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Original motivation: homoclinic bifurcations on surfaces
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Hausdorff dimensions and projections of horseshoe

HD(K®) + HD(KY) < 1 = HD(KS — KY) < 1

M., Yoccoz, 2001
Typically, HD(K®) + HD(KY) > 1 = K® — K" persistently
contains intervals.
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Hausdorff dimensions and projections of horseshoe

HD(A) < 1 = HD(Proj(N)) < 1

It follows from M., Yoccoz, 2001 that typically
HD(A) > 1 = Proj(A\)) persistently contains intervals.

Palis, Viana, 1988

HD(A) is continuous in the C' —topology
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Hausdorff dimensions and projections of horseshoe

Main techniques in M., Yoccoz, 2001:

@ A recurrent compact set criterion for stable intersections
(which implies that arithmetic differences persistently
contain intervals).

@ An application of Erdds probabilistic method: a family of
C* small perturbations of a regular Cantor set (the second
Cantor set is fixed) with a large number of parameters
such that for most parameters there is a recurrent compact
set for the corresponding pair of Cantor sets.
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Fractal dimensions - the stable upper dimension

Hausdorff dimension, HD

@ HD(A) is not always continuous (Bonatti, Diaz, Viana,
1995)

@ Is HD(A) generically continuous ?

Upper stable dimension, d;s

@ Homoclinic bifurcations in arbitrary dimensions (M., Palis,
Viana, 2001)

© ds(A) > HD(Wg,(N) N A)
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A family of upper stable dimensions, Ely)

@ A a horseshoe for a (local diffeomorphism f

@ P ={P4,..., Pn} a Markov partition for A

@ o : ¥ — Y subshift of finite type conjugated to f~' for P
@ Vy:=NL,f(Py),forg :=(bs,..,0p) € T*

0 NP(V) == supyenv ATy M(DF|es(x))}, Where Ai(A)
denotes the j-th singular value of the linear map A.

@ Y™ words of size n starting at position 1

o di" such that S geyr nM(v)a” = 1
o dV(A) = ds(A) = limp_oe AV
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A family of upper stable dimensions, Ely)

Definitions (cont.)

If, for a given j with 1 < j < k, where k is the dimension of the
stable spaces in A, d¥)(A) > j, define
o V"V suchthat ,
Sgex s NO(VYH-42 gD (v)d i = 4

0 dVT(A) == limp_yoo ¥

It d¥(A) < j, define d{”(A) := dY¥(A) for j < r < k. These
definitions are inspired in the affinity dimensions, introduced by
Falconer. We have analogous definitions for upper unstable
dimensions.

Proposition
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A family of upper stable dimensions, Ely)

If, for some r < k, Hg’)(A) < r then any image of any stable
Cantor set of A by a C' (or Lipschitz) map on a manifold of
dimension r has Hausdorff dimension smaller than r (and so
zero Lebesgue measure).

Theorem (M., Palis, Viana)

Given r < k and § > 0 there is a 6—small perturbation fof fin

the C* topology and a subhorseshoe A’ of the continuation of

A for f such that H(Sr)(/\’) > H(sr)(A) — 6 and A has strong-stable
foliations of codimension jfor 1 <j <r.
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Upper stable dimension and projections of a horseshoe

What follows is a joint work (in progress) with W. Silva.

From now on, we assume that A has strong-stable foliations of
codimension jfor1 <j<r.

We will introduce a concept of compact recurrent set, inspired
by (M., Yoccoz, 2001) in order to obtain results like:

Proposition

Assume that ag’)(/\) > r. Then, perhaps after a small C*

perturbation, the images of stable Cantor sets by typical C'
maps on r-dimensional manifolds persistently have non-empty
interior.
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Compact recurrent criterium for horseshoes (f, A),

Renormalization operators

@ (f,A) horseshoe.
@ H:= Wg (N)NH, where H is some transversal to a
codimension r strong-stable space E*S.

@ H=I" x KY where I is an interval on the line and KY is a
Cantor set.
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Compact recurrent criterium for horseshoes (f, A),

Renormalization operators

/ Wo- = Wee
(x,607)
F5(x,07) Ho-:= W
@ (f,A) horseshoe.
@ H:= Wg (N)NH, where H is some transversal to a

codimension r strong-stable space E*S.

@ H=I" x KY where I is an interval on the line and KY is a
Cantor set.
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Compact recurrent criterium for horseshoes (f, A),

Renormalization operators

Wo- = Wee
=
(x,607)
(0~.a)
@ (f,A) horseshoe.
@ H:= Wg (N)NH, where H is some transversal to a

codimension r strong-stable space E*S.

