on S^2 containing post f

d - visual metric (with expansion factor $\Lambda > 1$)
characterized by

1. $\text{diam}_d(X^n) \asymp \Lambda^{-n},$
2. $d(X^n, Y^n) \succsim \Lambda^{-n}$ if $X^n \cap Y^n = \emptyset.$

If f is rational, then $d \overset{\text{q.s.}}{\simeq}$ spherical metric.

$q.s.$ - quasisymmetrically equivalent
Sullivan’s dictionary

<table>
<thead>
<tr>
<th>Geometric group theory</th>
<th>Complex dynamics</th>
</tr>
</thead>
<tbody>
<tr>
<td>cocompact Kleinian group</td>
<td>rational expanding Thurston map</td>
</tr>
<tr>
<td>Gromov hyperbolic group with boundary S^2</td>
<td>expanding Thurston map</td>
</tr>
<tr>
<td>Cannon’s Conjecture</td>
<td>Characterization Theorems of rational maps</td>
</tr>
</tbody>
</table>

Cannon’s Conjecture The boundary at infinity of a Gromov hyperbolic group is homeomorphic to $S^2 \ q.s. \ S^2 \ q.s. \ \sim$ spherical metric.

Theorem (Bonk & Meyer 10, Haïssinsky & Pilgrim 09)

An expanding Thurston map is conjugate to a rational map iff visual metric $q.s. \ \sim$ spherical metric.
Sullivan’s dictionary

<table>
<thead>
<tr>
<th>Geometric group theory</th>
<th>Complex dynamics</th>
</tr>
</thead>
<tbody>
<tr>
<td>cocompact Kleinian group</td>
<td>rational expanding Thurston map</td>
</tr>
<tr>
<td>Gromov hyperbolic group with boundary S^2</td>
<td>expanding Thurston map</td>
</tr>
<tr>
<td>Cannon’s Conjecture</td>
<td>Characterization Theorems of rational maps</td>
</tr>
</tbody>
</table>

Cannon’s Conjecture The boundary at infinity of a Gromov hyperbolic group is homeomorphic to S^2 iff visual metric \(\equiv\) spherical metric.

Theorem (Bonk & Meyer 10, Haïssinsky & Pilgrim 09) An expanding Thurston map is conjugate to a rational map iff visual metric \(\equiv\) spherical metric.
<table>
<thead>
<tr>
<th>Geometric group theory</th>
<th>Complex dynamics</th>
</tr>
</thead>
<tbody>
<tr>
<td>cocompact Kleinian group</td>
<td>rational expanding Thurston map</td>
</tr>
<tr>
<td>Gromov hyperbolic group with boundary S^2</td>
<td>expanding Thurston map</td>
</tr>
<tr>
<td>Cannon’s Conjecture</td>
<td>Characterization Theorems of rational maps</td>
</tr>
</tbody>
</table>

Cannon’s Conjecture The boundary at infinity of a Gromov hyperbolic group is homeomorphic to S^2 iff visual metric \(\approx\) spherical metric.

Theorem (Bonk & Meyer 10, Haïssinsky & Pilgrim 09)

An expanding Thurston map is conjugate to a rational map iff visual metric \(\approx\) spherical metric.
f - expanding Thurston map

- Existence & uniqueness of the measure of maximal entropy ([Haïssinsky & Pilgrim 09], [Bonk & Meyer 10])
- Ergodic properties of the measure of maximal entropy
- Existence & uniqueness of the equilibrium states
- Distribution of preimages and periodic points
Ergodic theory

\(f \) - expanding Thurston map

- Existence & uniqueness of the measure of maximal entropy ([Haissinsky & Pilgrim 09], [Bonk & Meyer 10])
- Ergodic properties of the measure of maximal entropy
- Existence & uniqueness of the equilibrium states
- Distribution of preimages and periodic points
Ergodic theory

\(f \) - expanding Thurston map

- Existence & uniqueness of the measure of maximal entropy ([Haïssinsky & Pilgrim 09], [Bonk & Meyer 10])
- Ergodic properties of the measure of maximal entropy
- Existence & uniqueness of the equilibrium states
- Distribution of preimages and periodic points
Ergodic theory

- f - expanding Thurston map
 - Existence & uniqueness of the measure of maximal entropy ([Haïssinsky & Pilgrim 09], [Bonk & Meyer 10])
 - Ergodic properties of the measure of maximal entropy
 - Existence & uniqueness of the equilibrium states
 - Distribution of preimages and periodic points
Ergodic theory

f - expanding Thurston map

- Existence & uniqueness of the measure of maximal entropy ([Haïssinsky & Pilgrim 09], [Bonk & Meyer 10])
- Ergodic properties of the measure of maximal entropy
- Existence & uniqueness of the equilibrium states
- Distribution of preimages and periodic points
f - expanding Thurston map

- Existence & uniqueness of the measure of maximal entropy ([Haïssinsky & Pilgrim 09], [Bonk & Meyer 10])
- Ergodic properties of the measure of maximal entropy
- Existence & uniqueness of the equilibrium states
- Distribution of preimages and periodic points
Theorem (L. 13)

Let f be an expanding Thurston map, with μ_0 its measure of maximal entropy, $p \in S^2$.

