Stochastic dynamics from a deterministic one

Domokos Szász (Budapest University of Technology and Economics) in progress w. P. Bálint, IP. Tóth (both BUTE), P. Nándori (NYU & Maryland),

ICTP, Dynamical Systems

Szász 1 / 25

Heat Equation (no mass flow)

$$\frac{\partial T(x,t)}{\partial t} = \frac{1}{c} \nabla \left[\kappa \nabla T(x,t) \right]$$

c - specific heat/unit volume (= 1) $\kappa = \kappa(T)$ - thermal conductivity

For a wide class of models: $\kappa(T) = \text{const.}\sqrt{T}$ (insulating materials, or gas of weakly/rarely interacting particles)

Szász 2/25

Heat Equation (no mass flow)

$$\frac{\partial T(x,t)}{\partial t} = \frac{1}{c} \nabla \left[\kappa \nabla T(x,t) \right]$$

c - specific heat/unit volume (= 1)

 $\kappa = \kappa(T)$ - thermal conductivity

For a wide class of models: $\kappa(T) = \text{const.}\sqrt{T}$ (insulating materials, or gas of weakly/rarely interacting particles)

Szász 2 / 25

Bonetto-Lebowitz-Rey-Bellet, 2000: Fourier law: A challenge to theorists, a survey

"it would be necessary to add interactions between the moving particles, e.g. instead of points make them little balls "

Gaspard-Gilbert, 2008—: model of localized hard disks (balls) - a two step approach:

- From the microscopic kinetic equ. of the Hamiltonian model derive a mesoscopic master equ. in the rare (but strong) interaction limit; It is a Markov jump process.
- Then from the mesoscopic master equal derive the macroscopic heat equ.

Szász 3 / 25

Bonetto-Lebowitz-Rey-Bellet, 2000: Fourier law: A challenge to theorists, a survey

"it would be necessary to add interactions between the moving particles, e.g. instead of points make them little balls "

Gaspard-Gilbert, 2008–: model of localized hard disks (balls) - a two step approach:

- From the microscopic kinetic equ. of the Hamiltonian model derive a mesoscopic master equ. in the rare (but strong) interaction limit; It is a Markov jump process.
- 2 Then from the mesoscopic master equ. derive the macroscopic heat equ.

Szász 3 / 25

Bonetto-Lebowitz-Rey-Bellet, 2000: Fourier law: A challenge to theorists, a survey

"it would be necessary to add interactions between the moving particles, e.g. instead of points make them little balls "

Gaspard-Gilbert, 2008–: model of localized hard disks (balls) - a two step approach:

- From the microscopic kinetic equ. of the Hamiltonian model derive a mesoscopic master equ. in the rare (but strong) interaction limit; It is a Markov jump process.
- Then from the mesoscopic master equ. derive the macroscopic heat equ.

Szász 3 / 25

Gaspard-Gilbert model

chain length N=2 periodic scatterers (shaded disks) confined moving disks (white circles)

Physical relevance: No mass transport
Coquard et al., J. Non-Crystalline Solids, 2013:
Modelling of conductive heat transfer through
nano-structured porous silica materials

Szász 4 / 25

Gaspard-Gilbert model

chain length N=2 periodic scatterers (shaded disks) confined moving disks (white circles)

Physical relevance: No mass transport
Coquard et al., J. Non-Crystalline Solids, 2013:
Modelling of conductive heat transfer through
nano-structured porous silica materials

Szász 4 / 25

Definition. Billiard flow is a dynamical system $(\mathcal{M}, \{S^t | t \in \mathbb{R}\}, \tilde{\mu})$ where $\tilde{\mu} = \text{Liouville-measure},$ $\mathcal{M} = Q \times S_{d-1}$ (here $Q = \mathbb{T}^2 \setminus \text{disk}$) $\{S^t | t \in \mathbb{R}\}$: billiard dynamics = uniform motion in Q and elastic reflection at the scatterers ∂Q .

Billiard Ball Map: (M, T, μ) , where $M = \partial Q \times S_{d-1}$

Definition. A billiard is

- a dispersing one (Sinai-billiard) if the scatterers are strictly convex (as on picture above)
- a semi-dispersing one if they are (only) convex.

Szász 5 / 25

Definition. Billiard flow is a dynamical system $(\mathcal{M}, \{S^t | t \in \mathbb{R}\}, \tilde{\mu})$ where $\tilde{\mu} = \text{Liouville-measure}$, $\mathcal{M} = Q \times S_{d-1}$ (here $Q = \mathbb{T}^2 \setminus \text{disk}$) $\{S^t | t \in \mathbb{R}\}$: billiard dynamics = uniform motion in Q and elastic reflection at the scatterers ∂Q .

Billiard Ball Map: (M, T, μ) , where $M = \partial Q \times S_{d-1}$

Definition. A billiard is

- a dispersing one (Sinai-billiard) if the scatterers are strictly convex (as on picture above)
- a semi-dispersing one if they are (only) convex.

Szász 5 / 25

Definition. Billiard flow is a dynamical system $(\mathcal{M}, \{S^t | t \in \mathbb{R}\}, \tilde{\mu})$ where $\tilde{\mu} = \text{Liouville-measure},$ $\mathcal{M} = Q \times S_{d-1}$ (here $Q = \mathbb{T}^2 \setminus \text{disk}$) $\{S^t | t \in \mathbb{R}\}$: billiard dynamics = uniform motion in Q and elastic reflection at the scatterers ∂Q .

Billiard Ball Map: (M, T, μ) , where $M = \partial Q \times S_{d-1}$

Definition. A billiard is

- a dispersing one (Sinai-billiard) if the scatterers are strictly convex (as on picture above)
- a semi-dispersing one if they are (only) convex.

Szász 5 / 25

Definition. Billiard flow is a dynamical system $(\mathcal{M}, \{S^t | t \in \mathbb{R}\}, \tilde{\mu})$ where $\tilde{\mu} = \text{Liouville-measure},$ $\mathcal{M} = Q \times S_{d-1}$ (here $Q = \mathbb{T}^2 \setminus \text{disk}$) $\{S^t | t \in \mathbb{R}\}$: billiard dynamics = uniform motion in Q and elastic reflection at the scatterers ∂Q .

Billiard Ball Map: (M, T, μ) , where $M = \partial Q \times S_{d-1}$

Definition. A billiard is

- a dispersing one (Sinai-billiard) if the scatterers are strictly convex (as on picture above)
- a semi-dispersing one if they are (only) convex.

