Singular vector fields far away from horseshoe

Shaobo GAN

Joint work with **Rusong ZHENG**

Peking University

School and Conference on Dynamical Systems

ICTP, Trieste, Italy

August 3, 2015 $\langle \Box \rangle \langle \Box \rangle \langle \Box \rangle \langle \Box \rangle$

S. Gan, Peking University Singular vector fields far away from horseshoe

- 34

M: d-dim, compact boundaryless Riemannian manifold $\mathcal{X}^r(M): C^r$ vector fields on $M, r \ge 1$ Given a C^1 vector field $X: M \rightarrow TM, X$ generates a C^1 flow $\phi: \mathbb{R} \times M \rightarrow M$, i.e.,

•
$$\phi_0 = \operatorname{id} : M \to M$$
,

•
$$\phi_{t+s} = \phi_t \circ \phi_s, \, \forall t, s \in \mathbb{R}.$$

Denote $\Phi_t = \mathrm{d}\phi_t : TM \to TM$, tangent flow. Sing $(X) = \{x \in M : X(x) = 0\}$: the set of singularities of X. x is a **periodic point** if $X(x) \neq 0$ and $\exists T > 0$ s.t. $\phi_{t+T}(x) = \phi_t(x), \forall t \in \mathbb{R}$. Orb(x) is **periodic orbit**.

- open and dense subset
- **2** generic: countable intersection of open and dense subsets
- r = 1 Franks lemma, closing lemma, connecting lemmas r > 1 ???

- open and dense subset
- **2** generic: countable intersection of open and dense subsets
- r=1Franks lemma, closing lemma, connecting lemmas
 $r>1 \ ???$

- open and dense subset
- **2** generic: countable intersection of open and dense subsets
- r=1Franks lemma, closing lemma, connecting lemmas
 $r>1 \ ???$

Morse-Smale system, homoclinic orbit and horseshoe

Morse-Smale system: $\Omega = \{C_1, \dots, C_k\}$ + transversality p: a hyperbolic fixed (periodic) point

x is a homoclinic point (w.r.t p) if $W^s(p)$ intersects $W^u(p)$ transversely at x

Birkhoff-Smale Theorem: Transverse homoclinic orbit leads to horseshoe.

Palis (Weak) Density Conjecture

Palis (Weak) Density Conjecture (PWDC): The union of Morse-Smale systems and systems with horseshoe forms an open and dense subset.

Palis (Strong) Density Conjecture (PSDC): Generic system far away from homoclinic bifurcations is (singular?) hyperbolic.

Palis (Weak) Density Conjecture

Palis (Weak) Density Conjecture (PWDC): The union of Morse-Smale systems and systems with horseshoe forms an open and dense subset.

Palis (Strong) Density Conjecture (PSDC): Generic system far away from homoclinic bifurcations is (singular?) hyperbolic.

For diffeomorphisms:

- Pujals-Sambarino, 2000, 2 dim, PSDC
- Bonatti-G-Wen, 2007, 3 dim, PWDC
- Crovisier, 2010, $n \dim$, PWDC

For non-singular vector fields:

- Arroyo-Hertz, 2003, 3 dim, PSDC
- Xiao-Zheng, 2015, any dim, PWDC

For singular vector fields:

- G-D.Yang, 2014, arXiv, 3 dim, PWDC
- Crovisier-D.Yang, 2015, arXiv, 3 dim, PSDC

For diffeomorphisms:

- Pujals-Sambarino, 2000, 2 dim, PSDC
- Bonatti-G-Wen, 2007, 3 dim, PWDC
- Crovisier, 2010, $n \dim$, PWDC

For non-singular vector fields:

- Arroyo-Hertz, 2003, 3 dim, PSDC
- Xiao-Zheng, 2015, any dim, PWDC

For singular vector fields:

- G-D.Yang, 2014, arXiv, 3 dim, PWDC
- Crovisier-D.Yang, 2015, arXiv, 3 dim, PSDC

For diffeomorphisms:

- Pujals-Sambarino, 2000, 2 dim, PSDC
- Bonatti-G-Wen, 2007, 3 dim, PWDC
- Crovisier, 2010, $n \dim$, PWDC

For non-singular vector fields:

- Arroyo-Hertz, 2003, 3 dim, PSDC
- Xiao-Zheng, 2015, any dim, PWDC

For singular vector fields:

- G-D.Yang, 2014, arXiv, 3 dim, PWDC
- Crovisier-D.Yang, 2015, arXiv, 3 dim, PSDC

Chain equivalence:

 $x \sim y \Leftrightarrow \forall \epsilon > 0, \exists \epsilon \text{-chains from } x \text{ to } y \text{ and from } y \text{ to } x.$

$$CR = \{x : x \sim x\}$$

 \sim : closed equivalence relation over CR.