Choose $w_n(x)$ to be 1 or $\deg f^n(x)$. Then as $n \to +\infty$,

$$\frac{1}{(\deg f)^n} \sum_{x \in f^{-n}(p)} w_n(x) \delta_x \xrightarrow{w^*} \mu_0,$$

(preimage pts)

$$\frac{1}{(\deg f)^n} \sum_{x = f^n(x)} w_n(x) \delta_x \xrightarrow{w^*} \mu_0.$$

(periodic pts)

Theorem (L. 13)

Each expanding Thurston map f has exactly $1 + \deg f$ fixed points (counted with local degree $\deg f(x)$).
Theorem (L. 13)

Let f be an expanding Thurston map, with μ_0 its measure of maximal entropy, $p \in S^2$.

Choose $w_n(x)$ to be 1 or $\text{deg}_{f^n}(x)$. Then as $n \to +\infty$,

$$\frac{1}{(\text{deg } f)^n} \sum_{x \in f^{-n}(p)} w_n(x) \delta_x \xrightarrow{w^*} \mu_0,$$

(preimage pts)

$$\frac{1}{(\text{deg } f)^n} \sum_{x = f^n(x)} w_n(x) \delta_x \xrightarrow{w^*} \mu_0.$$

(periodic pts)

Theorem (L. 13)

Each expanding Thurston map f has exactly $1 + \text{deg } f$ fixed points (counted with local degree $\text{deg}_f(x)$).
Theorem (L. 13)

Let f be an expanding Thurston map, with μ_0 its measure of maximal entropy, $p \in S^2$.

Choose $w_n(x)$ to be 1 or $\text{deg}_f^n(x)$. Then as $n \rightarrow +\infty$,

$$\frac{1}{(\text{deg } f)^n} \sum_{x \in f^{-n}(p)} w_n(x) \delta_x \xrightarrow{w^*} \mu_0,$$

(preimage pts)

$$\frac{1}{(\text{deg } f)^n} \sum_{x = f^n(x)} w_n(x) \delta_x \xrightarrow{w^*} \mu_0,$$

(periodic pts)

Theorem (L. 13)

Each expanding Thurston map f has exactly $1 + \text{deg } f$ fixed points (counted with local degree $\text{deg}_f(x)$).
Let f be an expanding Thurston map, with μ_0 its measure of maximal entropy, $p \in S^2$.
Choose $w_n(x)$ to be 1 or $\text{deg}_{f^n}(x)$. Then as $n \to +\infty$,

$$\frac{1}{(\text{deg } f)^n} \sum_{x \in f^{-n}(p)} w_n(x) \delta_x \xrightarrow{w^*} \mu_0,$$
(preimage pts)

$$\frac{1}{(\text{deg } f)^n} \sum_{x = f^n(x)} w_n(x) \delta_x \xrightarrow{w^*} \mu_0.$$
(periodic pts)

Each expanding Thurston map f has exactly $1 + \text{deg } f$ fixed points (counted with local degree $\text{deg}_f(x)$).
Theorem (L. 13)

Let f be an expanding Thurston map, with μ_0 its measure of maximal entropy, $p \in S^2$.

Choose $w_n(x)$ to be 1 or $\deg f_n(x)$. Then as $n \to +\infty$,

$$
\frac{1}{(\deg f)^n} \sum_{x \in f^{-n}(p)} w_n(x) \delta_x \xrightarrow{w^*} \mu_0,
$$
(preimage pts)

$$
\frac{1}{(\deg f)^n} \sum_{x = f^n(x)} w_n(x) \delta_x \xrightarrow{w^*} \mu_0.
$$
(periodic pts)

Theorem (L. 13)

Each expanding Thurston map f has exactly $1 + \deg f$ fixed points (counted with local degree $\deg f(x)$).
“Thermodynamic formalism is the part of ergodic theory which studies measures under assumptions on the regularity of their Jacobian functions.”

— Omri Sarig

\[f : X \to X, \mu \text{ Borel measure} \]

\[J \text{ is the Jacobian function of } f \text{ w.r.t. } \mu \text{ if} \]

\[\mu(f(A)) = \int_A J \, d\mu \text{ for any } A \subseteq X \text{ on which } f \text{ is injective.} \]

Write \(J = c \exp(-\phi) \), where \(\phi \) is called potential.
“Thermodynamic formalism is the part of ergodic theory which studies measures under assumptions on the regularity of their Jacobian functions.”