5 / 25

- box size: 1; chain length = N;
- periodic b. c.'s along y-axis
- radius of fixed scatterers (shaded circles)= ρ_f
- radius of moving disks (empty circles) = ρ_m
- condition of confinement: $\rho_f + \rho_m > 1/2$
- condition of conductivity: $\rho_m > \rho_{crit} = \sqrt{(\rho_f + \rho_m)^2 - (1/2)^2}$
- small parameter $\varepsilon = \rho_m \rho_{crit} > 0$

Rare interaction limit:

- Keep $\rho_f + \rho_m =: \rho$ fixed
- Then their phase spaces essentially only depend on $\rho!$
- If $\rho_m = \rho_{crit}$, then we have *N* non-interacting billiards.

6/25

Szász

- box size: 1; chain length = N;
- periodic b. c.'s along y-axis
- radius of fixed scatterers (shaded circles)= ρ_f
- radius of moving disks (empty circles) = ρ_m
- condition of confinement: $\rho_f + \rho_m > 1/2$
- condition of conductivity: $\rho_m > \rho_{crit} = \sqrt{(\rho_f + \rho_m)^2 - (1/2)^2}$
- small parameter $\varepsilon = \rho_m \rho_{crit} > 0$

Rare interaction limit:

- Keep $\rho_f + \rho_m =: \rho$ fixed
- Then their phase spaces essentially only depend on ρ !
- If $\rho_m = \rho_{crit}$, then we have *N* non-interacting billiards.

- box size: 1; chain length = N;
- periodic b. c.'s along y-axis
- radius of fixed scatterers (shaded circles)= ρ_f
- radius of moving disks (empty circles) = ρ_m
- condition of confinement: $\rho_f + \rho_m > 1/2$
- condition of conductivity: $\rho_m > \rho_{crit} = \sqrt{(\rho_f + \rho_m)^2 - (1/2)^2}$
- small parameter $\varepsilon = \rho_m \rho_{crit} > 0$

Rare interaction limit:

- Keep $\rho_f + \rho_m =: \rho$ fixed
- Then their phase spaces essentially only depend on ρ !
- If $\rho_m = \rho_{crit}$, then we have *N* non-interacting billiards.

- box size: 1; chain length = N;
- periodic b. c.'s along y-axis
- radius of fixed scatterers (shaded circles)= ρ_f
- radius of moving disks (empty circles) = ρ_m
- condition of confinement: $\rho_f + \rho_m > 1/2$
- condition of conductivity:

$$ho_{\it m} >
ho_{\it crit} = \sqrt{(
ho_{\it f} +
ho_{\it m})^2 - (1/2)^2}$$

• small parameter $\varepsilon = \rho_{\it m} - \rho_{\it crit} > 0$

Rare interaction limit:

- Keep $\rho_f + \rho_m =: \rho$ fixed
- Then their phase spaces essentially only depend on ρ !
- If $\rho_m = \rho_{crit}$, then we have *N* non-interacting billiards.

- box size: 1; chain length = N;
- periodic b. c.'s along y-axis
- radius of fixed scatterers (shaded circles)= ρ_f
- radius of moving disks (empty circles) = ρ_m
- condition of confinement: $\rho_f + \rho_m > 1/2$
- condition of conductivity:

$$ho_{\it m} >
ho_{\it crit} = \sqrt{(
ho_{\it f} +
ho_{\it m})^2 - (1/2)^2}$$

• small parameter $\varepsilon = \rho_{\it m} - \rho_{\it crit} > 0$

Rare interaction limit:

- Keep $\rho_f + \rho_m =: \rho$ fixed
- Then their phase spaces essentially only depend on $\rho!$
- If $\rho_m = \rho_{crit}$, then we have *N* non-interacting billiards.

Liouville equation

Ernst-Dorfman, '89: The kinetic equ. for the *N*-particle density $p_N(q_1, v_1, ..., q_N, v_N; t)$ is

$$\partial_t p_N = \sum_{j=1}^N \left(-v_j \partial_{q_j} + K_{wall,j} + C_{j,j+1} \right) p_N$$

- the first two terms on the RHS describe the billiard dynamics of each disk within its cell (denote wall collision rate by $\nu_{\mathrm{wall},\varepsilon}$)
- the third one: the binary interaction of neighboring disks provides energy transfer (denote binary collision rate by $\nu_{\mathrm{bin},\varepsilon}$)

Szász 7 / 25

Liouville equation

Ernst-Dorfman, '89: The kinetic equ. for the *N*-particle density $p_N(q_1, v_1, ..., q_N, v_N; t)$ is

$$\partial_t p_N = \sum_{j=1}^N \left(-v_j \partial_{q_j} + K_{wall,j} + C_{j,j+1} \right) p_N$$

- the first two terms on the RHS describe the billiard dynamics of each disk within its cell (denote wall collision rate by $\nu_{\mathrm{wall},\varepsilon}$)
- the third one: the binary interaction of neighboring disks provides energy transfer (denote binary collision rate by $\nu_{\mathrm{bin},\varepsilon}$)

Szász 7 / 25

Liouville equation

Ernst-Dorfman, '89: The kinetic equ. for the *N*-particle density $p_N(q_1, v_1, ..., q_N, v_N; t)$ is

$$\partial_t p_N = \sum_{j=1}^N \left(-v_j \partial_{q_j} + K_{wall,j} + C_{j,j+1} \right) p_N$$

- the first two terms on the RHS describe the billiard dynamics of each disk within its cell (denote wall collision rate by $\nu_{\rm wall,\varepsilon}$)
- the third one: the binary interaction of neighboring disks provides energy transfer (denote binary collision rate by $\nu_{\mathrm{bin},\varepsilon}$)

Szász 7 / 25

- $arepsilon \searrow 0$, i. e. $u_{ ext{wall},arepsilon}(\sim
 u_{ ext{wall}, ext{crit}} > 0) \gg
 u_{ ext{bin},arepsilon}
 ightarrow 0$
- **GG08** derives a master equation for the density $P_N(E_1, ..., E_N; t)$ $(E_j = v_i^2 : 1 \le j \le N)$
- ② HDL: from the master equation they obtain the coefficient of heat conductivity: $\kappa = \text{const.}\sqrt{T}$
- Dynamical: Kinetic Equation

 Markov Generator of a Markov jump process of energies
- ② Probabilistic: Markov Jump Process ⇒ Heat Equation (Hydrodynamic Limit à la Varadhan) Grigo-Khanin-Sz., '12 Sasada '13, '15

- $\varepsilon \searrow 0$, i. e. $\nu_{\text{wall},\varepsilon}(\sim \nu_{\textit{wall},\textit{crit}} > 0) \gg \nu_{\text{bin},\varepsilon} \rightarrow 0$
- **GG08 derives a master equation for the density** $P_N(E_1, ..., E_N; t)$ $(E_j = v_i^2 : 1 \le j \le N)$
- ② HDL: from the master equation they obtain the coefficient of heat conductivity: $\kappa = \text{const.}\sqrt{T}$
- Dynamical: Kinetic Equation

