Geometry in higher dimensions

Proof of theorem 1

Ingredients of the proof of the main theorem

On the fractal geometry of horseshoes in arbitrary dimensions

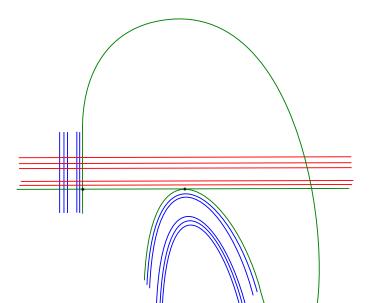
Carlos Gustavo Tamm de Araujo Moreira

School and Conference on Dynamical Systems - ICTP - 05/08/2015

Proof of theorem 1

Ingredients of the proof of the main theorem $_{\odot \odot}$

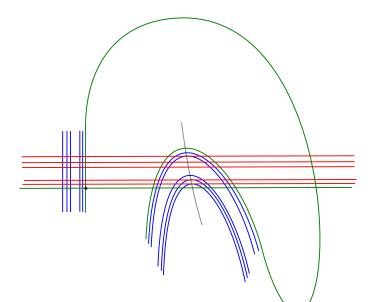
Original motivation: homoclinic bifurcations on surfaces



Proof of theorem 1

Ingredients of the proof of the main theorem $_{\rm OO}$

Original motivation: homoclinic bifurcations on surfaces



Geometry in dimension 2	Geometry in higher dimensions	Proof of theorem 1	Ingredients of the proof of the main theorem
•0			

Hausdorff dimensions and projections of horseshoe

Remark

$$HD(K^{s}) + HD(K^{u}) < 1 \Rightarrow HD(K^{s} - K^{u}) < 1$$

M., Yoccoz, 2001

Typically, $HD(K^s) + HD(K^u) > 1 \Rightarrow K^s - K^u$ persistently contains intervals.

Geometry in dimension 2	Geometry in higher dimensions	Proof of theorem 1	Ingredients of the proof of the main theorem
•0			

Hausdorff dimensions and projections of horseshoe

Remark

$$HD(\Lambda) < 1 \Rightarrow HD(Proj(\Lambda)) < 1$$

Remark

It follows from M., Yoccoz, 2001 that typically $HD(\Lambda) > 1 \Rightarrow Proj(\Lambda)$) persistently contains intervals.

Palis, Viana, 1988

 $HD(\Lambda)$ is continuous in the C^1 -topology

Geometry in dimension 2 ○●	Geometry in higher dimensions	Proof of theorem 1	Ingredients of the proof of the main theorem
Hausdorff dimonsions and r	projections of borseshee		

Main techniques in M., Yoccoz, 2001:

- A recurrent compact set criterion for stable intersections (which implies that arithmetic differences persistently contain intervals).
- An application of Erdős probabilistic method: a family of C[∞] small perturbations of a regular Cantor set (the second Cantor set is fixed) with a large number of parameters such that for most parameters there is a recurrent compact set for the corresponding pair of Cantor sets.

Geometry in dimension 2	Geometry in higher dimensions	Proof of theorem 1	Ingredients of the proof of the main theorem	
Fractal dimensions - the stable upper dimension				

Hausdorff dimension, HD

- HD(Λ) is not always continuous (Bonatti, Díaz, Viana, 1995)
- Is HD(Λ) generically continuous ?

Upper stable dimension, \bar{d}_s

 Homoclinic bifurcations in arbitrary dimensions (M., Palis, Viana, 2001)

•
$$\bar{d}_s(\Lambda) \geq HD(W^s_{loc}(\Lambda) \cap \Lambda)$$

- A a horseshoe for a (local diffeomorphism f
- $\mathcal{P} = \{P_1, ..., P_m\}$ a Markov partition for Λ
- σ : Σ → Σ subshift of finite type conjugated to f⁻¹ for P
- $V_{\underline{\theta}} := \bigcap_{i=1}^{n} f^{-i}(P_{\theta_i}), \text{ for } \underline{\theta} := (\theta_1, ..., \theta_n) \in \Sigma^*$
- $\Pi_s^{(j)}(V) := \sup_{x \in \Lambda \cap V} \{\prod_{i=1}^j \lambda_i(Df^n|_{E^s(x)})\}$, where $\lambda_i(A)$ denotes the *i*-th singular value of the linear map A.
- Σ⁺ⁿ: words of size *n* starting at position 1

Definitions

•
$$d_n^{(1)}$$
 such that $\sum_{\underline{\theta} \in \Sigma^{+n}} \Pi_s^{(1)}(V)^{d_n^{(1)}} = 1$

•
$$\bar{d}_s^{(1)}(\Lambda) = \bar{d}_s(\Lambda) := \lim_{n \to \infty} d_n^{(1)}$$

			Ingredients of the proof of the main theorem	
00	00000000	00	00	
A family of upper stable dimensions $\overline{x}(i)$				

Definitions (cont.)

