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General setting

� (Tβ)β∈I a family of maps,

� each Tβ admits a unique (ergodic) A.C.I.P. µβ

� h(β) = h(Tβ , µβ) metric entropy

� Goal: study the function β �→ h(β).

� Extra (”algebraic”) features: “combinatorial stability”
(matching).
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A (much simpler) simple affine model

[BSORG] V. Botella-Soler, J. A. Oteo, J. Ros, P. Glendinning,
Families of piecewise linear maps with constant Lyapunov

exponents, J. Phys. A: Math. Theor. 46 (2013)
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Piecewise affine maps (c.f. [BSORG])

Let s > 1 be a fixed slope, and Tβ(x) = x + 2 if x < 0,
Tβ(x) = β − sx if x < 0

In this picture the slope of the expanding branch is s = 2.



Properties of Tβ

� the nonwandering set is bounded;

� existence of an ACIP measure, which is ergodic;

� entropy:

h(Tβ) =

�
log |T �

β(x)|dµβ(x) = (log s)µβ([0,+∞]).

In [BSORG] the authors study the entropy function β �→ h(Tβ) for
values of the slope s > 1 which are either:

� integers (main example: s = 2);

� algebraic values (main example s =

√
5 + 1
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[BSORG] focus: plateau(x)

[BSORG]: if s = 2 the entropy is constant for β ∈ [2, 143 ]

Tool: explicit computation (the invariant density is a simple
function).
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Main results.

We can prove that:

� The presence of plateaux (and more generally of monotonicity
intervals) is consequence of a combinatorial condition (that
we shall call matching).

� When matching holds, the invariant density is a simple
function

� When matching holds, the invariant density (and hence the
entropy) can easily be computed.

Remark: the matching property occurs also in other families of
transformations (for instance generalized β-transformations).
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Let f : R → R be a map, and a ∈ R be a fixed value.

For k ∈ N we shall use the following notation

f
k(a+) := lim
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f
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f
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Matching: general definition.

Definition

Let T : S → S be a piecewise smooth map. We say that the map
T satisfies the matching condition if for every discontinuity point γ
of T (or T �) there exist integers k−, k+ ∈ N (called matching

exponents) such that

T k−
(γ−) = T k+

(γ+)

(T k−
)�(γ−) = (T k+

)�(γ+)

If matching holds, the prematching set PM is defined as follows:

PM :=
�

γ

{T j(γ−) : 1 ≤ j ≤ k
− − 1} ∪ {T j(γ+) : 1 ≤ j ≤ k

+ − 1}

where the union is taken on γ ranging on the discontinuities of T
and T �.
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The invariant density is locally constant

The prematching set plays the role of the markov partition, even if
our system is not markov:

Theorem

Let T be a piecewise affine, eventually expanding map satisfying

the matching property. Then T admits an invariant density which

is locally constant outside the prematching set.
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When does matching occur? (partial answer)

� If the map Tβ satisfies the matching condition (for some
β ∈ R),

then the slope s must be root of a monic polynomial
p ∈ Z[x ] (i.e. p(s)=0).

� If s ∈ Q \ Z then matching doesn’t occur.

� For all integer slopes s ≥ 2 matching actually occurs.
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Stable matching vs. bifurcations

We say that the matching is stable if the discontinuity does not
belong to the prematching set.

� stable matching is an open condition in the family (Tβ)...

� ... and there are choices of the slope s for which it is
nonempty;

� we will call matching interval a connected component of the
set where stable matching holds; here the matching exponents
(and matching index) are constant.
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Stable matching vs. monotonicity

Zoom of entropy function for β ∈ [5.32, 5.40].
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the bifurcation set is a closed zero measure set contained in
[0, 1].

For s = (
√
5 + 1)/2 we have numerical evidence that the matching

is prevalent.

However in this case the bifurcation set is unbounded.
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Numerical evidence:

For the value s =

√
5 + 1

2
matching is prevalent (has full

measure).

Question:
what conditions on the slope s characterize prevalence of
matching?
The same question can be asked for the family of generalized
β-transformations (Tα)α∈[0,1]

Tα(x) := sx + α (mod 1)
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Some more open issues.

Let s = 2, can one give a complete characterization of
plateaux of the entropy?

Being bolder, one could also ask the following question:
Is the graph of the entropy self-similar? Is this a consequence
of renormalization?
c.f. C-Tiozzo: ”Tuning and plateaux for the entropy of
α-continued fractions”, Nonlinearity 26, 2013.
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