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Heat Equation (no mass flow)

oT(x,t) 1_
5f = Ev [V T(x,1)]

¢ - specific heat/unit volume (= 1)
r = k(T) - thermal conductivity
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Heat Equation (no mass flow)

oT(x,t) 1_
T Ev [V T(x,1)]

¢ - specific heat/unit volume (= 1)
r = k(T) - thermal conductivity

For a wide class of models: x(T) = const.\/T
(insulating materials, or gas of weakly/rarely interacting
particles)

Szész

2/25



Bonetto—Lebowitz—Rey-Bellet, 2000: Fourier law: A challenge
to theorists, a survey

"it would be necessary to add interactions between the moving
particles, e.g. instead of points make them little balls ... ."
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"it would be necessary to add interactions between the moving
particles, e.g. instead of points make them little balls ... ."
Gaspard-Gilbert, 2008—: model of localized hard disks (balls) -
a two step approach:
@ From the of the Hamiltonian
model derive a mesoscopic master equ.
in the rare (but strong) interaction limit;
It is a Markov jump process.
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Bonetto—Lebowitz—Rey-Bellet, 2000: Fourier law: A challenge
to theorists, a survey
"it would be necessary to add interactions between the moving
particles, e.g. instead of points make them little balls ... ."
Gaspard-Gilbert, 2008—: model of localized hard disks (balls) -
a two step approach:
@ From the of the Hamiltonian
model derive a mesoscopic master equ.
in the rare (but strong) interaction limit;
It is a Markov jump process.
© Then from the mesoscopic master equ.
derive the macroscopic heat equ.
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Gaspard-Gilbert model

Q Q Q chain length N =2
@\ periodic scatterers (shaded disks)

G/v

confined moving disks (white
Q Q Q circles)
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Gaspard-Gilbert model

Q Q Q chain length N =2
@\ periodic scatterers (shaded disks)

G/ confined moving disks (white
Q Q Q circles)

Physical relevance: No mass transport

Coquard et al., J. Non-Crystalline Solids, 2013:
Modelling of conductive heat transfer through
nano-structured porous silica materials
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The chain is a semi-dispersing billiard
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The chain is a semi-dispersing billiard

Definition. Billiard flow is a dynamical
system (M, {S!|t € R}, /i)

where /i = Liouville-measure,

M = Q x Sy_1 (here Q = T2\ disk )
{S!|t € R}: billiard dynamics = uniform
motion in Q and elastic reflection at the
scatterers 0Q.
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The chain is a semi-dispersing billiard

Definition. Billiard flow is a dynamical
system (M, {S!|t € R}, /i)

where /i = Liouville-measure,

M = Q x Sy_1 (here Q = T2\ disk )
{S!|t € R}: billiard dynamics = uniform
motion in Q and elastic reflection at the
scatterers 0Q.

Billiard Ball Map: (M, T, ), where M = 0Q x Sy_1

Definition. A billiard is

@ a dispersing one (Sinai-billiard) if the scatterers are
strictly convex (as on picture above)

@ a semi-dispersing one if they are (only) convex.
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Parameter choice of Gaspard-Gilbert, 08.

@ box size: 1; chain length = N;
@ periodic b. c.s along y-axis
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@ box size: 1; chain length = N;

@ periodic b. ¢’’s along y-axis

@ radius of fixed scatterers (shaded circles)= p¢
@ radius of moving disks (empty circles) = pp,
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Parameter choice of Gaspard-Gilbert, 08.

@ box size: 1; chain length = N;

@ periodic b. ¢’’s along y-axis

@ radius of fixed scatterers (shaded circles)= p¢
@ radius of moving disks (empty circles) = pp,
@ condition of confinement: ps + pm > 1/2
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Parameter choice of Gaspard-Gilbert, 08.