Chain recurrent class: Equivalent class of CR under \sim

MS: set of Morse-Smale systems

HS: set of systems with a horseshoe

If PWDC were not satisfied, take a generic system $\notin \overline{MS \cup HS}$. Let C be a nontrivial chain class C. (for diffeo.)

Step 1. \exists nontrivial minimal set $\Lambda \subset$ with partially hyperbolic splitting

$$T_{\Lambda}M = E^s \oplus E^c \oplus E^u, \quad \dim E^c = 1.$$

Step 2. Analyze the dynamics of center leaves to get a contradiction.

C contains a singularity! What does "partially hyperbolic splitting" look like?

MS: set of Morse-Smale systems

HS: set of systems with a horseshoe

If PWDC were not satisfied, take a generic system $\notin \overline{MS \cup HS}$. Let C be a nontrivial chain class C. (for diffeo.)

Step 1. \exists nontrivial minimal set $\Lambda \subset$ with partially hyperbolic splitting

$$T_{\Lambda}M = E^s \oplus E^c \oplus E^u$$
, dim $E^c = 1$.

Step 2. Analyze the dynamics of center leaves to get a contradiction.

 ${\cal C}$ contains a singularity! What does "partially hyperbolic splitting" look like?

Lorenz attractor

$$x' = \sigma(y - x), \qquad \sigma = 10,$$

 $y' = \rho x - y - xz, \quad \rho = 28,$
 $z' = xy - \beta z, \qquad \beta = 8/3.$

Geometric Lorenz flow

Guckenheimer-Williams, Afraimovich-Bykov-Shilnikov,

Theorem 1. (G-Zheng) For C^1 generic v.f. $X \in \mathcal{X}^1(M^d) - \overline{\text{MS} \cup \text{HS}}, X \text{ (or } -X) \text{ has a singularity } \sigma \text{ s.t.}$ the chain recurrent class $C(\sigma)$ is nontrivial and

- Every singularity in $C(\sigma)$ has the same index, i.e., $\operatorname{Ind}(\sigma)$.
- **2** Every singularity in $C(\sigma)$ is **Lorenz-like**.
- **3** $C(\sigma)$ admits a partially hyperbolic splitting.

Let σ be a hyperbolic singularity of a v.f. X. If the Lyapunov exponents of $\Phi_t(\sigma)$ is

$$\lambda_1 \leq \cdots \leq \lambda_s < 0 < \lambda_{s+1} \leq \cdots \leq \lambda_d,$$

the **saddle value** of σ is

$$\operatorname{sv}(\sigma) = \lambda_s + \lambda_{s+1}.$$

 σ is **Lorenz-like** if $sv(\sigma) \neq 0$, say $sv(\sigma) > 0$, and

•
$$E^{s}(\sigma) = E^{ss}(\sigma) \oplus E^{cs}(\sigma)$$
 with dim $E^{cs}(\sigma) = 1$,

•
$$W^{ss}(\sigma) \cap C(\sigma) = \{\sigma\}.$$

Main result-restate

Theorem 1. (G-Zheng) For C^1 generic v.f. $X \in \mathcal{X}^1(M^d) - \overline{\mathrm{MS} \cup \mathrm{HS}}, X \text{ (or } -X) \text{ has a singularity } \sigma \text{ s.t.}$ the chain recurrent class $C(\sigma)$ is nontrivial and

- Every singularity in $C(\sigma)$ has the same index, i.e., $\operatorname{Ind}(\sigma)$.
- **2** Every singularity in $C(\sigma)$ is **Lorenz-like**.
- **3** $C(\sigma)$ admits a partially hyperbolic splitting. Precisely,
 - if $sv(\sigma) > 0$,

 $T_{C(\sigma)}M = E^{ss} \oplus E^{cu}, \quad \dim E^{ss} = \dim E^s(\sigma) - 1.$

• if
$$sv(\sigma) < 0$$
,

$$T_{C(\sigma)}M = E^{cs} \oplus E^{uu}, \quad \dim E^{uu} = \dim E^u(\sigma) - 1.$$

Especially, if $C(\sigma)$ contains a singularity ρ s.t. $sv(\sigma)sv(\rho) < 0$, then

$$T_{C(\sigma)}M = E^{ss} \oplus E^c \oplus E^{uu}, \quad \dim E^c = 2.$$

4-dimensional case

Theorem 2. (G-Zheng) For C^1 generic v.f. $X \in \mathcal{X}^1(M^4) - \overline{\text{MS} \cup \text{HS}}, X \text{ (or } -X)$ has a singularity σ s.t. $C(\sigma)$ is nontrivial and