 Markov Generator of a Markov jump process of energies
- Probabilistic: Markov Jump Process

 Heat Equation (Hydrodynamic Limit à la Varadhan)
 Grigo-Khanin-Sz., '12
 Sasada '13, '15

$$\varepsilon \searrow 0$$
, i. e. $\nu_{\text{wall},\varepsilon}(\sim \nu_{\textit{wall},\textit{crit}} > 0) \gg \nu_{\text{bin},\varepsilon} \rightarrow 0$

- **GG08 derives a master equation for the density** $P_N(E_1, ..., E_N; t)$ $(E_j = v_i^2 : 1 \le j \le N)$
- ② HDL: from the master equation they obtain the coefficient of heat conductivity: $\kappa = \text{const.}\sqrt{T}$
- Dynamical: Kinetic Equation

 Markov Generator of a Markov jump process of energies
- Probabilistic: Markov Jump Process

 Heat Equation (Hydrodynamic Limit à la Varadhan)
 Grigo-Khanin-Sz., '12
 Sasada '13, '15

$$arepsilon \searrow 0$$
, i. e. $u_{ ext{wall},arepsilon}(\sim
u_{ ext{wall}, ext{crit}} > 0) \gg
u_{ ext{bin},arepsilon}
ightarrow 0$

- **GG08 derives a master equation for the density** $P_N(E_1, ..., E_N; t)$ $(E_j = v_i^2 : 1 \le j \le N)$
- **2** HDL: from the master equation they obtain the coefficient of heat conductivity: $\kappa = \text{const.}\sqrt{T}$
- Dynamical: Kinetic Equation

 Markov Generator of a Markov jump process of energies
- Probabilistic: Markov Jump Process

 Heat Equation (Hydrodynamic Limit à la Varadhan)
 Grigo-Khanin-Sz., '12
 Sasada '13, '15

$$arepsilon \searrow 0$$
, i. e. $u_{ ext{wall},arepsilon}(\sim
u_{ ext{wall}, ext{crit}} > 0) \gg
u_{ ext{bin},arepsilon}
ightarrow 0$

- **GG08 derives a master equation for the density** $P_N(E_1, ..., E_N; t)$ $(E_j = v_i^2 : 1 \le j \le N)$
- **②** HDL: from the master equation they obtain the coefficient of heat conductivity: $\kappa = \text{const.}\sqrt{T}$
- Dynamical: Kinetic Equation

 Markov Generator of a Markov jump process of energies

Actual challenge. Part 1: Rigorous theory for GG

Dolgopyat-Liverani, 2011: **weak interaction limit** in a chain of Anosov maps.

Mesoscopic equ. is a system of interacting stochastic differential equ.'s.

Keller-Liverani, 2009: **rare interaction limit**. CML, i. e. interval maps coupled by *collisions*. Result: Uniqueness of SRB and exponential space-time corr. decay.

Szász 9 / 25

Actual challenge. Part 1: Rigorous theory for GG

Dolgopyat-Liverani, 2011: **weak interaction limit** in a chain of Anosov maps.

Mesoscopic equ. is a system of interacting stochastic differential equ.'s.

Keller-Liverani, 2009: rare interaction limit.

CML, i. e. interval maps coupled by *collisions*. Result:

Uniqueness of SRB and exponential space-time corr. decay.

Szász 9 / 25

Dynamical approach for step 1. Warm-up result

By Hirata-Saussol-Vaienti, 1999: If

- a dynamical system (M, T, μ) is mixing in a controlled way (e. g. α-mixing)
- and A_{ε} is a sequence of nice subsets (e. g. to avoid e. g. neighborhoods of periodic points) with $\lim_{\varepsilon \to 0} \mu(A_{\varepsilon}) = 0$

then the successive entrance times of the dynamics into A_{ε} form a Poisson process on the time scale of $\mu(A_{\varepsilon})^{-1}$.

More quantitative conditions for entrance times to infinitesimal balls $B_r(x)$; $x \in M$: Chazotte-Collet, 2013

Szász 10 / 25


```
Free bry conditions along x-axis. N=2 \dim Q=4; \dim \mathcal{M}=7; \dim \gamma^u=\dim \gamma^s=3
```

The model is isomorphic to a 4D semi-dispersing billiard. It is K-mixing (Bu-Li-Pe-Su, '92), but no mixing rate is known.

P Bálint-IP Tóth, '08: $D \ge 3$, exponential correlation decay is settled ONLY for finite horizon *dispersing* billiards AND it is based on complexity hypothesis.

Szász 11 / 25

Free bry conditions along
$$x$$
-axis. $N=2$ $\dim Q=4$; $\dim \mathcal{M}=7$; $\dim \gamma^u=\dim \gamma^s=3$

The model is isomorphic to a 4D semi-dispersing billiard. It is K-mixing (Bu-Li-Pe-Su, '92), but no mixing rate is known.

P Bálint-IP Tóth, '08: $D \ge 3$, exponential correlation decay is settled ONLY for finite horizon *dispersing* billiards AND it is based on complexity hypothesis.

Szász 11 / 25

Standard pairs and Markovity. D = 2

 (M, T, μ) billiard ball map. dim M = 2.

Standard pair: $\ell = (W, \rho)$, where W is an unstable curve, ρ : nice probability density on W.

Decompose M into a proper family of standard pairs. Let $\ell = (W, \rho)$ be a standard pair, $A : M \to \mathbb{R}$. By law of total probability

$$\mathbb{E}_{\ell}(A \circ T^n) = \sum_{\alpha} c_{\alpha n} \mathbb{E}_{\ell_{\alpha n}}(A)$$

where $c_{\alpha n} > 0$, $\sum_{\alpha} c_{\alpha n} = 1$. Moreover, $\ell_{\alpha n} = (W_{\alpha n}, \rho_{\alpha n})$ are standard pairs with $T^n W = \bigcup_{\alpha} W_{\alpha,n}$ where $\rho_{\alpha n}$ is the pushforward of ρ up to a multiplicative factor.

Theorem (Growth lemma ~ Markov property)

$$\exists, \beta_1, \beta_2 > 0 \text{ s. t. } \forall \varepsilon > 0, \forall n \geq \log \frac{1}{|W|^{\beta_1}}$$

$$\sum_{\text{length}(\ell_{\alpha n})<\varepsilon} c_{\alpha n} \leq \beta_2 \varepsilon.$$

Szász 12 / 25

Standard pairs and Markovity. D=2

 (M, T, μ) billiard ball map. dim M = 2.