@ box size: 1; chain length = N;

@ periodic b. ¢’’s along y-axis

@ radius of fixed scatterers (shaded circles)= p¢
@ radius of moving disks (empty circles) = pp,
@ condition of confinement: ps + pm > 1/2

o

condition of conductivity:
Pm > Perit = \/(Pf + pm)? — (1/2)2
small parameter ¢ = pm — perit > 0
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Parameter choice of Gaspard-Gilbert, 08.

@ box size: 1; chain length = N;

@ periodic b. ¢’’s along y-axis

@ radius of fixed scatterers (shaded circles)= p¢
@ radius of moving disks (empty circles) = pp,
@ condition of confinement: ps + pm > 1/2

o

condition of conductivity:
Pm > Perit = \/(Pf + Pm)2 - (1/2)2
@ small parameter ¢ = pm — perie > 0

Rare interaction limit:
@ Keep ps + pm =: p fixed
@ Then their phase spaces essentially only depend on p!
@ If pm = perit, then we have N non-interacting billiards.
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Liouville equation

Ernst-Dorfman, ’89: The kinetic equ. for the N-particle density
PN(QM Vi,...,gN, VNS t) is

N

Otpn = Z (—Vvj0q; + Kwanj + Cjjr1)Pn
=1
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Liouville equation

Ernst-Dorfman, ’89: The kinetic equ. for the N-particle density
PN(QM Vi,...,gN, VNS t) is

N

Otpn = Z (—Vvj0q; + Kwanj + Cjjr1)Pn
=1

@ the first two terms on the RHS describe the billiard
dynamics of each disk within its cell (denote wall collision
rate by Vwall,s)
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Liouville equation

Ernst-Dorfman, ’89: The kinetic equ. for the N-particle density
PN(QM Vi,..., gN, VN, t) is

N

Otpn = Z (—Vvj0q; + Kwanj + Cjjr1)Pn
j=1

@ the first two terms on the RHS describe the billiard
dynamics of each disk within its cell (denote wall collision
rate by Vwall,s)

@ the third one: the binary interaction of neighboring disks
provides energy transfer (denote binary collision rate by

Vbin,a)
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Scale separation as
£ \( 0, i. e. Vwall,e('\’ Vwall,crit > 0) > Vbin,e — 0
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Scale separation as
e \0, i e. Vwall,e (~ Vwall,crit > 0) > Vbine — 0
@ GGO08 derives a master equation for the density
Pn(Ey,....Enit) (Ej=VvF:1<j<N)
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Scale separation as
€ \1 O: i. e. Vwall,e('\’ Vwall,crit > 0) > Vbin,e — 0
@ GGO08 derives a master equation for the density
Pn(Ey,....Enit) (Ej=VvF:1<j<N)

© HDL: from the master equation they obtain the
coefficient of heat conductivity: x = const./T
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Scale separation as
€ \1 0, . e. Vwall,e('\’ Vwall,crit > 0) > Vpine — 0
@ GGO08 derives a master equation for the density
Pn(Ey,....Enit) (B = v/? 1< j<N)

© HDL: from the master equation they obtain the
coefficient of heat conductivity: x = const./T

@ Dynamical: Kinetic Equation = Markov Generator of a
Markov jump process of energies
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Scale separation as
€ \( 0, . e. Vwall,s('\’ Vwall,crit > 0) > Vpine — 0
@ GGO8 derives a master equation for the density
Pn(Ey,....Enit) (B = v/? 1< j<N)

© HDL: from the master equation they obtain the
coefficient of heat conductivity: x = const./T

@ Dynamical: Kinetic Equation = Markov Generator of a
Markov jump process of energies

© Probabilistic: Markov Jump Process —> Heat Equation
(Hydrodynamic Limit a la Varadhan)
Grigo-Khanin-Sz., 12
Sasada’13,’15
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Actual challenge. Part 1: Rigorous theory for GG

Dolgopyat-Liverani, 2011: weak interaction limit in a chain of

Anosov maps.
Mesoscopic equ. is a system of interacting stochastic

differential equ.’s.
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Actual challenge. Part 1: Rigorous theory for GG

Dolgopyat-Liverani, 2011: weak interaction limit in a chain of
Anosov maps.