— Omri Sarig

\[f : X \to X, \mu \text{ Borel measure} \]

\(J \) is the \textit{Jacobian function} of \(f \) w.r.t. \(\mu \) if

\[\mu(f(A)) = \int_A J \, d\mu \text{ for any } A \subseteq X \text{ on which } f \text{ is injective.} \]

Write \(J = c \exp(-\phi) \), where \(\phi \) is called \textit{potential}.
“Thermodynamic formalism is the part of ergodic theory which studies measures under assumptions on the regularity of their Jacobian functions.”

— Omri Sarig

$f : X \to X$, μ Borel measure

J is the Jacobian function of f w.r.t. μ if

$\mu(f(A)) = \int_A J \, d\mu$ for any $A \subseteq X$ on which f is injective.

Write $J = c \exp(-\phi)$, where ϕ is called potential.
Let \(f : X \to X \) be a continuous map.

\(\phi : X \to \mathbb{R} \) is a Hölder-continuous function (called potential).

For an \(f \)-invariant Borel probability measure \(\mu \),

\[
 h_\mu(f) + \int \phi \, d\mu \quad \text{measure-theoretic pressure}
\]

\[
 P(f, \phi) \quad \text{(topological) pressure}
\]

Theorem (Variational Principle)

\[
 P(f, \phi) = \sup \left\{ h_\mu(f) + \int \phi \, d\mu \mid f \text{-invariant Borel prob. measure } \mu \right\}
\]

\(\mu \) is an equilibrium state for \(f \) and \(\phi \) if \(h_\mu(f) + \int \phi \, d\mu = P(f, \phi) \).
Equilibrium states

Let $f : X \to X$ be a continuous map.

$\phi : X \to \mathbb{R}$ is a Hölder-continuous function (called potential).

For an f-invariant Borel probability measure μ,

$h_\mu(f) + \int \phi \, d\mu$ - measure-theoretic pressure

$P(f, \phi)$ - (topological) pressure

Theorem (Variational Principle)

$$P(f, \phi) = \sup \left\{ h_\mu(f) + \int \phi \, d\mu \left| f\text{-invariant Borel prob. measure } \mu \right. \right\}$$

μ is an equilibrium state for f and ϕ if $h_\mu(f) + \int \phi \, d\mu = P(f, \phi)$.
Equilibrium states

Let $f : X \to X$ be a continuous map.

$\phi : X \to \mathbb{R}$ is a Hölder-continuous function (called potential).

For an f-invariant Borel probability measure μ,

$h_\mu(f) + \int \phi \, d\mu$ - measure-theoretic pressure

$P(f, \phi)$ - (topological) pressure

Theorem (Variational Principle)

$$P(f, \phi) = \sup \left\{ h_\mu(f) + \int \phi \, d\mu \mid f \text{-invariant Borel prob. measure } \mu \right\}$$

μ is an equilibrium state for f and ϕ if $h_\mu(f) + \int \phi \, d\mu = P(f, \phi)$.
Equilibrium states

Let $f : X \rightarrow X$ be a continuous map.

$\phi : X \rightarrow \mathbb{R}$ is a Hölder-continuous function (called potential).

For an f-invariant Borel probability measure μ,

$h_\mu(f) + \int \phi \, d\mu$ - measure-theoretic pressure

$P(f, \phi)$ - (topological) pressure

Theorem (Variational Principle)

$$P(f, \phi) = \sup \left\{ h_\mu(f) + \int \phi \, d\mu \ \middle| \ f \text{-invariant Borel prob. measure } \mu \right\}$$

μ is an equilibrium state for f and ϕ if $h_\mu(f) + \int \phi \, d\mu = P(f, \phi)$.
Equilibrium states

Let \(f : X \to X \) be a continuous map.

\(\phi : X \to \mathbb{R} \) is a Hölder-continuous function (called potential).

For an \(f \)-invariant Borel probability measure \(\mu \),

\(h_\mu(f) + \int \phi \, d\mu \) - measure-theoretic pressure

\(P(f, \phi) \) - (topological) pressure

Theorem (Variational Principle)

\[
P(f, \phi) = \sup \left\{ h_\mu(f) + \int \phi \, d\mu \bigg| f\text{-invariant Borel prob. measure } \mu \right\}
\]

\(\mu \) is an equilibrium state for \(f \) and \(\phi \) if \(h_\mu(f) + \int \phi \, d\mu = P(f, \phi) \).
Equilibrium states

Let $f: X \to X$ be a continuous map.