Standard pair: $\ell = (W, \rho)$, where W is an unstable curve, ρ : nice probability density on W.

Decompose *M* into a proper family of standard pairs. Let

$$\mathbb{E}_{\ell}(A \circ T^n) = \sum_{\alpha} c_{\alpha n} \mathbb{E}_{\ell_{\alpha n}}(A)$$

$$\exists, \beta_1, \beta_2 > 0 \text{ s. t. } \forall \varepsilon > 0, \forall n \geq \log \frac{1}{|W|^{\beta_1}}$$

$$\sum_{\text{length}(\ell_{\alpha n})<\varepsilon} c_{\alpha n} \leq \beta_2 \varepsilon.$$

12 / 25

Standard pairs and Markovity. D=2

 (M, T, μ) billiard ball map. dim M = 2.

Standard pair: $\ell = (W, \rho)$, where W is an unstable curve, ρ : nice probability density on W.

Decompose *M* into a proper family of standard pairs. Let $\ell = (W, \rho)$ be a standard pair, $A : M \to \mathbb{R}$. By law of total prob.

$$\mathbb{E}_{\ell}(A \circ T^n) = \sum_{\alpha} c_{\alpha n} \mathbb{E}_{\ell_{\alpha n}}(A)$$

where $c_{\alpha n} > 0$, $\sum_{\alpha} c_{\alpha n} = 1$. Moreover, $\ell_{\alpha n} = (W_{\alpha n}, \rho_{\alpha n})$ are standard pairs with $T^nW = \bigcup_{\alpha} W_{\alpha,n}$ where $\rho_{\alpha n}$ is the pushforward of ρ up to a multiplicative factor.

$$\exists, \beta_1, \beta_2 > 0 \text{ s. t. } \forall \varepsilon > 0, \forall n \geq \log \frac{1}{|W|^{\beta_1}}$$

$$\sum_{\text{length}(\ell_{\alpha n})<\varepsilon} c_{\alpha n} \leq \beta_2 \varepsilon.$$

Szász 12 / 25

Standard pairs and Markovity. D=2

 (M, T, μ) billiard ball map. dim M = 2.

Standard pair: $\ell = (W, \rho)$, where W is an unstable curve, ρ : nice probability density on W.

Decompose *M* into a proper family of standard pairs. Let $\ell = (W, \rho)$ be a standard pair, $A : M \to \mathbb{R}$. By law of total prob.

$$\mathbb{E}_{\ell}(A \circ T^n) = \sum_{\alpha} c_{\alpha n} \mathbb{E}_{\ell_{\alpha n}}(A)$$

where $c_{\alpha n} > 0$, $\sum_{\alpha} c_{\alpha n} = 1$. Moreover, $\ell_{\alpha n} = (W_{\alpha n}, \rho_{\alpha n})$ are standard pairs with $T^nW = \bigcup_{\alpha} W_{\alpha,n}$ where $\rho_{\alpha n}$ is the pushforward of ρ up to a multiplicative factor.

Theorem (Growth lemma ~ Markov property)

$$\exists, \beta_1, \beta_2 > 0 \text{ s. t. } \forall \varepsilon > 0, \forall n \geq \log \frac{1}{|W|^{\beta_1}}$$

$$\sum_{\mathrm{length}(\ell_{\alpha n})<\varepsilon} \mathbf{c}_{\alpha n} \leq \beta_2 \varepsilon.$$

Szász

Chernov-Dolgopyat model

Disk of mass $M \gg 1$ and a point of mass m = 1 dim Q = 4; dim $\mathcal{M} = 7$

Since $M \gg 1$, the disk is *almost* still.

Consequently the 2-particle billiard is *almost* a 2D Sinai billiard.

One can *almost* use **its** standard pairs.

GG-mode

Masses are equal, effect of collisions of the particles is drastic! As opposed to Ch-D model, unstable cones of the GG-model are far from those of the 2D Sinai billiard

Problem at *certain* collisions of the two disks **an unstable direction** (of the one-particle billiard!) can go into a central-stable cone of the 4-D flow!

Added to that we can not characterize these unpleasant collisions in GG08.

However, we can do this for the piston model!!

Szász 13/25

Chernov-Dolgopyat model

Disk of mass $M \gg 1$ and a point of mass m = 1 dim Q = 4: dim $\mathcal{M} = 7$

Since $M \gg 1$, the disk is *almost* still.

Consequently the 2-particle billiard is *almost* a 2D Sinai billiard.

One can *almost* use **its** standard pairs.

GG-model

Masses are equal, effect of collisions of the particles is drastic! As opposed to Ch-D model, unstable cones of the GG-model are far from those of the 2D Sinai billiard

Problem at *certain* collisions of the two disks **an unstable direction** (**of the one-particle billiard!**) can go into a central-stable cone of the 4-D flow!

Added to that we can not characterize these unpleasant collisions in GG08.

However, we can do this for the piston model!!

Szász 13 / 25

Chernov-Dolgopyat model

Disk of mass $M \gg 1$ and a point of mass m = 1 dim Q = 4: dim $\mathcal{M} = 7$

Since $M \gg 1$, the disk is *almost* still.

Consequently the 2-particle billiard is *almost* a 2D Sinai billiard.

One can *almost* use **its** standard pairs.

GG-model

Masses are equal, effect of collisions of the particles is drastic! As opposed to Ch-D model, unstable cones of the GG-model are far from those of the 2D Sinai billiard

Problem at *certain* collisions of the two disks **an unstable direction (of the one-particle billiard!**) can go into a central-stable cone of the 4-D flow!

Added to that we can not characterize these unpleasant collisions in GG08.

However, we can do this for the piston model!!

Szász 13 / 25

$$\begin{array}{ll} \dim Q = 3; & \dim \mathcal{M} = 5; & \dim \gamma^u = \dim \gamma^s = 2 \\ \text{Collision rule: } v_x^+ = v^-, v^+ = v_x^-, v_y^+ = v_y^-. \ (m_1 = m_2 = 1) \end{array}$$

Euclidean Model: S-billiard

Right corner of Q is at (0,0)

$$(q_X, q_y) \in Q,$$
 $q \in [-\varepsilon, L - \varepsilon]$

$$\begin{array}{ll} \dim Q = 3; & \dim \mathcal{M} = 5; & \dim \gamma^u = \dim \gamma^s = 2 \\ \text{Collision rule: } v_x^+ = v^-, v^+ = v_x^-, v_y^+ = v_y^-. \ (m_1 = m_2 = 1) \end{array}$$