If, for a given *j* with $1 \le j < k$, where *k* is the dimension of the stable spaces in Λ , $\bar{d}_s^{(j)}(\Lambda) > j$, define

•
$$d_n^{(j+1)}$$
 such that
 $\sum_{\underline{\theta} \in \Sigma^{+n}} \Pi_s^{(j)}(V)^{j+1-d_n^{(j+1)}} \Pi_s^{(j+1)}(V)^{d_n^{(j+1)}-j} = 1$
• $\overline{d}_s^{(j+1)}(\Lambda) := \lim_{n \to \infty} d_n^{(j+1)}$

If $\bar{d}_{s}^{(j)}(\Lambda) \leq j$, define $\bar{d}_{s}^{(r)}(\Lambda) := \bar{d}_{s}^{(j)}(\Lambda)$ for $j \leq r \leq k$. These definitions are inspired in the *affinity dimensions*, introduced by Falconer. We have analogous definitions for upper unstable dimensions.

Proposition

$$\overline{d}_{s}^{(1)}(\Lambda) \geq \overline{d}_{s}^{(2)}(\Lambda) \geq \cdots \geq \overline{d}_{s}^{(k)}(\Lambda) \geq HD(\Lambda \cap W^{s}(x)), \forall x \in \Lambda$$

Geometry in dimension 2	Geometry in higher dimensions	Proof of theorem 1	Ingredients of the proof of the main theorem
A family of upper stable dim	nensions, $\bar{d}_{s}^{(j)}$		

Remark

If, for some $r \le k$, $\overline{d}_s^{(r)}(\Lambda) < r$ then any image of any stable Cantor set of Λ by a C^1 (or Lipschitz) map on a manifold of dimension *r* has Hausdorff dimension smaller than *r* (and so zero Lebesgue measure).

Theorem (M., Palis, Viana)

Given $r \leq k$ and $\delta > 0$ there is a δ -small perturbation \tilde{f} of f in the C^{∞} topology and a subhorseshoe Λ' of the continuation of Λ for \tilde{f} such that $\overline{d}_{s}^{(r)}(\Lambda') > \overline{d}_{s}^{(r)}(\Lambda) - \delta$ and Λ' has strong-stable foliations of codimension j for $1 \leq j \leq r$.

Geometry in dimension 2	Geometry in higher dimensions	Proof of theorem 1	Ingredients of the proof of the main theorem	
Upper stable dimension and projections of a horseshoe				

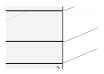
What follows is a joint work (in progress) with W. Silva. From now on, we assume that Λ has strong-stable foliations of codimension *j* for $1 \le j \le r$.

We will introduce a concept of compact recurrent set, inspired by (M., Yoccoz, 2001) in order to obtain results like:

Proposition

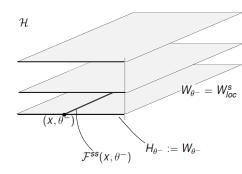
Assume that $\overline{d}_{s}^{(r)}(\Lambda) > r$. Then, perhaps after a small C^{∞} perturbation, the images of stable Cantor sets by typical C^{1} maps on *r*-dimensional manifolds persistently have non-empty interior.

Geometry in dimension 2	Geometry in higher dimensions	Proof of theorem 1	Ingredients of the proof of the main theorem	
Compact recurrent criterium for horseshoes (f, Λ) ,				
Renormalization operators				



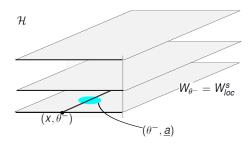
- (f, Λ) horseshoe.
- *H* := *W*^s_{loc}(Λ) ∩ *H*, where *H* is some transversal to a codimension *r* strong-stable space *E*^{ss}.
- $H \approx I^r \times K^u$, where *I* is an interval on the line and K^u is a Cantor set.

Geometry in dimension 2	Geometry in higher dimensions	Proof of theorem 1	Ingredients of the proof of the main theorem	
Compact recurrent criterium for horseshoes (f, Λ) ,				
Renormalization operators				



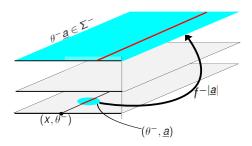
- (f, Λ) horseshoe.
- *H* := *W*^s_{loc}(Λ) ∩ *H*, where *H* is some transversal to a codimension *r* strong-stable space *E*^{ss}.
- $H \approx I^r \times K^u$, where *I* is an interval on the line and K^u is a Cantor set.