$\phi: X \to \mathbb{R}$ is a Hölder-continuous function (called potential).

For an f-invariant Borel probability measure μ,

$h_{\mu}(f) + \int \phi \, d\mu$ - measure-theoretic pressure

$P(f, \phi)$ - (topological) pressure

Theorem (Variational Principle)

$$P(f, \phi) = \sup \left\{ h_{\mu}(f) + \int \phi \, d\mu \mid f\text{-invariant Borel prob. measure } \mu \right\}$$

μ is an equilibrium state for f and ϕ if $h_{\mu}(f) + \int \phi \, d\mu = P(f, \phi)$.
Let $f: X \to X$ be a continuous map.

$\phi: X \to \mathbb{R}$ is a Hölder-continuous function (called potential).

For an f-invariant Borel probability measure μ,

$h_\mu(f) + \int \phi \, d\mu$ - measure-theoretic pressure

$P(f, \phi)$ - (topological) pressure

Theorem (Variational Principle)

$$P(f, \phi) = \sup \left\{ h_\mu(f) + \int \phi \, d\mu \mid f\text{-invariant Borel prob. measure } \mu \right\}$$

μ is an equilibrium state for f and ϕ if $h_\mu(f) + \int \phi \, d\mu = P(f, \phi)$.
Existence & uniqueness of equilibrium states

Rational maps on \(\hat{\mathbb{C}} \) with Hölder continuous potentials:

[Denker & Urbański 1991] - potential \(\phi < P(f, \phi) \)

[Przytycki & Urbański 10], [Comman & Rivera-Letelier 11] - special classes of rational maps

[Inoquio-Renteria & Rivera-Letelier 12] - “hyperbolic” potentials

Theorem (L. 14)

\(f \) - an expanding Thurston map

\(\phi \) - a Hölder continuous potential

Then there exists a unique equilibrium state \(\mu_\phi \) for \(f \) and \(\phi \).

Visual metric on \(S^2 \)
Rational maps on $\hat{\mathbb{C}}$ with Hölder continuous potentials:

[Denker & Urbański 1991] - potential $\phi < P(f, \phi)$

[Przytycki & Urbański 10], [Comman & Rivera-Letelier 11] - special classes of rational maps

[Inoquio-Renteria & Rivera-Letelier 12] - “hyperbolic” potentials

Theorem (L. 14)

f - an expanding Thurston map

ϕ - a Hölder continuous potential

Then there exists a unique equilibrium state μ_{ϕ} for f and ϕ.

Visual metric on S^2
Existence & uniqueness of equilibrium states

Rational maps on \(\hat{\mathbb{C}} \) with Hölder continuous potentials:

[Denker & Urbański 1991] - potential \(\phi < P(f, \phi) \)
[Przytycki & Urbański 10], [Comman & Rivera-Letelier 11] - special classes of rational maps
[Inoquio-Renteria & Rivera-Letelier 12] - “hyperbolic” potentials

Theorem (L. 14)

- \(f \) - an expanding Thurston map
- \(\phi \) - a Hölder continuous potential

Then there exists a unique equilibrium state \(\mu_\phi \) for \(f \) and \(\phi \).

Visual metric on \(S^2 \)
(f, µφ) is exact, i.e., for each Borel set \(E \subseteq S^2 \) with \(µφ(E) > 0 \),

\[
\lim_{n \to +\infty} µφ(f^n(E)) = 1.
\]

In particular, (f, µφ) is mixing, i.e., for any Borel sets \(A, B \subseteq S^2 \),

\[
\lim_{n \to +\infty} µφ(f^{-n}(A) \cap B) = µφ(A) \cdot µφ(B).
\]
\((f, \mu_\phi)\) is exact,
i.e., for each Borel set \(E \subseteq S^2\) with \(\mu_\phi(E) > 0\),

\[
\lim_{n \to +\infty} \mu_\phi(f^n(E)) = 1.
\]

In particular, \((f, \mu_\phi)\) is mixing,
i.e., for any Borel sets \(A, B \subseteq S^2\),

\[
\lim_{n \to +\infty} \mu_\phi(f^{-n}(A) \cap B) = \mu_\phi(A) \cdot \mu_\phi(B).
\]
(f, μφ) is exact, i.e., for each Borel set $E \subseteq S^2$ with $μφ(E) > 0$,

$$\lim_{n \to +\infty} μφ(f^n(E)) = 1.$$

In particular, (f, μφ) is mixing, i.e., for any Borel sets $A, B \subseteq S^2$,

$$\lim_{n \to +\infty} μφ(f^{-n}(A) \cap B) = μφ(A) \cdot μφ(B).$$
Ergodic properties