Euclidean Model: S-billiard

Right corner of Q is at (0,0)

$$(q_x, q_y) \in Q,$$

 $q \in [-\varepsilon, L - \varepsilon]$

Hyperbolic Model: Hyperbolic octagon w. right angles Also coupled to pistor

$$\begin{array}{ll} \dim Q = 3; & \dim \mathcal{M} = 5; & \dim \gamma^u = \dim \gamma^s = 2 \\ \text{Collision rule: } v_x^+ = v^-, v^+ = v_x^-, v_y^+ = v_y^-. \ (m_1 = m_2 = 1) \end{array}$$

Euclidean Model: S-billiard

Right corner of Q is at (0,0)

$$(q_x, q_y) \in Q,$$

 $q \in [-\varepsilon, L - \varepsilon]$

Hyperbolic Model: Hyperbolic octagon w. right angles Also coupled to pistor

$$\begin{array}{ll} \dim Q = 3; & \dim \mathcal{M} = 5; & \dim \gamma^u = \dim \gamma^s = 2 \\ \text{Collision rule: } v_x^+ = v^-, v^+ = v_x^-, v_y^+ = v_y^-. \ (m_1 = m_2 = 1) \end{array}$$

Right corner of Q is at (0,0)

$$(q_x, q_y) \in Q,$$

 $q \in [-\varepsilon, L - \varepsilon]$

Hyperbolic Model: Hyperbolic octagon w. right angles Also coupled to piston

The piston model (Euclidean)

(Figure by Thomas Gilbert)
$$\mathcal{M}_{\text{bill}} = \{(q_x, q_y, v_x, v_y) \mid (q_x, q_y) \in Q, v_x^2 + v_y^2 = 1\}$$

$$\mathcal{M} = \{(q_x, q_y, v_x, v_y; q, v) | (q_x, q_y) \in Q, q \in [-\varepsilon, L - \varepsilon],$$

$$v_x^2 + v_y^2 + v^2 = 1\}$$

Szász

$$\mathcal{M}^{\varepsilon} = \{(q_x, q_y, v_x, v_y; z, v) \in \mathcal{M} \mid q_x + \varepsilon \leq z\}$$

 $\Phi^{\varepsilon, t} : \mathcal{M} \to \mathcal{M} - \text{dynamics, describing the mechanical process}$

 $E = v_x^2 + v_y^2 : \mathcal{M} \to \mathbb{R}_+$ – energy of left (billiard) particle $\tilde{X}^{\varepsilon}(t) = \tilde{X}^{\varepsilon}(t,w) = E(\Phi^{\varepsilon,t}(w))$ – left particle energy process initial state $w \in M$ $X^{\varepsilon}(t) = X^{\varepsilon}(t,w) = \tilde{X}^{\varepsilon}(\frac{t}{\varepsilon^2},w)$ – properly rescaled energy

X(t) – Markov jump process w. kernel $K(E, E^+)$ (and rate $\Lambda(E)$)

Theorem (B-N-Sz-T)

Assume ν is the initial law for the energies of the billiard particle for both processes. For a wide class of ν , as $\varepsilon \to 0$,

$$X^{\varepsilon}(t) \stackrel{D[0,\infty)}{\Longrightarrow} X(t)$$

Proof so far for right-angled hyperbolic octagon; no corners

◆□ → ◆□ → ◆□ → ○○○

16/25

Szász

$$\mathcal{M}^{\varepsilon} = \{(q_x, q_y, v_x, v_y; z, v) \in \mathcal{M} \mid q_x + \varepsilon \leq z\}$$

 $\Phi^{\varepsilon, t} : \mathcal{M} \to \mathcal{M} - \text{dynamics, describing the mechanical process}$

$$E=v_{x}^{2}+v_{y}^{2}:\mathcal{M}\to\mathbb{R}_{+}$$
 – energy of left (billiard) particle $\tilde{X}^{arepsilon}(t)=\tilde{X}^{arepsilon}(t,w)=E(\Phi^{arepsilon,t}(w))$ – left particle energy process initial state $w\in M$ $X^{arepsilon}(t)=X^{arepsilon}(t,w)=\tilde{X}^{arepsilon}(\frac{t}{arepsilon^{2}},w)$ – properly rescaled energy process

X(t) – Markov jump process w. kernel $K(E, E^+)$ (and rate $\Lambda(E)$)

Theorem (B-N-Sz-T)

Assume ν is the initial law for the energies of the billiard particle for both processes. For a wide class of ν , as $\varepsilon \to 0$,

$$X^{\varepsilon}(t) \stackrel{D[0,\infty)}{\Longrightarrow} X(t)$$

Proof so far for right-angled hyperbolic octagon; no corners

Szász 16 / 25

$$\mathcal{M}^{\varepsilon} = \{(q_x, q_y, v_x, v_y; z, v) \in \mathcal{M} \mid q_x + \varepsilon \leq z\}$$

 $\Phi^{\varepsilon, t} : \mathcal{M} \to \mathcal{M} - \text{dynamics, describing the mechanical process}$

 $E=v_{x}^{2}+v_{y}^{2}:\mathcal{M}
ightarrow\mathbb{R}_{+}$ – energy of left (billiard) particle $ilde{X}^{arepsilon}(t)= ilde{X}^{arepsilon}(t,w)=E(\Phi^{arepsilon,t}(w))$ – left particle energy process initial state $w\in M$ $X^{arepsilon}(t)=X^{arepsilon}(t,w)= ilde{X}^{arepsilon}(t,w)$ – properly rescaled energy process

X(t) – Markov jump process w. kernel $K(E, E^+)$ (and rate $\Lambda(E)$)

Theorem (B-N-Sz-T)

Assume ν is the initial law for the energies of the billiard particle for both processes. For a wide class of ν , as $\varepsilon \to 0$,

$$X^{\varepsilon}(t) \stackrel{D[0,\infty)}{\Longrightarrow} X(t)$$

Proof so far for right-angled hyperbolic octagon; no corners

Szász 16 / 25

 $\mathcal{M}^{\varepsilon} = \{(q_{x}, q_{y}, v_{x}, v_{y}; z, v) \in \mathcal{M} \mid q_{x} + \varepsilon \leq z\}$ $\Phi^{\varepsilon, t} : \mathcal{M} \to \mathcal{M}$ – dynamics, describing the mechanical process

 $E=v_{x}^{2}+v_{y}^{2}:\mathcal{M}
ightarrow\mathbb{R}_{+}$ – energy of left (billiard) particle $ilde{X}^{arepsilon}(t)= ilde{X}^{arepsilon}(t,w)=E(\Phi^{arepsilon,t}(w))$ – left particle energy process initial state $w\in M$ $X^{arepsilon}(t)=X^{arepsilon}(t,w)= ilde{X}^{arepsilon}(t,w)$ – properly rescaled energy process

X(t) – Markov jump process w. kernel $K(E, E^+)$ (and rate $\Lambda(E)$)