- Every singularity in $C(\sigma)$ has the same index, i.e., $\operatorname{Ind}(\sigma)$.
- **2** Every singularity in $C(\sigma)$ is **Lorenz-like**.
- **3** $C(\sigma)$ admits a partially hyperbolic splitting. Precisely,
 - if $\operatorname{Ind}(\sigma) = 3$ then $\operatorname{sv}(\sigma) > 0$, $C(\sigma)$ is Lyapunov stable and $T_{C(\sigma)}M = E^{ss} \oplus E^{cu}$ with dim $E^{ss} = 2$.
 - if $\operatorname{Ind}(\sigma) = 1$ then $\operatorname{sv}(\sigma) < 0$, $C(\sigma)$ is Lyapunov stable for -X, $T_{C(\sigma)}M = E^{cs} \oplus E^{uu}$ with dim $E^{uu} = 2$.
 - if $\operatorname{Ind}(\sigma) = 2$ and $\operatorname{sv}(\sigma) > 0$, $T_{C(\sigma)}M = E^{ss} \oplus E^{cu}$ with dim $E^{ss} = 1$. Moreover, E^{cu} is volume-expanding and $C(\sigma)$ is **NOT** Lyapunov stable. Especially, if $C(\sigma)$ contains a singularity ρ s.t. $\operatorname{sv}(\sigma)\operatorname{sv}(\rho) < 0$, then $T_{C(\sigma)}M = E^{ss} \oplus E^c \oplus E^{uu}$ with dim $E^c = 2$.

Corollary. (G-Zheng) For C^1 generic v.f. $X \in \mathcal{X}^1(M^4)$, if X (or -X) has a singularity σ with index 2, $C(\sigma)$ is Lyapunov stable and **singular hyperbolic**, then $C(\sigma)$ contains periodic orbits with **complex eigenvalues**.

Following Morales-Pacifico-Pujals, a compact invariant set Λ of X is **singular hyperbolic** if \exists a Φ_t -invariant partially hyperbolic splitting $T_{\Lambda}M = E^{ss} \oplus E^{cu}$ s.t. E^{ss} is uniformly contracting, and E^{cu} is **sectional-expanding**, i.e., for any 2-dim subspace $L \subset E^{cu}$, $\Phi_t | L$ is uniformly **area-expanding**.

Bonatti-Pumariño-Viana, 1997: attractors in Corollary exist.

Corollary. (G-Zheng) For C^1 generic v.f. $X \in \mathcal{X}^1(M^4)$, if X (or -X) has a singularity σ with index 2, $C(\sigma)$ is Lyapunov stable and **singular hyperbolic**, then $C(\sigma)$ contains periodic orbits with **complex eigenvalues**.

Following Morales-Pacifico-Pujals, a compact invariant set Λ of X is **singular hyperbolic** if \exists a Φ_t -invariant partially hyperbolic splitting $T_{\Lambda}M = E^{ss} \oplus E^{cu}$ s.t. E^{ss} is uniformly contracting, and E^{cu} is **sectional-expanding**, i.e., for any 2-dim subspace $L \subset E^{cu}$, $\Phi_t | L$ is uniformly **area-expanding**.

Bonatti-Pumariño-Viana, 1997: attractors in Corollary exist.

Corollary. (G-Zheng) For C^1 generic v.f. $X \in \mathcal{X}^1(M^4)$, if X (or -X) has a singularity σ with index 2, $C(\sigma)$ is Lyapunov stable and **singular hyperbolic**, then $C(\sigma)$ contains periodic orbits with **complex eigenvalues**.

Following Morales-Pacifico-Pujals, a compact invariant set Λ of X is **singular hyperbolic** if \exists a Φ_t -invariant partially hyperbolic splitting $T_{\Lambda}M = E^{ss} \oplus E^{cu}$ s.t. E^{ss} is uniformly contracting, and E^{cu} is **sectional-expanding**, i.e., for any 2-dim subspace $L \subset E^{cu}$, $\Phi_t | L$ is uniformly **area-expanding**.

Bonatti-Pumariño-Viana, 1997: attractors in Corollary exist.

Remark: Bonatti's conjecture implies PWDC.

Open for dim = 3 (G-D.Yang for $E^{ss} \oplus E^{cu}$)

Singular hyperbolic case:

 If the class is Lyapunov stable, YES: Morales-Pacifico, 3-dim, 2003, Viana-J.Yang, d-dim, 2013, IMPA lecture Arbieto-Lopez-Morales, 2014, arXiv.