(f, μ_ϕ) is exact,
i.e., for each Borel set $E \subseteq S^2$ with $\mu_\phi(E) > 0$,

$$\lim_{n \to +\infty} \mu_\phi(f^n(E)) = 1.$$

In particular, (f, μ_ϕ) is mixing,
i.e., for any Borel sets $A, B \subseteq S^2$,

$$\lim_{n \to +\infty} \mu_\phi(f^{-n}(A) \cap B) = \mu_\phi(A) \cdot \mu_\phi(B).$$
The Ruelle operator $\mathcal{L}_\phi : C(S^2) \to C(S^2)$:

$$\mathcal{L}_\phi(u)(x) = \sum_{y \in f^{-1}(x)} \deg_f(y)u(y) \exp(\phi(y)).$$
Co-homologous potentials

f - an expanding Thurston map \(\phi, \phi' \) - Hölder cont. potentials
\(\mu_\phi, \mu_{\phi'} \) - the corresponding equilibrium states

Theorem (L. 14)
\[\mu_\phi = \mu_{\phi'} \text{ if and only if there exists } K \in \mathbb{R} \text{ s.t. } \phi - \phi' \text{ and } K \text{ are co-homologous, i.e.,} \]
\[\phi - \phi' - K = u \circ f - u \quad \text{for some } u \in C(S^2). \]
Co-homologous potentials

f - an expanding Thurston map \(\phi, \phi' \) - Hölder cont. potentials
\(\mu_{\phi}, \mu_{\phi'} \) - the corresponding equilibrium states

Theorem (L. 14)

\[\mu_{\phi} = \mu_{\phi'} \text{ if and only if there exists } K \in \mathbb{R} \text{ s.t. } \phi - \phi' \text{ and } K \text{ are co-homologous, i.e.,} \]

\[\phi - \phi' - K = u \circ f - u \text{ for some } u \in C(S^2). \]
Equidistribution w.r.t. equilibrium states

f - an expanding Thurston map \hspace{1cm} \phi - a Hölder cont. potential

μ_ϕ - the unique equilibrium state for f and ϕ

$w_n(x) = \deg_{f^n}(x) \exp \left(\sum_{i=0}^{n-1} \tilde{\phi}(f^i(x)) \right)$ - the weight

Theorem (L. 14)

For each $p \in S^2$, as $n \to +\infty$,

$$\frac{1}{Z_n} \sum_{x \in f^{-n}(p)} w_n(x) \delta_x \overset{w^*}{\to} \mu_\phi. \quad \text{(preimage pts)}$$

What about periodic points?
Equidistribution w.r.t. equilibrium states

\(f \) - an expanding Thurston map
\(\phi \) - a Hölder cont. potential
\(\mu_\phi \) - the unique equilibrium state for \(f \) and \(\phi \)
\(w_n(x) = \deg_{f^n}(x) \exp \left(\sum_{i=0}^{n-1} \tilde{\phi}(f^i(x)) \right) \) - the weight

Theorem (L. 14)

For each \(p \in S^2 \), as \(n \to +\infty \),

\[
\frac{1}{Z_n} \sum_{x \in f^{-n}(p)} w_n(x) \delta_x \xrightarrow{w^*} \mu_\phi. \quad (\text{preimage pts})
\]

What about periodic points?
Equidistribution w.r.t. equilibrium states

\(f \) - an expanding Thurston map \(\phi \) - a Hölder cont. potential
\(\mu_\phi \) - the unique equilibrium state for \(f \) and \(\phi \)
\(w_n(x) = \text{deg}_{f^n}(x) \exp \left(\sum_{i=0}^{n-1} \tilde{\phi}(f^i(x)) \right) \) - the weight

Theorem (L. 14)

For each \(p \in S^2 \), as \(n \to +\infty \),

\[
\frac{1}{Z_n} \sum_{x \in f^{-n}(p)} w_n(x) \delta_x \xrightarrow{w^*} \mu_\phi. \quad \text{(preimage pts)}
\]

What about periodic points?
Large deviation principles and equidistribution

f - an expanding Thurston map ϕ - a Hölder cont. potential

equidistribution (w.r.t. the equilibrium state μ_ϕ)

\uparrow

large deviation principles (w.r.t. μ_ϕ)

\uparrow [Kifer 90, Comman & Rivera-Letelier 11]

(i) existence and uniqueness of the equilibrium state

(ii) certain characterization of the topological pressure $P(f, \phi)$

(iii) upper semi-continuity of $\mu \mapsto h_\mu(f)$
Large deviation principles and equidistribution

\[f \] - an expanding Thurston map \quad \phi \] - a Hölder cont. potential

equidistribution \ (w.r.t. the equilibrium state \(\mu_\phi \))
\[\uparrow \]

large deviation principles \ (w.r.t. \(\mu_\phi \))
\[\uparrow \ [\text{Kifer 90, Comman & Rivera-Letelier 11}] \]