Theorem (B-N-Sz-T)

Assume ν is the initial law for the energies of the billiard particle for both processes. For a wide class of ν , as $\varepsilon \to 0$,

$$X^{\varepsilon}(t) \stackrel{D[0,\infty)}{\Longrightarrow} X(t)$$

Proof so far for right-angled hyperbolic octagon; no corners

Szász 16 / 25

 $\mathcal{M}^{\varepsilon} = \{(q_X, q_V, v_X, v_V; z, v) \in \mathcal{M} \mid q_X + \varepsilon \leq z\}$ $\Phi^{\varepsilon,t}: \mathcal{M} \to \mathcal{M}$ – dynamics, describing the mechanical process

 $E = v_x^2 + v_v^2 : \mathcal{M} \to \mathbb{R}_+$ – energy of left (billiard) particle $\tilde{X}^{\varepsilon}(t) = \tilde{X}^{\varepsilon}(t, w) = E(\Phi^{\varepsilon, t}(w)) - \text{left particle energy process}$ initial state $w \in M$ $X^{\varepsilon}(t) = X^{\varepsilon}(t, w) = \tilde{X}^{\varepsilon}(\frac{t}{\varepsilon^2}, w)$ – properly rescaled energy process

X(t) – Markov jump process w. kernel $K(E, E^+)$ (and rate $\Lambda(E)$

Theorem (B-N-Sz-T)

Assume ν is the initial law for the energies of the billiard particle for both processes. For a wide class of ν , as $\varepsilon \to 0$,

$$X^{\varepsilon}(t) \stackrel{D[0,\infty)}{\Longrightarrow} X(t)$$

Proof so far for right-angled hyperbolic octagon; no corners!

Szász

Calculation:

$$K(E, E^{+}) = \frac{\tan \beta}{2\pi L|Q|} \frac{\sqrt{1 - \min\{E, E^{+}\}}}{\sqrt{1 - E^{+}}\sqrt{E + E^{+} - 1}} \mathbb{1}_{\{E + E^{+} > 1\}}$$

$$\Lambda(E) = \begin{cases} \frac{\tan\beta}{2L|Q|} \sqrt{1-E} & \text{if } E < 1/2\\ \frac{\tan\beta}{\pi L|Q|} \left\lceil \sqrt{2E-1} + \frac{\sqrt{1-E}}{2} \left(\frac{\pi}{2} - \arcsin\left(3 - \frac{2}{E}\right)\right) \right\rceil & \text{if } E > 1/2 \end{cases}$$

Szász 17 / 25

18 / 25

Szász

Main components of proof

- Let (W^u, ϕ) be a standard pair, i. e. assume W^u is an unstable curve in \mathbb{R}^3 with a prob. density ϕ on it satisfying
 - $\forall x \in W^u$ $dW^u(x) \subset C_x^u$, the unstable cone at x
 - its curvature $\leq \Gamma_{max} < \infty$.
- Upper bd for 2D Sinai billiard flow correlation decay rate

Definition

Given $F: \mathcal{M} \to \mathbb{R}$, $x \in \mathcal{M}$, r > 0, denote $\operatorname{osc}_r(F, x) = \sup_{B_r} F - \inf_{B_r} F$, where $B_r(x) \in \mathcal{M}$ is the ball of radius r centered at x.

F is generalized Hölder if $\exists \alpha > 0$, s. t.

$$||F||_{\alpha} := \sup_{r} r^{-\alpha} \int_{\mathcal{M}} \operatorname{osc}_{r}(F, x) d\tilde{\mu}(x) < \infty.$$

Also denote

$$\operatorname{var}_{\alpha}(F) = ||F||_{\alpha} + \sup_{Sz ász} \mathcal{M} F - \inf_{\mathcal{M}} F$$

Main components of proof

- Let (W^u, ϕ) be a standard pair, i. e. assume W^u is an unstable curve in \mathbb{R}^3 with a prob. density ϕ on it satisfying
 - $\forall x \in W^u$ $dW^u(x) \subset C_x^u$, the unstable cone at x
 - its curvature $\leq \Gamma_{\text{max}} < \infty$.
- Upper bd for 2D Sinai billiard flow correlation decay rate

Definition

Given $F: \mathcal{M} \to \mathbb{R}$, $x \in \mathcal{M}$, r > 0, denote $\operatorname{osc}_r(F, x) = \sup_{B_r} F - \inf_{B_r} F$, where $B_r(x) \in \mathcal{M}$ is the ball or radius r centered at x.

F is generalized Hölder if $\exists \alpha > 0$, s. t.

$$||F||_{\alpha} := \sup_{r} r^{-\alpha} \int_{\mathcal{M}} \operatorname{osc}_{r}(F, x) d\tilde{\mu}(x) < \infty.$$

Also denote

$$\operatorname{var}_{\alpha}(F) = ||F||_{\alpha} + \sup_{Sz ext{ asz } \mathcal{M}} F - \inf_{\mathcal{M}} F$$

Main components of proof

- Let (W^u, ϕ) be a standard pair, i. e. assume W^u is an unstable curve in \mathbb{R}^3 with a prob. density ϕ on it satisfying
 - $\forall x \in W^u$ $dW^u(x) \subset C_x^u$, the unstable cone at x
 - its curvature $\leq \Gamma_{max} < \infty$.
- Upper bd for 2D Sinai billiard flow correlation decay rate

Definition

Given $F: \mathcal{M} \to \mathbb{R}$, $x \in \mathcal{M}$, r > 0, denote $\operatorname{osc}_r(F, x) = \sup_{B_r} F - \inf_{B_r} F$, where $B_r(x) \in \mathcal{M}$ is the ball of radius r centered at x.

F is generalized Hölder if $\exists \alpha > 0$, s. t.

$$\|F\|_{\alpha} := \sup_{r} r^{-\alpha} \int_{M} \operatorname{osc}_{r}(F, x) d\tilde{\mu}(x) < \infty.$$

Also denote

$$\operatorname{var}_{\alpha}(F) = ||F||_{\alpha} + \sup_{\operatorname{Szász} \mathcal{M}} F - \inf_{\mathcal{M}} F$$

Theorem (Chernov (2007))

Let $\Phi^t: \mathcal{M} \to \mathcal{M}$ be a Lorentz process billiard flow (finite horizon, no corners) and $F, G: \mathcal{M} \to \mathbb{R}$ two generalized Hölder continuous functions with $\int_{\mathcal{M}} F d\mu = 0$. Then

$$|\int_{\mathcal{M}} (F \circ \Phi^t) G d\tilde{\mu})| \leq c \operatorname{var}_{\alpha}(F) \operatorname{var}_{\alpha}(G) e^{-a\sqrt{|t|}}$$

Here c, a > 0 depend on α and the billiard table only.