• Open for saddle classes

Bonatti's conjecture

Bonatti's conjecture: C^1 generically, every non-trivial singular chain class contains periodic orbits.

Remark: Bonatti's conjecture implies PWDC.

Open for dim = 3 (G-D.Yang for $E^{ss} \oplus E^{cu}$)

Singular hyperbolic case:

 If the class is Lyapunov stable, YES: Morales-Pacifico, 3-dim, 2003, Viana-J.Yang, d-dim, 2013, IMPA lecture Arbieto-Lopez-Morales, 2014, arXiv.

• Open for saddle classes

Remark: Bonatti's conjecture implies PWDC.

Open for dim = 3 (G-D. Yang for $E^{ss} \oplus E^{cu}$)

Singular hyperbolic case:

 If the class is Lyapunov stable, YES: Morales-Pacifico, 3-dim, 2003, Viana-J.Yang, d-dim, 2013, IMPA lecture. Arbieto-Lopez-Morales, 2014, arXiv.

• Open for saddle classes

Remark: Bonatti's conjecture implies PWDC.

Open for dim = 3 (G-D.Yang for $E^{ss} \oplus E^{cu}$)

Singular hyperbolic case:

- If the class is Lyapunov stable, YES: Morales-Pacifico, 3-dim, 2003, Viana-J.Yang, d-dim, 2013, IMPA lecture, Arbieto-Lopez-Morales, 2014, arXiv.
- Open for saddle classes

Remark: Bonatti's conjecture implies PWDC.

Open for dim = 3 (G-D.Yang for $E^{ss} \oplus E^{cu}$)

Singular hyperbolic case:

- If the class is Lyapunov stable, YES: Morales-Pacifico, 3-dim, 2003, Viana-J.Yang, d-dim, 2013, IMPA lecture, Arbieto-Lopez-Morales, 2014, arXiv.
- Open for saddle classes

Linear Poincaré flow

 $\Phi_t = \mathrm{d}\phi_t : TM \rightarrow TM$: tangent flow

$$N = \bigcup_{x \notin \operatorname{Sing}(X)} N_x, \quad N_x = \{ v \in T_x M : v \perp X(x) \}$$

Linear Poincaré flow $\psi_t : N \rightarrow N$,

 $\psi_t(v)$ = the orthogonal projection on N of $\Phi_t(v)$,

HT: set of v.f. with a tangency associated to a **periodic orbit Theorem:** (Wen, 2002) Let $X \notin \overline{HT}$. Then \exists nbhd \mathcal{U} of Xand T > 0 s.t. $\forall Y \in \mathcal{U}$ and any hyperbolic periodic point p of Ywith period $\geq T$,

$$\frac{\|\psi_T|N^s(p)\|}{m(\psi_T|N^u(p))} \le \frac{1}{2},$$

where, $N(p) = N^s(p) \oplus N^u(p)$ is the hyperbolic splitting at p.

Pujals-Sambarino, 2000, 2-dim

 ψ_t can only be defined on $M - \operatorname{Sing}(X)$ which is **NOT** compact. ψ_t has a natural compactification: **extended linear Poincaré** flow

Let $G^1(M)$ be the projective bundle of TM, $\beta: G^1(M) \rightarrow M$ the bundle projection.

 $N = \{ (L, v) \in \beta^*(TM) \subset G^1(M) \times TM : v \perp L \}.$

Then we can define **extended linear Poincaré flow** $\psi_t : N \to N, \ \psi_t(L, v) = (\Phi_t(L), \pi \Phi_t(v)), \ \text{where } \pi \text{ is the orthogonal projection along } L.$

Lorenz-like

Lemma: Assume $X \notin \overline{HT}$. If $C(\sigma)$ is nontrivial, then σ is **Lorenz-like**.

Key: Assume $sv(\sigma) > 0$. Find a $(Ind(\sigma) - 1)$ -domination over the homoclinic loop. Then, use the observation in Li-G-Wen to get a contradiction.

Homogeneity of singularity

Assumption: $\dim M = 4, \operatorname{Ind}(\sigma) = 2, \operatorname{Ind}(\rho) = 1, \operatorname{sv}(\sigma) > 0, \operatorname{sv}(\rho) < 0.$

Homogeneity of singularity

Assumption: dim M = 4, Ind $(\sigma) = 2$, Ind $(\rho) = 1$, sv $(\sigma) > 0$, sv $(\rho) < 0$.