(i) existence and uniqueness of the equilibrium state
(ii) certain characterization of the topological pressure \(P(f, \phi) \)
(iii) upper semi-continuity of \(\mu \mapsto h_\mu(f) \)
Large deviation principles and equidistribution

\(f \) - an expanding Thurston map \(\phi \) - a Hölder cont. potential

equidistribution (w.r.t. the equilibrium state \(\mu_\phi \))

\[\uparrow \]

large deviation principles (w.r.t. \(\mu_\phi \))

\[\uparrow [\text{Kifer 90, Comman & Rivera-Letelier 11}] \]

(i) existence and uniqueness of the equilibrium state

(ii) certain characterization of the topological pressure \(P(f, \phi) \)

(iii) upper semi-continuity of \(\mu \mapsto h_\mu(f) \)
Large deviation principles and equidistribution

\(f \) - an expanding Thurston map \(\phi \) - a Hölder cont. potential

\[
equidistribution \ (w.r.t. \ \text{the equilibrium state} \ \mu_\phi) \\
\uparrow \\
large \text{deviation principles} \ (w.r.t. \ \mu_\phi) \\
\uparrow [\text{Kifer 90, Comman & Rivera-Letelier 11}]
\]

(i) existence and uniqueness of the equilibrium state

(ii) certain characterization of the topological pressure \(P(f, \phi) \)

(iii) upper semi-continuity of \(\mu \mapsto h_\mu(f) \)
Large deviation principles and equidistribution

\(f \) - an expanding Thurston map \(\phi \) - a Hölder cont. potential

equidistribution (w.r.t. the equilibrium state \(\mu_\phi \))

\[\uparrow \]

large deviation principles (w.r.t. \(\mu_\phi \))

\[\uparrow [Kifer 90, Comman & Rivera-Letelier 11] \]

(i) existence and uniqueness of the equilibrium state

(ii) certain characterization of the topological pressure \(P(f, \phi) \)

(iii) upper semi-continuity of \(\mu \mapsto h_\mu(f) \)
Large deviation principles and equidistribution

\[f \] - an expanding Thurston map \[\phi \] - a Hölder cont. potential

equidistribution (w.r.t. the equilibrium state \(\mu_\phi \))

\[\uparrow \]

large deviation principles (w.r.t. \(\mu_\phi \))

\[\uparrow \] [Kifer 90, Comman & Rivera-Letelier 11]

(i) existence and uniqueness of the equilibrium state

(ii) certain characterization of the topological pressure \(P(f, \phi) \)

(iii) upper semi-continuity of \(\mu \mapsto h_\mu(f) \)
Weak expansion properties

E.T.M. ↗ ↓ ↘ ↘ yes no → ↘ yes no → ?

w/o periodic critical pts \[\not\rightarrow\] \[\rightarrow\] h-expansive (Bowen '72)

w/ periodic critical pts \[\not\rightarrow\] \[\rightarrow\] asymptotic h-expansive (Misiurewicz '73)

upper semi-continuity of \(\mu \mapsto h_\mu(f)\)

Theorem (L. 14)

Let \(f\) be an expanding Thurston map. Then \(f\) is asymptotic h-expansive iff \(f\) has no periodic critical pts. Moreover, \(f\) is never h-expansive.
Theorem (L. 14)

Let f be an expanding Thurston map. Then f is asymptotic h-expansive iff f has no periodic critical points. Moreover, f is never h-expansive.
Weak expansion properties

E.T.M.

w/o periodic critical pts
no

w/ periodic critical pts
yes

\begin{itemize}
\item expansive
\item \textit{h}-expansive (Bowen '72)
\item asymptotic \textit{h}-expansive (Misiurewicz '73)
\item upper semi-continuity of \(\mu \mapsto h_\mu(f) \)
\end{itemize}

\textbf{Theorem (L. 14)}

Let \(f \) be an expanding Thurston map. Then \(f \) is asymptotic \textit{h}-expansive iff \(f \) has no periodic critical pts. Moreover, \(f \) is never \textit{h}-expansive.
Theorem (L. 14)

Let f be an expanding Thurston map. Then f is asymptotic h-expansive iff f has no periodic critical pts. Moreover, f is never h-expansive.
Weak expansion properties

\[\text{E.T.M.} \]

\[\text{w/o periodic critical pts} \quad \text{no} \quad \Rightarrow \quad \text{expansive} \]
\[\Downarrow \]
\[h\text{-expansive (Bowen ’72)} \]
\[\Downarrow \]
\[\text{asymptotic } h\text{-expansive (Misiurewicz ’73)} \]
\[\Downarrow \]
\[\text{upper semi-continuity of } \mu \mapsto h_\mu(f) \]

\[\text{w/ periodic critical pts} \quad \text{yes} \quad \Rightarrow \quad \text{?} \]