Theorem (B-N-Sz-T, asymptotic equidistribution)

Let $\ell=(W,\phi)$ be a standard pair and let $\tilde{\phi}$ be the measure on \mathcal{M} given by it. Let $F:\mathcal{M}\to\mathbb{R}$ be a generalized Hölder continuous function with $\int_{\mathcal{M}} Fd\tilde{\mu}(x)=0$. Then for all t>0

$$|\int_{\mathcal{M}} (F \circ \Phi^t) d\tilde{\phi}| \leq c' c''(W) ||\phi||_1 \operatorname{var}_{\alpha}(F) e^{-a' \sqrt{|a|}}$$

where c', a' > 0 depend on α and the billiard only (uniformity!).

Szász 20 / 25

Theorem (Chernov (2007))

Let $\Phi^t: \mathcal{M} \to \mathcal{M}$ be a Lorentz process billiard flow (finite horizon, no corners) and $F, G: \mathcal{M} \to \mathbb{R}$ two generalized Hölder continuous functions with $\int_{\mathcal{M}} F d\mu = 0$. Then

$$|\int_{\mathcal{M}} (F \circ \Phi^t) G d ilde{\mu})| \leq c \mathrm{var}_{lpha}(F) \mathrm{var}_{lpha}(G) e^{-a\sqrt{|t|}}$$

Here c, a > 0 depend on α and the billiard table only.

Theorem (B-N-Sz-T, asymptotic equidistribution)

Let $\ell=(W,\phi)$ be a standard pair and let $\tilde{\phi}$ be the measure on \mathcal{M} given by it. Let $F:\mathcal{M}\to\mathbb{R}$ be a generalized Hölder continuous function with $\int_{\mathcal{M}} Fd\tilde{\mu}(x)=0$. Then for all t>0

$$|\int_{\mathcal{M}} (F \circ \Phi^t) d\tilde{\phi}| \leq c' c''(W) ||\phi||_1 \operatorname{var}_{\alpha}(F) e^{-a'\sqrt{|t|}}$$

where c', a' > 0 depend on α and the billiard only (uniformity!).

) 2 Q C

Proof of asymptotic equidistribution

Idea: blow up the standard pair i. e. take a small neighborhood U of size $\varepsilon = \varepsilon(t)$ of product structure around the unstable curve W^u and define a nice density function $G = G_t$ on it. Will apply Chernov's Thm to F and to this particular G.

- 1. Let $D = D_{\varepsilon}$ be a disk of radius ε , orthogonal to W^u in its center, say
- 2. Let $\forall z \in D$ $W_z^u := W^u + z$.

Szász 21 / 25

Proof of asymptotic equidistribution

Idea: blow up the standard pair i. e. take a small neighborhood U of size $\varepsilon = \varepsilon(t)$ of product structure around the unstable curve W^u and define a nice density function $G = G_t$ on it. Will apply Chernov's Thm to F and to this particular G.

- 1. Let $D=D_{\varepsilon}$ be a disk of radius ε , orthogonal to W^u in its center, say
- 2. Let $\forall z \in D$ $W_z^u := W^u + z$.

Szász 21 / 25

$$\tilde{\mu}(B) = \int_{D} \mu_{W_{z}^{u}}^{\mathrm{cond}}(B) d\mu_{D}^{\mathrm{factor}}(z)$$

c, s-foliation: Let
$$H = \{x \in W^u | \partial W_x^{cs} \cap \text{Int } U = \emptyset \}$$

(For $x \in H$ Area $(W_x^{cs}) \sim \varepsilon^2 \pi$.)

Lemma

$$\mu_{W^u}(W^u \setminus H) \leq C\varepsilon$$

Denote: $U_0 = \bigcup_{x \in H} (W^{cs_x} \cap U) \subset U$

Lemma

For $z \in D$ let $H_z = W_z^u \cap U_0$. Then $\exists C < \infty$, $s. \ t. \ \forall z \in D$

Lemma

$$\tilde{\mu}(U\setminus U_0)\leq C\varepsilon$$

$$\tilde{\mu}(B) = \int_{D} \mu_{W_{z}^{u}}^{\mathrm{cond}}(B) d\mu_{D}^{\mathrm{factor}}(z)$$

c, s-foliation: Let
$$H = \{x \in W^u | \partial W_x^{cs} \cap \text{Int } U = \emptyset\}$$

(For $x \in H$ Area $(W_x^{cs}) \sim \varepsilon^2 \pi$.)

Lemma

$$\mu_{W^u}(W^u \setminus H) \leq C\varepsilon$$

Denote: $U_0 = \bigcup_{x \in H} (W^{cs_x} \cap U) \subset U$

Lemma

For
$$z\in D$$
 let $H_z=W^u_z\cap U_0$. Then $\exists C<\infty$, s. $t.\ \forall z\in D$ $\mu_{W^u}(W^u_z\setminus H_z)< Carepsilon$

Lemma

$$\tilde{\mu}(U \setminus U_0) \leq C\varepsilon$$

Szász 22 / 25

$$\widetilde{\mu}(B) = \int_{D} \mu_{W_{z}^{u}}^{\text{cond}}(B) d\mu_{D}^{\text{factor}}(z)$$

c, s-foliation: Let
$$H = \{x \in W^u | \partial W_x^{cs} \cap \text{Int } U = \emptyset\}$$

(For $x \in H$ Area $(W_x^{cs}) \sim \varepsilon^2 \pi$.)

Lemma

$$\mu_{W^u}(W^u \setminus H) \leq C\varepsilon$$

Denote: $U_0 = \bigcup_{x \in H} (W^{cs_x} \cap U) \subset U$

Lemma

For $z \in D$ let $H_z = W_z^u \cap U_0$. Then $\exists C < \infty$, s. $t : \forall z \in D$

$$\mu_{W_z^u}(W_z^u \setminus H_z) \leq C\varepsilon$$

$$\tilde{\mu}(U \setminus U_0) \leq C\varepsilon^3$$

Szász

$$\widetilde{\mu}(B) = \int_{D} \mu_{W_{z}^{u}}^{\text{cond}}(B) d\mu_{D}^{\text{factor}}(z)$$

c, s-foliation: Let
$$H = \{x \in W^u | \partial W_x^{cs} \cap \text{Int } U = \emptyset\}$$

(For $x \in H$ Area $(W_x^{cs}) \sim \varepsilon^2 \pi$.)

