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Framework and notions

M : d-dim, compact boundaryless Riemannian manifold

X r(M): Cr vector fields on M , r ≥ 1

Given a C
1 vector field X : M→TM , X generates a C

1 flow

φ : R×M→M , i.e.,

φ0 = id : M→M ,

φt+s = φt ◦ φs, ∀t, s ∈ R.

Denote Φt = dφt : TM→TM , tangent flow.

Sing(X) = {x ∈ M : X(x) = 0}: the set of singularities of X.

x is a periodic point if X(x) �= 0 and ∃T > 0 s.t.

φt+T (x) = φt(x), ∀t ∈ R. Orb(x) is periodic orbit.
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“Most” dynamics

1 open and dense subset

2 generic: countable intersection of open and dense subsets

r = 1 Franks lemma, closing lemma, connecting lemmas

r > 1 ???
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Morse-Smale system, homoclinic orbit and horseshoe

Morse-Smale system: Ω = {C1, · · · , Ck} + transversality

p : a hyperbolic fixed (periodic) point

x is a homoclinic point (w.r.t p) if W s(p) intersects W u(p)

transversely at x

Birkhoff-Smale Theorem: Transverse homoclinic orbit leads

to horseshoe.
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Palis (Weak) Density Conjecture

Palis (Weak) Density Conjecture (PWDC): The union of

Morse-Smale systems and systems with horseshoe forms an

open and dense subset.

Palis (Strong) Density Conjecture (PSDC): Generic

system far away from homoclinic bifurcations is (singular?)

hyperbolic.
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Progress

For diffeomorphisms:

Pujals-Sambarino, 2000, 2 dim, PSDC

Bonatti-G-Wen, 2007, 3 dim, PWDC

Crovisier, 2010, n dim, PWDC

For non-singular vector fields:

Arroyo-Hertz, 2003, 3 dim, PSDC

Xiao-Zheng, 2015, any dim, PWDC

For singular vector fields:

G-D.Yang, 2014, arXiv, 3 dim, PWDC

Crovisier-D.Yang, 2015, arXiv, 3 dim, PSDC
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Chain recurrent class

Chain equivalence:

x ∼ y ⇔ ∀� > 0, ∃�-chains from x to y and from y to x.

CR = {x : x ∼ x}

∼: closed equivalence relation over CR.

Chain recurrent class: Equivalent class of CR under ∼
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Strategy for proving PWDC

MS: set of Morse-Smale systems

HS: set of systems with a horseshoe

If PWDC were not satisfied, take a generic system /∈ MS ∪HS.

Let C be a nontrivial chain class C. (for diffeo.)

Step 1. ∃ nontrivial minimal set Λ ⊂ with partially hyperbolic

splitting

TΛM = E
s ⊕ E

c ⊕ E
u
, dimE

c = 1.

Step 2. Analyze the dynamics of center leaves to get a

contradiction.

C contains a singularity! What does “partially hyperbolic

splitting” look like?
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Lorenz attractor

x
� = σ(y − x), σ = 10,

y
� = ρx− y − xz, ρ = 28,

z
� = xy − βz, β = 8/3.
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Geometric Lorenz flow

Guckenheimer-Williams, Afraimovich-Bykov-Shilnikov
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Main result

Theorem 1. (G-Zheng) For C1 generic v.f.

X ∈ X 1(Md)−MS ∪HS, X (or −X) has a singularity σ s.t.

the chain recurrent class C(σ) is nontrivial and

1 Every singularity in C(σ) has the same index, i.e., Ind(σ).

2 Every singularity in C(σ) is Lorenz-like.

3 C(σ) admits a partially hyperbolic splitting.
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Lorenz-like singularity

Let σ be a hyperbolic singularity of a v.f. X.

If the Lyapunov exponents of Φt(σ) is

λ1 ≤ · · · ≤ λs < 0 < λs+1 ≤ · · · ≤ λd,

the saddle value of σ is

sv(σ) = λs + λs+1.

σ is Lorenz-like if sv(σ) �= 0, say sv(σ) > 0, and

E
s(σ) = E

ss(σ)⊕ E
cs(σ) with dimE

cs(σ) = 1,

W
ss(σ) ∩ C(σ) = {σ}.
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Main result-restate

Theorem 1. (G-Zheng) For C1 generic v.f.

