Ergodic Properties of the Kusuoka measure

Mark Pollicott
Warwick University
Trieste, 6 August 2015
We want to consider certain measures that were originally introduced in the context of Fractals, such as the Sierpiński Triangle. These are the classical Kusuoka measures.
We want to consider certain measures that were originally introduced in the context of Fractals, such as the Sierpiński Triangle. These are the classical Kusuoka measures. However, such fractal sets are naturally coded by spaces of sequences $\Sigma = \{1, 2, 3\}^{\mathbb{Z}+}$. The Kusuoka measures are more conveniently viewed as measures on Σ. The bad news is that these measures are not classical Gibbs (or Equilibrium) measures. In particular, the potential function is highly discontinuous. Thus we are dealing with a non-standard (and possibly interesting ?) class of shift invariant measures on Σ. The good news is that traditional results still hold (e.g., exponential mixing, central limit theorems, etc.). However, a somewhat different approach has to be introduced in the proof.
Overview

- We want to consider certain measures that were originally introduced in the context of Fractals, such as the Sierpiński Triangle. These are the classical Kusuoka measures.

- However, such fractal sets are naturally coded by spaces of sequences $\Sigma = \{1, 2, 3\}^{\mathbb{Z}^+}$. The Kusuoka measures are more conveniently viewed as measures on Σ.

- The bad news is that these measures are not classical Gibbs (or Equilibrium) measures. In particular, the potential function is highly discontinuous. Thus we are dealing with a non-standard (and possibly interesting?) class of shift invariant measures on Σ.
We want to consider certain measures that were originally introduced in the context of Fractals, such as the Sierpiński Triangle. These are the classical Kusuoka measures.

However, such fractal sets are naturally coded by spaces of sequences $\Sigma = \{1, 2, 3\}^\mathbb{Z}^+$. The Kusuoka measures are more conveniently viewed as measures on Σ.

The bad news is that these measures are not classical Gibbs (or Equilibrium) measures. In particular, the potential function is highly discontinuous. Thus we are dealing with a non-standard (and possibly interesting?) class of shift invariant measures on Σ.

The good news is that traditional results still hold (e.g., exponential mixing, central limit theorems, etc.)
We want to consider certain measures that were originally introduced in the context of Fractals, such as the Sierpiński Triangle. These are the classical Kusuoka measures.

However, such fractal sets are naturally coded by spaces of sequences $\Sigma = \{1, 2, 3\}^{\mathbb{Z}+}$. The Kusuoka measures are more conveniently viewed as measures on Σ.

The bad news is that these measures are not classical Gibbs (or Equilibrium) measures. In particular, the potential function is highly discontinuous. Thus we are dealing with a non-standard (and possibly interesting ?) class of shift invariant measures on Σ.

The good news is that traditional results still hold (e.g., exponential mixing, central limit theorems, etc.)

However, a somewhat different approach has to be introduced in the proof.
A little context

In the first talk of the conference by Keith Burns on Monday morning, he spoke about Gibbs measures (equilibrium states) for non-uniformly hyperbolic systems (geodesic flows) and regular (Hölder continuous) potential.
A little context

In the first talk of the conference by Keith Burns on Monday morning, he spoke about Gibbs measures (equilibrium states) for **non-uniformly hyperbolic systems** (geodesic flows) and regular (Hölder continuous) potential.
A little context

In the first talk of the conference by Keith Burns on Monday morning, he spoke about Gibbs measures (equilibrium states) for non-uniformly hyperbolic systems (geodesic flows) and regular (Hölder continuous) potential

and again in the talk of Yuri Lima on Tuesday.
A little context

In the first talk of the conference by Keith Burns on Monday morning, he spoke about Gibbs measures (equilibrium states) for non-uniformly hyperbolic systems (geodesic flows) and regular (Hölder continuous) potential.

and again in the talk of Yuri Lima on Tuesday.

In this talk we will discuss Gibbs measures for a very simple uniformly hyperbolic system and non-Hölder continuous (discontinuous) potentials.
Introduction

To begin, consider a familiar fractal object: the *Sierpiński triangle* X.
Introduction
To begin, consider a familiar fractal object: the Sierpiński triangle X.