Mesoscopic equ. is a system of interacting stochastic
differential equ.’s.

Keller-Liverani, 2009: rare interaction limit.
CML, i. e. interval maps coupled by collisions. Result:
Uniqueness of SRB and exponential space-time corr. decay.
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Dynamical approach for step 1. Warm-up result

By Hirata-Saussol-Vaienti, 1999:
If

@ a dynamical system (M, T, 1) is mixing in a controlled way
(e. g. a-mixing)
@ and A. is a sequence of nice subsets (e. g. to avoid e. g.
neighborhoods of periodic points) with lim__.q 1(A.) = 0
then the successive entrance times of the dynamics into A.
form a Poisson process on the time scale of ;(A.)~".

More quantitative conditions for entrance times to infinitesimal
balls B;(x); x € M: Chazotte-Collet, 2013
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dim~¥ = dim~S = 3

Free bry conditions along
X-axis.
C-"6— N=2

The model is isomorphic to a 4D semi-dispersing billiard.
It is K-mixing (Bu-Li-Pe-Su, '92), but no mixing rate is known.

Szész
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Free bry conditions along
X-axis.
C-"6— N=2

dmQ=4; dmM =7,
dim4Y =dim~° =3

The model is isomorphic to a 4D semi-dispersing billiard.

It is K-mixing (Bu-Li-Pe-Su, '92), but no mixing rate is known.

P Balint-IP Téth, '08: D > 3, exponential correlation decay is settled

ONLY for finite horizon dispersing billiards
AND it is based on complexity hypothesis.
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Standard pairs and Markovity. D = 2
(M, T, 1) billiard ball map. dimM = 2.
Standard pair: ¢ = (W, p), where W is an unstable curve, p:
nice probability density on W.
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Decompose M into a proper family of standard pairs.
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Standard pairs and Markovity. D = 2
(M, T, 1) billiard ball map. dimM = 2.
Standard pair: ¢ = (W, p), where W is an unstable curve, p:
nice probability density on W.
Decompose M into a proper family of standard pairs. Let
¢ = (W, p) be a standard pair, A: M — R. By law of total prob.

Eg A ] Tn Z CanEﬂan

where ¢,n > 0,)", Can = 1. Moreover, lon = (Wan, pan) are
standard pairs with T"W = 1, W, , where p,, is the
pushforward of p up to a multiplicative factor.
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Standard pairs and Markovity. D = 2
(M, T, 1) billiard ball map. dimM = 2.
Standard pair: ¢ = (W, p), where W is an unstable curve, p:
nice probability density on W.
Decompose M into a proper family of standard pairs. Let
¢ = (W, p) be a standard pair, A: M — R. By law of total prob.

Eg A ] Tn Z CanEEQ,,

where ¢,n > 0,)", Can = 1. Moreover, lon = (Wan, pan) are
standard pairs with T"W = 1, W, , where p,, is the
pushforward of p up to a multiplicative factor.

Theorem (Growth lemma ~ Markov property)
3,61,82 > 0s. t. Ve > 0,Vn > log

1
WP

Z Can < 525'

length(£an)<e
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Chernov-Dolgopyat model

Disk of mass M > 1 and a point of mass m = 1
dim Q = 4; dmM =7

Since M > 1, the disk is almost still.
Consequently the 2-particle billiard is almost a
2D Sinai billiard.

One can almost use its standard pairs.
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Chernov-Dolgopyat model

Disk of mass M > 1 and a point of mass m = 1 A
GmQ—4;  dmM—7 //////
Since M > 1, the disk is almost still. : /7& //

( /
Consequently the 2-particle billiard is almost a TN

2D Sinai billiard.
One can almost use its standard pairs. . ///

GG-model
Masses are equal, effect of collisions of the particles is drastic!