X ∈ X 1(Md)−MS ∪HS, X (or −X) has a singularity σ s.t.

the chain recurrent class C(σ) is nontrivial and

1 Every singularity in C(σ) has the same index, i.e., Ind(σ).
2 Every singularity in C(σ) is Lorenz-like.
3 C(σ) admits a partially hyperbolic splitting. Precisely,

if sv(σ) > 0,

TC(σ)M = E
ss ⊕ E

cu
, dimE

ss = dimE
s(σ)− 1.

if sv(σ) < 0,

TC(σ)M = E
cs ⊕ E

uu
, dimE

uu = dimE
u(σ)− 1.

Especially, if C(σ) contains a singularity ρ s.t.

sv(σ)sv(ρ) < 0, then

TC(σ)M = E
ss ⊕ E

c ⊕ E
uu
, dimE

c = 2.
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4-dimensional case

Theorem 2. (G-Zheng) For C1 generic v.f.

X ∈ X 1(M4)−MS ∪HS, X (or −X) has a singularity σ s.t.

C(σ) is nontrivial and

1 Every singularity in C(σ) has the same index, i.e., Ind(σ).

2 Every singularity in C(σ) is Lorenz-like.

3 C(σ) admits a partially hyperbolic splitting.Precisely,

if Ind(σ) = 3 then sv(σ) > 0, C(σ) is Lyapunov stable and
TC(σ)M = E

ss ⊕ E
cu with dimE

ss = 2.
if Ind(σ) = 1 then sv(σ) < 0, C(σ) is Lyapunov stable for
−X, TC(σ)M = E

cs ⊕ E
uu with dimE

uu = 2.
if Ind(σ) = 2 and sv(σ) > 0, TC(σ)M = E

ss ⊕ E
cu with

dimE
ss = 1. Moreover, Ecu is volume-expanding and

C(σ) is NOT Lyapunov stable. Especially, if C(σ) contains
a singularity ρ s.t. sv(σ)sv(ρ) < 0, then
TC(σ)M = E

ss ⊕ E
c ⊕ E

uu with dimE
c = 2.
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4-dimensional case-restriction on splitting

Corollary. (G-Zheng) For C1 generic v.f. X ∈ X 1(M4), if X

(or −X) has a singularity σ with index 2, C(σ) is Lyapunov

stable and singular hyperbolic, then C(σ) contains periodic

orbits with complex eigenvalues.

Following Morales-Pacifico-Pujals, a compact invariant set Λ of

X is singular hyperbolic if ∃ a Φt-invariant partially

hyperbolic splitting TΛM = E
ss ⊕ E

cu s.t. Ess is uniformly

contracting, and E
cu is sectional-expanding, i.e., for any

2-dim subspace L ⊂ E
cu, Φt|L is uniformly area-expanding.

Bonatti-Pumariño-Viana, 1997: attractors in Corollary exist.
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Bonatti’s conjecture

Bonatti’s conjecture: C
1 generically, every non-trivial

singular chain class contains periodic orbits.

Remark: Bonatti’s conjecture implies PWDC.

Open for dim = 3 (G-D.Yang for Ess ⊕ E
cu)

Singular hyperbolic case:

If the class is Lyapunov stable, YES:

Morales-Pacifico, 3-dim, 2003,

Viana-J.Yang, d-dim, 2013, IMPA lecture,

Arbieto-Lopez-Morales, 2014, arXiv.

Open for saddle classes
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Linear Poincaré flow

Φt = dφt : TM→TM : tangent flow

N =
�

x/∈Sing(X)

Nx, Nx = {v ∈ TxM : v ⊥ X(x)}

Linear Poincaré flow ψt : N→N ,

ψt(v) = the orthogonal projection on N of Φt(v),
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Basic property for systems far away from tangencies

HT: set of v.f. with a tangency associated to a periodic orbit

Theorem: (Wen, 2002) Let X /∈ HT . Then ∃ nbhd U of X

and T > 0 s.t. ∀Y ∈ U and any hyperbolic periodic point p of Y

with period ≥ T ,
�ψT |N s(p)�
m(ψT |Nu(p))

≤ 1

2
,

where, N(p) = N
s(p)⊕N

u(p) is the hyperbolic splitting at p.