Homogeneity of singularity

Assumption: dim M = 4, Ind $(\sigma) = 2$, Ind $(\rho) = 1$, sv $(\sigma) > 0$, sv $(\rho) < 0$.

 $\dim M = 4, \operatorname{Ind}(\sigma) = 2, C(\sigma) \text{ is Lyapunov stable. Then} \\ \forall \rho \in \operatorname{Sing}(x) \cap C(\sigma), \operatorname{Ind}(\rho) = 2 \text{ and } \operatorname{sv}(\rho) > 0.$

Local Star Property: $C(\sigma)$ is **local star**: \exists nbhd \mathcal{U} of X and U of $C(\sigma)$ s.t. any periodic orbit in U of any $Y \in \mathcal{U}$ is hyperbolic.

According to Shi-G-Wen or Arbieto-Morales-Santiago, $C(\sigma)$ is **singular-hyperbolic**. By Viana-J.Yang (2013, IMPA) or Arbieto-Lopez-Morales (2014, arXiv), $C(\sigma)$ contains periodic orbits. This proves that $\text{Ind}(\sigma) = 3$.

Bonatti-Da Luz, \exists 5-dim star v.f., which is **NOT** singular hyperbolic.

 $\dim M = 4, \operatorname{Ind}(\sigma) = 2, C(\sigma) \text{ is Lyapunov stable. Then} \\ \forall \rho \in \operatorname{Sing}(x) \cap C(\sigma), \operatorname{Ind}(\rho) = 2 \text{ and } \operatorname{sv}(\rho) > 0.$

Local Star Property: $C(\sigma)$ is **local star**: \exists nbhd \mathcal{U} of X and U of $C(\sigma)$ s.t. any periodic orbit in U of any $Y \in \mathcal{U}$ is hyperbolic.

According to Shi-G-Wen or Arbieto-Morales-Santiago, $C(\sigma)$ is **singular-hyperbolic**. By Viana-J.Yang (2013, IMPA) or Arbieto-Lopez-Morales (2014, arXiv), $C(\sigma)$ contains periodic orbits. This proves that $\text{Ind}(\sigma) = 3$.

Bonatti-Da Luz, \exists 5-dim star v.f., which is **NOT** singular hyperbolic.

If local star property is not satisfied, then $\exists \Lambda \subset C(\sigma)$ s.t. N_{Λ} has (2,1) domination. This gives $E^{u}(\rho) = E^{c}(\rho) \oplus E^{uu}(\rho)$ and $\mathbf{W}^{uu}(\rho) \cap \mathbf{\Lambda} = \{\rho\}$ for any $\rho \in \operatorname{Sing}(X) \cap \Lambda$. And

 $T_{\Lambda}M = E^{ss} \oplus E^c \oplus E^{uu}.$

Lemma. Every nontrivial invariant measure supported on $C(\sigma)$ should be supported on Λ . And

$$T_{C(\sigma)}M = E^{ss} \oplus E^{cu},$$

where E^{cu} is volume expanding.

SRB-like measure and entropy

Theorem. (Catsigeras-Enrich, 2011) Let $f: M \to M$ be a homeo on a cpt manifold M. \exists the smallest compact set $K \subset \mathcal{M}_{inv}(f)$ s.t. for Lebesgue a.e. x, the limit points of

$$\frac{1}{n}(\delta_x + \delta_{fx} + \dots + \delta_{f^{n-1}x})$$

are contained in K. Measures in K are called **SRB-like** measures.

Theorem. (Catsigeras-Cerminara-Enrich, 2015; Viana-J.Yang, 2013 IMPA) Let $f: M \to M$ be C^1 diffeo with a domination $TM = E \oplus F$. Then for every SRB-like measure μ ,

$$h_{\mu}(f) \ge \int \log |\det(Tf|F(x))| \mathrm{d}\mu(x).$$

Sun-Tian, 2012, for $\mu \ll Leb$.

Proof continued for 4-dim.

Lemma. Let $Y \in \mathcal{X}^{2}(M)$ be C^{1} close to X s.t. $T_{C(\sigma_{Y})}M = E^{ss} \oplus E^{cu}$. Then \exists **non-hyperbolic** ergodic μ s.t.

$$h_{\mu}(\phi_1^Y) = \int \log |\det(\Phi_1|E^{cu}(x))| d\mu(x) > 0.$$

According to Ledrappier-Young's characterization for measures satisfying Pesin's formula, the conditional measure along strong unstable manifolds W^{uu} is absolutely continuous w.r.t Lebesgue. Hence, $W^{uu}(\rho) \subset \Lambda$, which contradicts our previous conclusion.

Thanks!