Lemma

$$\mu_{W^u}(W^u \setminus H) \leq C\varepsilon$$

Denote: $U_0 = \bigcup_{x \in H} (W^{cs_x} \cap U) \subset U$

Lemma

For $z \in D$ let $H_z = W_z^u \cap U_0$. Then $\exists C < \infty$, $s. \ t. \ \forall z \in D$

$$\mu_{W_z^u}(W_z^u \setminus H_z) \leq C\varepsilon$$

Lemma

$$\tilde{\mu}(U \setminus U_0) \leq C\varepsilon^3$$

$\{W_i^{cs}\}_{j\in I}$ is set of all W^{cs} 's inside U. Denote $J=I\setminus H$.

Measurable partition of U:

 $\tilde{\mu}_U = \mu_I^{\mathrm{factor}} \times \nu$ where the ν -s are the conditional measures on each W_i^{cs} .

I. e.
$$\nu: I \times \mathcal{B}(U) \rightarrow [0,1]$$

Let further
$$\gamma = \mu_I^{\text{factor}}\Big|_H = \mu_H^{\text{factor}}$$
 and $m = \text{Leb}\Big|_H$.

Choose prob. density $q=q_arepsilon\in \mathcal{C}^2(D o\mathbb{R}_+)$ s. t.

$$|q||_{\sup} \leq \frac{1000}{\varepsilon^2} \qquad ||\nabla q||_{\sup} \leq \frac{1000}{\varepsilon^3}$$

with both q, ∇q vanishing outside ∂D .

Define the measure ρ on U_0 as: $\rho(A \times B) = \int_A \phi dm \int_B q dm_D$.

Let $G_0: U_0 \to \mathbb{R}_+$ be defined as $G_0 = \frac{d_P}{d_P}$

Szász 23 / 25

 $\{W_j^{cs}\}_{j\in I}$ is set of all W^{cs} 's inside U. Denote $J=I\setminus H$. Measurable partition of U:

 $\tilde{\mu}_U = \mu_I^{\mathrm{factor}} \times \nu$ where the ν -s are the conditional measures on each W_i^{cs} .

I. e.
$$\nu: I \times \mathcal{B}(U) \rightarrow [0,1]$$

Let further
$$\gamma = \mu_I^{\text{factor}} \Big|_H = \mu_H^{\text{factor}}$$
 and $m = \text{Leb} \Big|_H$.

Choose prob. density $q=q_arepsilon\in \mathit{C}^2(\mathsf{D} o\mathbb{R}_+)$ s. t.

$$||q||_{\sup} \leq rac{1000}{arepsilon^2} \qquad ||
abla q||_{\sup} \leq rac{1000}{arepsilon^3}$$

with both q, ∇q vanishing outside ∂D .

Define the measure ρ on U_0 as: $\rho(A \times B) = \int_A \phi dm \int_B q dm_D$.

Let $extit{G}_0: extit{U}_0
ightarrow \mathbb{R}_+$ be defined as $extit{G}_0 = rac{d
ho}{d\mu}$

Szász 23 / 25

 $\{W_i^{cs}\}_{i\in I}$ is set of all W^{cs} 's inside U. Denote $J=I\setminus H$. Measurable partition of U:

 $\tilde{\mu}_U = \mu_I^{\mathrm{factor}} \times \nu$ where the ν -s are the conditional measures on each W_{j}^{cs} .

I. e.
$$\nu: I \times \mathcal{B}(U) \rightarrow [0,1]$$

Let further
$$\gamma = \mu_I^{\text{factor}} \Big|_H = \mu_H^{\text{factor}}$$
 and $m = \text{Leb} \Big|_H$.
Choose prob. density $a = a_s \in C^2(D \to \mathbb{R}_+)$ s. t.

Choose prob. density $q=q_{\varepsilon}\in C^2(D\to\mathbb{R}_+)$ s. t.

$$||q||_{\sup} \leq \frac{1000}{\varepsilon^2} \qquad ||\nabla q||_{\sup} \leq \frac{1000}{\varepsilon^3}$$

with both q, ∇q vanishing outside ∂D .

Define the measure ρ on U_0 as: $\rho(A \times B) = \int_A \phi dm \int_B q dm_D$.

4 D > 4 D > 4 D > 4 D > 3

Szász 23 / 25 $\{W_j^{cs}\}_{j\in I}$ is set of all W^{cs} 's inside U. Denote $J=I\setminus H$. Measurable partition of U:

 $\tilde{\mu}_U = \mu_I^{\mathrm{factor}} \times \nu$ where the ν -s are the conditional measures on each W_i^{cs} .

each
$$W_j^{cs}$$
.
I. e. $\nu: I \times \mathcal{B}(U) \rightarrow [0, 1]$

Let further
$$\gamma = \mu_I^{\text{factor}} \Big|_H = \mu_H^{\text{factor}}$$
 and $m = \text{Leb} \Big|_H$.

Choose prob. density $q=q_{arepsilon}\in C^2(D o \mathbb{R}_+)$ s. t.

$$||q||_{\sup} \leq \frac{1000}{\varepsilon^2} \qquad ||\nabla q||_{\sup} \leq \frac{1000}{\varepsilon^3}$$

with both q, ∇q vanishing outside ∂D .

Define the measure ρ on U_0 as: $\rho(A \times B) = \int_A \phi dm \int_B q dm_D$.

Let $G_0: U_0 \to \mathbb{R}_+$ be defined as $G_0 = \frac{d\rho}{d\mu}$.

◆□▶ ◆圖▶ ◆臺▶ ◆臺▶ · 臺 · 釣९♂

Szász 23 / 25

Proposition

For a. e. $x \in H$

$$\int_{W_{x}^{cs}} G_{0}(r) d\nu_{x}(r) = \frac{\phi(x)}{\beta(x)}$$

Reminder: ϕ - st. pair density on H, β - density of $\gamma=\mu_H^{\mathrm{factor}}$. ($\beta:=\frac{\mathrm{d}\gamma}{\mathrm{d}m}:H\to\mathbb{R}^+$.)

Final step: from G_0 uniformly dynamically Hölder on U_0 to G Hölder on U.

Szász 24 / 25

Proposition

For a. e. $x \in H$

$$\int_{W_{x}^{cs}} G_{0}(r) d\nu_{x}(r) = \frac{\phi(x)}{\beta(x)}$$

Reminder: ϕ - st. pair density on H, β - density of $\gamma=\mu_H^{\mathrm{factor}}$. ($\beta:=\frac{\mathrm{d}\gamma}{\mathrm{d}m}:H\to\mathbb{R}^+$.)

Final step: from G_0 uniformly dynamically Hölder on U_0 to G Hölder on U.

Szász 24 / 25

Main components of proof continued

- Proof of Markovity
- **1** Establish the kernel K(x, A)
- Mandling unstable direction turning into central-stable one.

Szász 25 / 25