Pujals-Sambarino, 2000, 2-dim
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Extended linear Poincaré flow

ψt can only be defined on M −Sing(X) which is NOT compact.

ψt has a natural compactification: extended linear Poincaré

flow

Let G1(M) be the projective bundle of TM ,

β : G1(M)→M the bundle projection.

N = {(L, v) ∈ β
∗(TM) ⊂ G

1(M)× TM : v ⊥ L}.

Then we can define extended linear Poincaré flow

ψt : N→N , ψt(L, v) = (Φt(L), πΦt(v)), where π is the

orthogonal projection along L.

S. Gan, Peking University Singular vector fields far away from horseshoe



Lorenz-like

Lemma: Assume X /∈ HT . If C(σ) is nontrivial, then σ is

Lorenz-like.

Key: Assume sv(σ) > 0. Find a (Ind(σ)− 1)-domination over

the homoclinic loop. Then, use the observation in Li-G-Wen to

get a contradiction.
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Homogeneity of singularity

Assumption:

dimM = 4, Ind(σ) = 2, Ind(ρ) = 1, sv(σ) > 0, sv(ρ) < 0.
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Local star property

dimM = 4, Ind(σ) = 2, C(σ) is Lyapunov stable. Then

∀ρ ∈ Sing(x) ∩ C(σ), Ind(ρ) = 2 and sv(ρ) > 0.

Local Star Property: C(σ) is local star: ∃ nbhd U of X

and U of C(σ) s.t. any periodic orbit in U of any Y ∈ U is

hyperbolic.

According to Shi-G-Wen or Arbieto-Morales-Santiago, C(σ) is

singular-hyperbolic. By Viana-J.Yang (2013, IMPA) or

Arbieto-Lopez-Morales (2014, arXiv), C(σ) contains periodic

orbits. This proves that Ind(σ) = 3.

Bonatti-Da Luz, ∃ 5-dim star v.f., which is NOT singular

hyperbolic.
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Volume expanding

If local star property is not satisfied, then ∃Λ ⊂ C(σ) s.t. NΛ

has (2, 1) domination. This gives Eu(ρ) = E
c(ρ)⊕ E

uu(ρ) and

Wuu(ρ) ∩Λ = {ρ} for any ρ ∈ Sing(X) ∩ Λ. And

TΛM = E
ss ⊕ E

c ⊕ E
uu
.

Lemma. Every nontrivial invariant measure supported on

C(σ) should be supported on Λ. And

TC(σ)M = E
ss ⊕ E

cu
,

where E
cu is volume expanding.
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SRB-like measure and entropy

Theorem. (Catsigeras-Enrich, 2011) Let f : M→M be a

homeo on a cpt manifold M . ∃ the smallest compact set

K ⊂ Minv(f) s.t. for Lebesgue a.e. x, the limit points of

1

n
(δx + δfx + · · ·+ δfn−1x)

are contained in K. Measures in K are called SRB-like

measures.

Theorem. (Catsigeras-Cerminara-Enrich, 2015;

Viana-J.Yang, 2013 IMPA) Let f : M→M be C
1 diffeo with a

domination TM = E ⊕ F . Then for every SRB-like measure µ,

hµ(f) ≥
�

log | det(Tf |F (x))|dµ(x).

Sun-Tian, 2012, for µ � Leb.
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Necessary condition for Pesin-formula

Proof continued for 4-dim.

Lemma. Let Y ∈ X 2(M) be C
1 close to X s.t.

TC(σY )M = E
ss ⊕ E

cu. Then ∃ non-hyperbolic ergodic µ s.t.

hµ(φ
Y
1 ) =

�
log | det(Φ1|Ecu(x))|dµ(x) > 0.

According to Ledrappier-Young’s characterization for measures

satisfying Pesin’s formula, the conditional measure along strong

unstable manifolds W uu is absolutely continuous w.r.t Lebesgue.

Hence, W uu(ρ) ⊂ Λ, which contradicts our previous conclusion.
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Thanks!
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