- Replace a triangle in the plane by the three triangles of half the size in the corners.
To begin, consider a familiar fractal object: the Sierpiński triangle X.

- Replace a triangle in the plane by the three triangles of half the size in the corners.
- We can then to the same for each of these three triangles.
Introduction
To begin, consider a familiar fractal object: the Sierpiński triangle X.

- Replace a triangle in the plane by the three triangles of half the size in the corners.
- We can then do the same for each of these three triangles.
- We continue this process iteratively to get the “fractal” X.
Waclaw Sierpiński (1882-1969) was a distinguished polish number theorist and set theorist. In 1951 the Warsaw Scientific Society issued a medal in his honour.
Replacing the Sierpiński Triangle X by a space of sequences Σ

We can code X using sequences from $\Sigma = \{1, 2, 3\}^{\mathbb{Z}^+}$ in the time honoured way.
Replacing the Sierpiński Triangle X by a space of sequences Σ

We can code X using sequences from $\Sigma = \{1, 2, 3\}^{\mathbb{Z}^+}$ in the time honoured way. More precisely,
Replacing the Sierpiński Triangle X by a space of sequences Σ

We can code X using sequences from $\Sigma = \{1, 2, 3\}^\mathbb{Z}_+$ in the time honoured way. More precisely,

- We can define a metric on Σ by

$$d\left((x_n)_{n=0}^{\infty}, (y_n)_{n=0}^{\infty}\right) = \sum_{n=0}^{\infty} \frac{e(x_n, y_n)}{2^n} \quad \text{where} \quad e(i, j) = \begin{cases} 1 & \text{if } i \neq j \\ 0 & \text{if } i = j \end{cases}$$
Replacing the Sierpiński Triangle X by a space of sequences Σ

We can code X using sequences from $\Sigma = \{1, 2, 3\}^{\mathbb{Z}^+}$ in the time honoured way. More precisely,

- We can define a metric on Σ by
 \[
 d \left(\left(x_n \right)_{n=0}^{\infty}, \left(y_n \right)_{n=0}^{\infty} \right) = \sum_{n=0}^{\infty} \frac{e(x_n, y_n)}{2^n}
 \]
 where $e(i, j) = \begin{cases} 1 & \text{if } i \neq j \\ 0 & \text{if } i = j \end{cases}$

- We can define a (Hölder continuous) coding $\pi : \Sigma \to X$ by
 \[
 \pi \left(\left(x_n \right)_{n=0}^{\infty} \right) = \sum_{n=0}^{\infty} \frac{e_{x_n}}{2^n}.
 \]
 where $e_1 = (0, 0), e_2 = (1, 0)$ and $e_3 = \left(\frac{1}{2}, \frac{\sqrt{3}}{2} \right)$, say.
Replacing the Sierpiński Triangle X by a space of sequences Σ

We can code X using sequences from $\Sigma = \{1, 2, 3\}^{\mathbb{Z}^+}$ in the time honoured way. More precisely,

- We can define a metric on Σ by

$$d \left((x_n)_{n=0}^\infty, (y_n)_{n=0}^\infty \right) = \sum_{n=0}^\infty \frac{e(x_n, y_n)}{2^n}$$

where $e(i, j) = \begin{cases} 1 & \text{if } i \neq j \\ 0 & \text{if } i = j \end{cases}$

- We can define a (Hölder continuous) coding $\pi : \Sigma \to X$ by

$$\pi \left((x_n)_{n=0}^\infty \right) = \sum_{n=0}^\infty \frac{e_{x_n}}{2^n}$$

where $e_1 = (0, 0)$, $e_2 = (1, 0)$ and $e_3 = \left(\frac{1}{2}, \frac{\sqrt{3}}{2} \right)$, say.