Denormalization energies				
Compact recurrent criterium for horseshoes (f, Λ) ,				
Geometry in dimension 2	Geometry in higher dimensions	Proof of theorem 1	Ingredients of the proof of the main theorem	



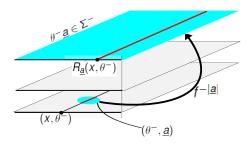
- (f, Λ) horseshoe.
- *H* := *W*^s_{loc}(Λ) ∩ *H*, where *H* is some transversal to a codimension *r* strong-stable space *E*^{ss}.
- $H \approx I^r \times K^u$, where *I* is an interval on the line and K^u is a Cantor set.

Geometry in dimension 2	Geometry in higher dimensions	Proof of theorem 1	Ingredients of the proof of the main theorem	
Compact recurrent criterium for horseshoes (f, Λ) ,				
Renormalization operators				



- (f, Λ) horseshoe.
- *H* := *W*^s_{loc}(Λ) ∩ *H*, where *H* is some transversal to a codimension *r* strong-stable space *E*^{ss}.
- *H* ≈ *I^r* × *K^u*, where *I* is an interval on the line and *K^u* is a Cantor set.

Geometry in dimension 2	Geometry in higher dimensions	Proof of theorem 1	Ingredients of the proof of the main theorem	
Compact recurrent criterium for horseshoes (f, Λ) ,				
Renormalization operators				



- (f, Λ) horseshoe.
- *H* := *W*^s_{loc}(Λ) ∩ *H*, where *H* is some transversal to a codimension *r* strong-stable space *E*^{ss}.
- $H \approx I^r \times K^u$, where *I* is an interval on the line and K^u is a Cantor set.

Geometry in dimension 2	Geometry in higher dimensions	Proof of theorem 1	Ingredients of the proof of the main theorem		
Compact recurrent criterium for horseshoes (f, Λ) ,					
Recurrent compact set					

Definition

Let (f, Λ) a horseshoe.

 $K \subset H$ is a compact recurrent set for (f, Λ) if:

- K is compact
- If (θ⁻, x) ∈ K, then there is a vertical cylinder corresponding to <u>a</u> ∈ Σ^{+*}, such that R_a(θ⁻, x) ∈ int(K).

Remark

- We say that (f, Λ) satisfies the compact recurrent criterium (CRC) if there is a compact recurrent set for (f, Λ).
- The compact recurrent criterium is an open condition.

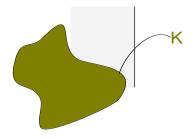
Geometry in higher dimensions

Proof of theorem 1

Ingredients of the proof of the main theorem $_{\rm OO}$

Compact recurrent criterium for horseshoes (f, Λ) ,

Robustness of the compact recurrent criterium



Geometry in higher dimensions

Proof of theorem 1

Ingredients of the proof of the main theorem $_{\odot \odot}$

Compact recurrent criterium for horseshoes (f, Λ) ,

Robustness of the compact recurrent criterium



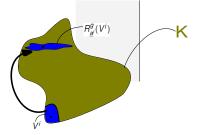
Geometry in higher dimensions

Proof of theorem 1

Ingredients of the proof of the main theorem $_{\rm OO}$

Compact recurrent criterium for horseshoes (f, Λ) ,

Robustness of the compact recurrent criterium



 $R^g_{a^i}(V^i) \subset int(K)$ for every $g \in B^{C^1}_{\delta_i}(f)$

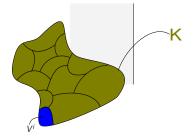
Geometry in higher dimensions

Proof of theorem 1

Ingredients of the proof of the main theorem $_{\rm OO}$

Compact recurrent criterium for horseshoes (f, Λ) ,

Robustness of the compact recurrent criterium



• $K \subset \bigcup_{i=1}^{n} V^{i}$. • $R_{\underline{a}^{i}}^{g}(V^{i}) \subset int(K)$ for every $1 \leq i \leq n$ and for every $g \in \bigcap_{i=1}^{n} B_{\delta_{i}}^{C^{1}}(f)$.

Geometry in dimension 2	Geometry in higher dimensions	Proof of theorem 1	Ingredients of the proof of the main theorem		
Consequences of the compact recurrent criterion					
Blenders (Bonatti, Díaz)					

Theorem 1

Se $(f, \Lambda) \in C^{\infty}$ satisfies the **CRC**, then it has a codimension *r* blender, C^1 -persistently in a neighbourhood of $\mathcal{F}_{loc}^{ss}(K)$.

More specifically, any manifold sufficiently C^1 -close to a leaf of the codimension *r* strong-stable foliation, $\mathcal{F}_{loc}^{ss}(x, \theta^-)$, through a point (x, θ^-) of *K* intersects $W^{g,u}(\Lambda^g)$ for any *g* sufficiently C^1 -close to *f*.