@ H=I" x KY where I is an interval on the line and KY is a
Cantor set.
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Compact recurrent criterium for horseshoes (f, A),

Renormalization operators

(x,607)
()

@ (f,A) horseshoe.
@ H:= Wg (N)NH, where H is some transversal to a
codimension r strong-stable space E*S.

@ H=I" x KY where I is an interval on the line and KY is a
Cantor set.
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Compact recurrent criterium for horseshoes (f, A),

Renormalization operators

Ra(x,07) |
(it
R
(x,607)
(0.a)
@ (f,A) horseshoe.
@ H:= Wg (N)NH, where H is some transversal to a

codimension r strong-stable space E*S.

@ H=I" x KY where I is an interval on the line and KY is a
Cantor set.
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Compact recurrent criterium for horseshoes (f, A),

Recurrent compact set

Let (f,A\) a horseshoe.
K C H is a compact recurrent set for (f,A) if:

@ K is compact

@ If (=, x) € K, then there is a vertical cylinder
corresponding to a € £*, such that Ry(6—, x) € int(K).

@ We say that (f, A) satisfies the compact recurrent
criterium (CRC) if there is a compact recurrent set for
(f,A).

@ The compact recurrent criterium is an open condition.
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Compact recurrent criterium for horseshoes (f, A),

Robustness of the compact recurrent criterium
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Compact recurrent criterium for horseshoes (f, A),

Robustness of the compact recurrent criterium
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Compact recurrent criterium for horseshoes (f, A),

Robustness of the compact recurrent criterium

. . 1
RZ(V') C int(K) for every g € Bf (f) J
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Compact recurrent criterium for horseshoes (f, A),

Robustness of the compact recurrent criterium

e Kc UL, V.
® RJ (V') C int(K) for every 1 < i < nand for every
9 €Nty BS ().
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Consequences of the compact recurrent criterion

Blenders (Bonatti, Diaz)

Theorem 1

Se (f,\) € C™ satisfies the CRC, then it has a codimension r
blender, C'—persistently in a neighbourhood of 35 (K).

loc

More specifically, any manifold sufficiently C'—close to a leaf of
the codimension r strong-stable foliation, 772°.(x, 6~), through a
point (x,67) of K intersects W9Y(A9) for any g sufficiently

C'—close to f.
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Main Theorem

Main Theorem

Let (,A) be a C> horseshoe. If d(A) > r then there is a
horseshoe, (g, \9), C>—close to (f,\) which satisfies the CRC.

Corollary

Codimension r blenders appear, C'—robustly, after a small
Ck—perturbation of any C* horseshoe (f, A) satisfying

d(n) > r.
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A simpler result

Theorem 1° (restricted)

If (f,\) has a compact recurrent set K then 72°.(x,67) N A # 0
for every (x,67) € K. In other words, the projection along the
leaves of the codimension r strong-stable foliation of the stable
Cantor set AN WS contains KN W, and so has nonempty

(r-dimensional) interior.
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A simpler result

Proof of theorem 1’ (simplified)
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A simpler result

Proof of theorem 1’ (simplified)
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Proof of theorem 1’ (simplified)
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A simpler result

Proof of theorem 1’ (simplified)

(0-.a%a'a)
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A simpler result

Proof of theorem 1’ (simplified)

(x.607)



Ingredients of the proof of the main theorem
o0

Construction of a candidate for compact recurrent set

We first construct a good candidate for a compact recurrent set,
and then we construct a family of small perturbations of the
horseshoe with a large number of parameters and prove that
for most parameters the candidate is indeed a recurrent
compact set.

The main tool in the construction of the candidate for the
recurrent compact set is inspired on the following classical
result:

Marstrand, 1954

For Lebesgue almost every 6 € R, the projection of a set
K c R2 with HD(K) > 1 along lines forming an angle 6 with the
horizontal axis x has positive Lebesgue measure.
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Construction of a candidate for compact recurrent set

We use the following generalization of Marstrand’s theorem:

Lopez, M., Silva

Let X be a compact metric space, (A, P) a probability space
and 7 : A x X — RX a measurable function. Informally, one can
think of my(-) = 7(\, -) as a family of projections parameterized
by A\. We assume that for some positives real numbers o and C
the following transversality property is satisfied:

Pl € A= d(ma(x1), ma(x)) < 8d(x1, X)) < C3* (1)

forall 6 > 0 and all x4, xo € X. Assume that dim X > ak. Then
Leb(ry(X)) > 0fora.e. A € Aand [, Leb(mx(X)) 1dP < +cc.
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