Theorem (L. 14)

Let \(f \) *be an expanding Thurston map.*

Then \(f \) *is asymptotic* \(h\)-*expansive iff* \(f \) *has no periodic critical pts.*

Moreover, \(f \) *is never* \(h\)-*expansive.*
Let f be an expanding Thurston map. Then f is asymptotic h-expansive iff f has no periodic critical pts. Moreover, f is never h-expansive.
Theorem (L. 14)

Let f be an expanding Thurston map. Then f is asymptotic h-expansive iff f has no periodic critical pts. Moreover, f is never h-expansive.
Theorem (L. 14)

Let f be an expanding Thurston map. Then f is asymptotic h-expansive iff f has no periodic critical pts. Moreover, f is never h-expansive.
Weak expansion properties

E.T.M.

\[\begin{array}{c}
\text{w/o periodic} \\
\text{critical pts}
\end{array}\quad \begin{array}{c}
\text{w/ periodic} \\
\text{critical pts}
\end{array}\]

\[\begin{array}{c}
\text{no} \\
\text{yes}
\end{array}\quad \begin{array}{c}
\text{yes} \\
? \\
\end{array}\]

expansive
\[\Downarrow\]
\text{h-expansive (Bowen '72)}
\[\Downarrow\]
\text{asymptotic h-expansive (Misiurewicz '73)}
\[\Downarrow\]
\text{upper semi-continuity of } \mu \mapsto h_\mu(f)

Theorem (L. 14)

Let \(f \) be an expanding Thurston map. Then \(f \) is asymptotic h-expansive iff \(f \) has no periodic critical pts. Moreover, \(f \) is never h-expansive.
Theorem (L. 14)

Let f be an expanding Thurston map. Then f is asymptotic h-expansive iff f has no periodic critical pts. Moreover, f is never h-expansive.
Weak expansion properties

E.T.M.

w/o periodic critical pts

no

 ↘

h-expansive (Bowen '72)

ﬀ

yes

 ↘

asymptotic h-expansive (Misiurewicz '73)

ﬀ

 ↘

upper semi-continuity of \(\mu \mapsto h_\mu(f) \)

w/ periodic critical pts

? ___

Theorem (L. 14)

Let \(f \) be an expanding Thurston map. Then \(f \) is asymptotic h-expansive iff \(f \) has no periodic critical pts. Moreover, \(f \) is never h-expansive.
Theorem (L. 14)

Let f be an expanding Thurston map.
Then f is asymptotic h-expansive iff f has no periodic critical pts. Moreover, f is never h-expansive.
Theorem (L. 14)

Let f be an expanding Thurston map. Then f is asymptotic h-expansive iff f has no periodic critical pts. Moreover, f is never h-expansive.
Weak expansion properties

E.T.M.

w/o periodic critical pts \rightarrow no \rightarrow h-expansive (Bowen '72) \rightarrow\downarrow

w/ periodic critical pts

\rightarrow yes \rightarrow asymptotic h-expansive (Misiurewicz '73) \rightarrow\downarrow

\rightarrow upper semi-continuity of \mu \rightarrow h_\mu(f)

Theorem (L. 14)

Let f be an expanding Thurston map. Then f is asymptotic h-expansive iff f has no periodic critical pts. Moreover, f is never h-expansive.
Corollary

\[f \text{ - an expanding Thurston map without periodic critical points} \]
\[\psi : S^2 \rightarrow \mathbb{R} \text{ continuous} \]

Then there exists at least one equilibrium state for \(f \) and \(\psi \).

Proof.

The space of \(f \)-invariant Borel probability measures is compact in the weak* topology.

\[\mu \mapsto h_\mu(f) + \int \psi \, d\mu \quad \text{is upper semi-continuous}. \]
Corollary

\[f \text{ - an expanding Thurston map without periodic critical points} \]
\[\psi : S^2 \to \mathbb{R} \text{ continuous} \]

Then there exists at least one equilibrium state for \(f \) and \(\psi \).

Proof.

The space of \(f \)-invariant Borel probability measures is \textbf{compact} in the weak* topology.

\[\mu \mapsto h_\mu(f) + \int \psi \, d\mu \] is upper semi-continuous.
Corollary

\(f \) - an expanding Thurston map without periodic critical points
\(\psi : S^2 \to \mathbb{R} \) continuous

Then there exists at least one equilibrium state for \(f \) and \(\psi \).

Proof.