As opposed to Ch-D model, unstable cones of the GG-model
are far from those of the 2D Sinai billiard
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Chernov-Dolgopyat model

Disk of mass M > 1 and a point of mass m = 1 A
GmQ—4;  dmM—7 //////
Since M > 1, the disk is almost still. : /’7& //

(i)
Consequently the 2-particle billiard is almost a N

R |
2D Sinai billiard. .

One can almost use its standard pairs.
GG-model
Masses are equal, effect of collisions of the particles is drastic!

As opposed to Ch-D model, unstable cones of the GG-model
are far from those of the 2D Sinai billiard

Problem at certain collisions of the two disks an unstable
direction (of the one-particle billiard!) can go into a
central-stable cone of the 4-D flow!

Added to that we can not characterize these unpleasant
collisions in GG08.

However, we can do this for the piston model!!
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Dimension reduction: Billiard coupled to a piston

dmQ@=38; dmM =5; dim~+Y=dim~°=2
Collision rule: vi” = v, vt = v, v/ = v, . (M =mp =1)

" -
v:)=XL vy N
Uy / a0 W s
L l’v r l‘ \
— e ]
= x -3 ) {
{V T W
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Dimension reduction: Billiard coupled to a piston
dmQ=3; dimM=5; dim+y¥=dimy*=2
Collision rule: vi” = v, vt = v, v/ = v, . (M =mp =1)
Q.

q = o~ = ~
v:) =X A
vy 8 ;

Euclidean Model: S-billiard
Right corner of Q is at (0, 0)

(QX>Qy) € Qa
gel—e L—¢]
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Dimension reduction: Billiard coupled to a piston

dmQ=3; dimM =5;

dim~Y =dim~S =2

Collision rule: vi” = v, vt = v, v/ = v, . (M =mp =1)

‘:1
V:) =X
vy

Euclidean Model: S-billiard
Right corner of Q is at (0, 0)

(ax,qy) € Q,
gel—e L—¢]

Szész

Hyperbolic Model:

Hyperbolic octagon
w. right angles

Also coupled to piston
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The piston model (Euclidean)

2B

(Figure by Thomas Gilbert)
Mouin = {(9x, 9y Vx, vy) | (Qx, Qy) € Q, VE + Vf =1}

M ={(ax, Qy, Vx, vy 4, V)|(Gx, Qy) € Q,q € [, L —¢],
VE+ Vi +vE =1}
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ME ={(qx,Qy, Vx, Vy; Z,V) E M | gy + e < Z}
o=t M — M — dynamics, describing the mechanical process
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ME ={(qx,Qy, Vx, Vy; Z,V) E M | gy + e < Z}
o=t M — M — dynamics, describing the mechanical process

E = v + v : M — Ry —energy of left (billiard) particle

Xe(t) = Xe(t, w) = E(9=!(w)) — left particle energy process
initial state w €¢ M

Xe(t) = Xe(t,w) = )N(E(Eiz, w) — properly rescaled energy

process
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o=t M — M — dynamics, describing the mechanical process

E = v + v : M — Ry —energy of left (billiard) particle

Xe(t) = Xe(t, w) = E(9=!(w)) — left particle energy process
initial state w €¢ M

Xe(t) = Xe(t,w) = )N(E(Eiz, w) — properly rescaled energy

process

X(t) — Markov jump process w. kernel K(E, E™) (and rate
NE))
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ME ={(qx,Qy, Vx, Vy; Z,V) E M | gy + e < Z}
o=t M — M — dynamics, describing the mechanical process

E = v + v : M — Ry —energy of left (billiard) particle

Xe(t) = Xe(t, w) = E(9=!(w)) — left particle energy process
initial state w €¢ M

Xe(t) = Xe(t,w) = )N(E(Eiz, w) — properly rescaled energy

process

X(t) — Markov jump process w. kernel K(E, E™) (and rate
A(E))

Theorem (B-N-Sz-T)