Geometry in dimension 2	Geometry in higher dimensions	Proof of theorem 1	Ingredients of the proof of the main theorem
Main Theorem			

Main Theorem

Let (f, Λ) be a C^{∞} horseshoe. If $\overline{d}_{s}^{(r)}(\Lambda) > r$ then there is a horseshoe, $(g, \Lambda^{g}), C^{\infty}$ -close to (f, Λ) which satisfies the **CRC**.

Corollary

Codimension *r* blenders appear, C^1 -robustly, after a small C^k -perturbation of any C^k horseshoe (f, Λ) satisfying $\overline{d}_s^{(r)}(\Lambda) > r$.

A simpler result

Theorem 1' (restricted)

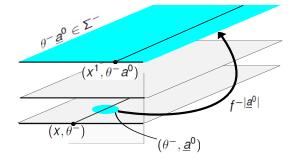
If (f, Λ) has a compact recurrent set K then $\mathcal{F}_{loc}^{ss}(x, \theta^-) \cap \Lambda \neq \emptyset$ for every $(x, \theta^-) \in K$. In other words, the projection along the leaves of the codimension r strong-stable foliation of the stable Cantor set $\Lambda \cap W^s_{\theta^-}$ contains $K \cap W^s_{\theta^-}$, and so has nonempty (r-dimensional) interior.

Geometry in higher dimensions

Proof of theorem 1

Ingredients of the proof of the main theorem

A simpler result

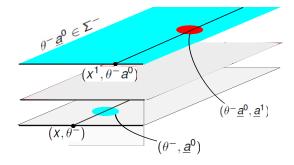


Geometry in higher dimensions

Proof of theorem 1

Ingredients of the proof of the main theorem

A simpler result

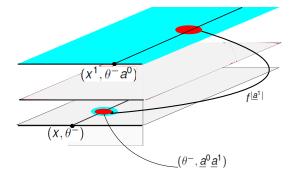


Geometry in higher dimensions

Proof of theorem 1

Ingredients of the proof of the main theorem

A simpler result

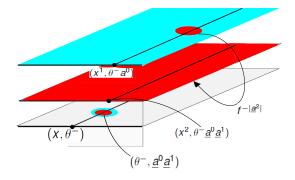


Geometry in higher dimensions

Proof of theorem 1

Ingredients of the proof of the main theorem

A simpler result

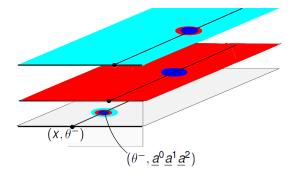


Geometry in higher dimensions

Proof of theorem 1

Ingredients of the proof of the main theorem

A simpler result

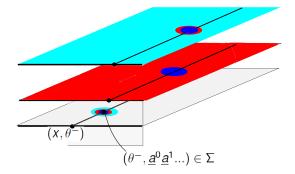


Geometry in higher dimensions

Proof of theorem 1

Ingredients of the proof of the main theorem

A simpler result



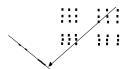
Construction of a candidate for compact recurrent set

We first construct a good candidate for a compact recurrent set, and then we construct a family of small perturbations of the horseshoe with a large number of parameters and prove that for most parameters the candidate is indeed a recurrent compact set.

The main tool in the construction of the candidate for the recurrent compact set is inspired on the following classical result:

Marstrand, 1954

For Lebesgue almost every $\theta \in \mathbb{R}$, the projection of a set $K \subset \mathbb{R}^2$ with HD(K) > 1 along lines forming an angle θ with the horizontal axis *x* has positive Lebesgue measure.



Geometry in dimension 2	Geometry in higher dimensions	Proof of theorem 1	Ingredients of the proof of the main theorem
			0•

Construction of a candidate for compact recurrent set

We use the following generalization of Marstrand's theorem:

López, M., Silva

Let *X* be a compact metric space, (Λ, \mathcal{P}) a probability space and $\pi : \Lambda \times X \to \mathbb{R}^k$ a measurable function. Informally, one can think of $\pi_{\lambda}(\cdot) = \pi(\lambda, \cdot)$ as a family of projections parameterized by λ . We assume that for some positives real numbers α and *C* the following transversality property is satisfied:

$$\mathcal{P}[\lambda \in \Lambda : d(\pi_{\lambda}(\mathbf{x}_{1}), \pi_{\lambda}(\mathbf{x}_{2})) \leq \delta d(\mathbf{x}_{1}, \mathbf{x}_{2})^{\alpha}] \leq C\delta^{k}$$
(1)

for all $\delta > 0$ and all $x_1, x_2 \in X$. Assume that dim $X > \alpha k$. Then $Leb(\pi_{\lambda}(X)) > 0$ for a.e. $\lambda \in \Lambda$ and $\int_{\Lambda} Leb(\pi_{\lambda}(X))^{-1} d\mathcal{P} < +\infty$.