The space of \(f \)-invariant Borel probability measures is compact in the weak* topology.

\[\mu \mapsto h_\mu(f) + \int \psi \, d\mu \] is upper semi-continuous.
Equidistribution revisited

\(f \) - an expanding Thurston map \textbf{without periodic critical points}
\(\phi \) - a Hölder continuous potential
\(\mu_\phi \) - the unique equilibrium state for \(f \) and \(\phi \)

\[w_n(x, \phi) = \exp \left(\sum_{i=0}^{n-1} \phi(f^i(x)) \right) \text{ or } \deg f_n(x) \exp \left(\sum_{i=0}^{n-1} \phi(f^i(x)) \right) \]

Theorem (L. 14)

As \(n \to +\infty \),

\[
\frac{1}{Z_n} \sum_{x=f^n(x)} w_n(x, \phi) \delta_x \xrightarrow{w^*} \mu_\phi, \quad \text{(periodic pts)}
\]

\[
\frac{1}{Z_n'} \sum_{x \in f^{-n}(p)} w_n(x, \tilde{\phi}) \delta_x \xrightarrow{w^*} \mu_\phi, \quad \text{(preimage pts)}
\]

for \(p \in \mathbb{S}^2 \).
Equidistribution revisited

\(f \) - an expanding Thurston map \textbf{without periodic critical points}

\(\phi \) - a Hölder continuous potential

\(\mu_\phi \) - the unique equilibrium state for \(f \) and \(\phi \)

\(w_n(x, \phi) = \exp \left(\sum_{i=0}^{n-1} \phi(f^i(x)) \right) \) or \(\deg_{f^n}(x) \exp \left(\sum_{i=0}^{n-1} \phi(f^i(x)) \right) \)

Theorem (L. 14)

As \(n \rightarrow +\infty \),

\[
\frac{1}{Z_n} \sum_{x=f^n(x)} w_n(x, \phi) \delta_x \xrightarrow{w^*} \mu_\phi, \quad \text{(periodic pts)}
\]

\[
\frac{1}{Z'_n} \sum_{x \in f^{-n}(p)} w_n(x, \tilde{\phi}) \delta_x \xrightarrow{w^*} \mu_\phi, \quad \text{(preimage pts)}
\]

for \(p \in S^2 \).
Equidistribution revisited

\(f - \) an expanding Thurston map **without periodic critical points**

\(\phi - \) a Hölder continuous potential

\(\mu_\phi - \) the unique equilibrium state for \(f \) and \(\phi \)

\[
\begin{align*}
 w_n(x, \phi) &= \exp \left(\sum_{i=0}^{n-1} \phi(f^i(x)) \right) \text{ or } \deg_{f^n(x)} \exp \left(\sum_{i=0}^{n-1} \phi(f^i(x)) \right)

 \text{Theorem (L. 14)}

 &\text{As } n \to +\infty, \quad \frac{1}{Z_n} \sum_{x=f^n(x)} w_n(x, \phi) \delta_x \xrightarrow{w^*} \mu_\phi, \quad (\text{periodic pts})

 &\quad \frac{1}{Z'_n} \sum_{x \in f^{-n}(p)} w_n(x, \tilde{\phi}) \delta_x \xrightarrow{w^*} \mu_\phi, \quad (\text{preimage pts})

 \text{for } p \in S^2.
\end{align*}
\]
Equidistribution revisited

\(f \) - an expanding Thurston map \textbf{without periodic critical points}

\(\phi \) - a Hölder continuous potential

\(\mu_\phi \) - the unique equilibrium state for \(f \) and \(\phi \)

\(w_n(x, \phi) = \exp\left(\sum_{i=0}^{n-1} \phi(f^i(x)) \right) \) or \(\deg_{f^n(x)} \exp\left(\sum_{i=0}^{n-1} \phi(f^i(x)) \right) \)

Theorem (L. 14)

As \(n \longrightarrow +\infty \),

\[
\frac{1}{Z_n} \sum_{x=f^n(x)} w_n(x, \phi) \delta_x \xrightarrow{w^*} \mu_\phi, \quad \text{(periodic pts)}
\]

\[
\frac{1}{Z'_n} \sum_{x \in f^{-n}(p)} w_n(x, \tilde{\phi}) \delta_x \xrightarrow{w^*} \mu_\phi, \quad \text{(preimage pts)}
\]

for \(p \in S^2 \).

Li, Z., Weak expansion properties and large deviation principles for expanding Thurston maps. Accepted by *Adv. Math.*, 2015. (58 pp.)

Li, Z., Periodic points and the measure of maximal entropy of an expanding Thurston map. Accepted by *Trans. Amer. Math. Soc.*, 2015. (56 pp.)
Thank you!