Assume v is the initial law for the energies of the billiard particle
for both processes. For a wide class of v, ase — 0,

xe(t) 22 x(p)
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ME ={(qx,Qy, Vx, Vy; Z,V) E M | gy + e < Z}
o=t M — M — dynamics, describing the mechanical process

E = v + v : M — Ry —energy of left (billiard) particle

Xe(t) = Xe(t, w) = E(9=!(w)) — left particle energy process
initial state w €¢ M

Xe(t) = Xe(t,w) = )N(E(Eiz, w) — properly rescaled energy

process

X(t) — Markov jump process w. kernel K(E, E™) (and rate
NE))

Theorem (B-N-Sz-T)

Assume v is the initial law for the energies of the billiard particle
for both processes. For a wide class of v, ase — 0,

xe(t) 22 x(p)

Proof so far for right-angled hyperbolic octagon; no corners!
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Calculation:

tang /1 —min{E Et} L
27L|Q 1 —E'VEf Ef —1 (E+E™>1}

NE gV = ifE<1/2
(E)= LQ|[ 2E — 1+ ¥1-E (g—arcsin(S—%))} if E>1/2

K(E,E") =

Szész 17/25
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Main components of proof
Q@ Let (WY, ¢) be a standard pair, i. e. assume W is an
unstable curve in R® - with a prob. density ¢ on it -
satisfying
° Vxe WY dWU(x) c CY, the unstable cone at x
e its curvature < My < 0.
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Q@ Let (WY, ¢) be a standard pair, i. e. assume W is an
unstable curve in R® - with a prob. density ¢ on it -
satisfying
° Vxe WY dWU(x) c CY, the unstable cone at x
e its curvature < My < 0.
@ Upper bd for 2D Sinai billiard flow correlation decay rate
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Main components of proof
@ Let (WY, ¢) be a standard pair, i. e. assume WY is an
unstable curve in R® - with a prob. density ¢ on it -
satisfying
° Vxe WY dWU(x) c CY, the unstable cone at x
@ its curvature < M. < oo.
@ Upper bd for 2D Sinai billiard flow correlation decay rate

Definition

Given F: M — R, xe M, r >0, denote

oscy(F,x) = supg, F —infg F, where B,(x) € M is the ball of
radius r centered at x.

F is generalized Hélder if 3o > 0, s. t.

|Flla := sup r‘o‘/ oscr(F, x)di(x) < oco.
r M

Also denote

var, (F) = ||F|]a+supF—i/r\1/;‘F
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Theorem (Chernov (2007))

Let ! : M — M be a Lorentz process billiard flow (finite
horizon, no corners) and F, G : M — R two generalized Hélder
continuous functions with [, Fdu = 0. Then

|/ (F o ®"Gdji)| < CVara(F)vara(G)e_a\ﬂ’
M

Here c,a > 0 depend on o and the billiard table only.
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Theorem (Chernov (2007))

Let ! : M — M be a Lorentz process billiard flow (finite
horizon, no corners) and F, G : M — R two generalized Hélder
continuous functions with [, Fdu = 0. Then

|/ (F o ®"Gdji)| < CVara(F)vara(G)e_a\ﬂ’
M

Here c,a > 0 depend on o and the billiard table only.

Theorem (B-N-Sz-T, asymptotic equidistribution)

Let¢ = (W, ¢) be a standard pair and let ¢ be the measure on
M given by it. Let F : M — R be a generalized Hélder
continuous function with [, Fdji(x) = 0. Then forall t > 0

| / (F o 0)dd| < e (W) 6| svara(F)e— Vit
M

where ¢, @ > 0 depend on « and the billiard only (uniformity!).
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Proof of asymptotic equidistribution

Idea: blow up the standard pair i. e. take a small neighborhood
U of size € = ¢(t) of product structure around the unstable
curve WY and define a nice density function G = G; on it.

Will apply Chernov’s Thm to F and to this particular G.

A-l-l-.'

JAVAVAUVAN
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Proof of asymptotic equidistribution

Idea: blow up the standard pair i. e. take a small neighborhood
U of size € = ¢(t) of product structure around the unstable
curve WY and define a nice density function G = G; on it.

Will apply Chernov’s Thm to F and to this particular G.

1. Let D = D. be a disk of radius ¢, orthogonal to WY in its
center, say
2. Letvze D Wy .= WY+ z.
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u-foliation: U = WY x D. Trivial decomposition: for B ¢ U

i(8) = [ it (B)eus™(2)
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u-foliation: U = WY x D. Trivial decomposition: for B ¢ U
i(8) = [ it (B)eus™(2)

c, s-foliation: Let H = {x € WY|oWg NInt U = 0}

(Forx e H Area(Wgs) ~ £2r.)

Lemma

pwe( WU\ H) < Ce
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u-foliation: U = WY x D. Trivial decomposition: for B ¢ U

i(8) = [ it (B)eus™(2)
c, s-foliation: Let H = {x € WY|oWE NInt U = 0}
(Forx e H Area(Wgs) ~ £2r.)
Lemma

pwe( WU\ H) < Ce

Denote: Uy = Uyey(W N U) Cc U

Lemma
Forze DletH, = W/ NUy. Then3C < o0, s. L. YZ€ D

pwy(W7'\ Hz) < Ce
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u-foliation: U = WY x D. Trivial decomposition: for B ¢ U

i(8) = [ it (B)eus™(2)
c, s-foliation: Let H = {x € WY|oWE NInt U = 0}
(Forx e H Area(Wgs) ~ £2r.)
Lemma

pwe( WU\ H) < Ce

Denote: Uy = Uyey(W N U) Cc U

Lemma
Forze DletH, = W/ NUy. Then3C < o0, s. L. YZ€ D

pwy(W7'\ Hz) < Ce

Lemma

iU\ Up) < Ce°
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{Wf*}je, is set of all W*'s inside U. Denote J = I\ H.
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{Wf*}je, is set of all W*'s inside U. Denote J = I\ H.
Measurable partition of U:

iy = uﬁac“)r x v where the v-s are the conditional measures on
each WEs.

l.e.v:IxB(U)—[0,1]

Let further v = uﬁac“’r‘H = pfie" and m = Leb B
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{Wf*}je, is set of all W*'s inside U. Denote J = I\ H.

Measurable partition of U:

iy = uﬁac“)r x v where the v-s are the conditional measures on

each W,
l.e.v:IxB(U)— [0,1]
Let further v = uﬁac“’r‘H = pfie" and m = Leb B

Choose prob. density g = g. € C?>(D — R, ) s. t.

< 1000 1000
1G] [sup < -2 11V Qllsup < T3

with both g, vq vanishing outside 0D.
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{Wf*}je, is set of all W*'s inside U. Denote J = I\ H.
Measurable partition of U:

iy = uﬁac“)r x v where the v-s are the conditional measures on
each WEs.

l.e.v:IxB(U)—[0,1]

Let further v = uﬁac“’r‘H = pfie" and m = Leb B

Choose prob. density g = g. € C?>(D — R, ) s. t.

< 1000 1000
1G] [sup < -2 11V Qllsup < T3

with both g, vq vanishing outside 0D.
Define the measure p on Uy as: p(A x B) = [, ¢dm [z qdmp.

Let Go : Up — Ry be defined as Go = 2.
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Proposition
Fora.e. xe H

_ o)
e CONA() = 565

Reminder: ¢ - st. pair density on H, 3 - density of v = Mﬁctor .
(B:=38:H-R")
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Proposition
Fora.e. xe H

Ccs
WX

Go(f)dvx(r) =

$(x)

B(x)

Reminder: ¢ - st. pair density on H, 3 - density of v = Mﬁctor .

(B:=38:H-R")

Final step: from Gy uniformly dynamically Hélder on Uy to G

Holder on U.
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Main components of proof continued

© Proof of Markovity
@ Establish the kernel K(x, A)
@ Handling unstable direction turning into central-stable one.
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