- We can introduce some dynamics by $\sigma : \Sigma \to \Sigma$ the usual shift map given by

$$\sigma(x_n)_{n=0}^\infty = (x_{n+1})_{n=0}^\infty.$$ (This essentially corresponds to a map on X which doubles distances).
Measures

The coding gives a convenient viewpoint for studying probability measures on X, by considering measures on Σ. Recall that μ is σ-invariant if

$$\mu([x_0, \ldots, x_{n-1}]) = \sum_{i=1}^{3} \mu([i, x_0, \ldots, x_{n-1}])$$

for all cylinders $[x_0, \ldots, x_{n-1}] := \{ y = (y_n)_{n=0}^{\infty} \in \Sigma : x_j = y_j \text{ for } 0 \leq j \leq n - 1 \}$ where $x_0, \ldots, x_{n-1} \in \{1, 2, 3\}$.

Example (Most obvious example) The $(\frac{1}{3}, \frac{1}{3}, \frac{1}{3})$-Bernoulli measure on Σ satisfies $\mu([x_0, \ldots, x_{n-1}]) = \frac{1}{3^n}$ and corresponds to the "natural" measure on X. Similarly, one could take Gibbs measures (for Hölder potentials $\psi : \Sigma \to \mathbb{R}$).
Measures

The coding gives a convenient viewpoint for studying probability measures on X, by considering measures on Σ. Recall that μ is σ-invariant if

$$
\mu([x_0, \cdots, x_{n-1}]) = \sum_{i=1}^{3} \mu([i, x_0, \cdots, x_{n-1}])
$$

for all cylinders $[x_0, \cdots, x_{n-1}] := \{y = (y_n)_{n=0}^{\infty} \in \Sigma : x_j = y_j \text{ for } 0 \leq j \leq n-1\}$ where $x_0, \cdots, x_{n-1} \in \{1, 2, 3\}$.

Example (Most obvious example)

The $(\frac{1}{3}, \frac{1}{3}, \frac{1}{3})$-Bernoulli measure on Σ satisfies $\mu([x_0, \cdots, x_{n-1}]) = \frac{1}{3^n}$ and corresponds to the “natural” measure on X.
Measures

The coding gives a convenient viewpoint for studying probability measures on X, by considering measures on Σ. Recall that μ is σ-invariant if

$$\mu([x_0, \cdots, x_{n-1}]) = \sum_{i=1}^{3} \mu([i, x_0, \cdots, x_{n-1}])$$

for all cylinders $[x_0, \cdots, x_{n-1}] := \{y = (y_n)_{n=0}^{\infty} \in \Sigma : x_j = y_j$ for $0 \leq j \leq n - 1\}$ where $x_0, \cdots, x_{n-1} \in \{1, 2, 3\}$.

Example (Most obvious example)

The $(\frac{1}{3}, \frac{1}{3}, \frac{1}{3})$-Bernoulli measure on Σ satisfies $\mu([x_0, \cdots, x_{n-1}]) = \frac{1}{3^n}$ and corresponds to the "natural" measure on X.

Similarly, one could take Gibbs measures (for Hölder potentials $\psi : \Sigma \to \mathbb{R}$).

Definition

A σ-invariant measure μ is a Gibbs measure (for the potential $\log \psi$) if

$$\psi(x) = \lim_{n \to +\infty} \frac{\mu[x_0, \cdots, x_n]}{\mu[x_1, \cdots, x_n]}$$

satisfies that $\psi : \Sigma \to \mathbb{R}$ is Hölder continuous.
Example (Obvious example revisited)
If μ is the $\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$-Bernoulli measure on Σ then $\mu[x_0, \cdots, x_{n-1}] = \frac{1}{3^n}$ and $\log \psi(x) = -\log 3$ is a constant function.

Example (Next most obvious example)
If μ is the $\left(p_1, p_2, p_3\right)$-Bernoulli measure on Σ (with $p_1 + p_2 + p_3 = 1$) then $\mu(x_0, \cdots, x_{n-1}) = p_{x_0}p_{x_1}\cdots p_{x_{n-1}}$ and for $x = (x_n)_{n=0}^{\infty}$:

$$\log \psi(x) = \begin{cases}
\log p_1 & \text{if } x_0 = 1 \\
\log p_2 & \text{if } x_0 = 2 \\
\log p_3 & \text{if } x_0 = 3
\end{cases}$$

is a locally constant function.

More generally, in the standard Gibbs theory approach one likes the potential $\log \psi$ to be Hölder continuous. However, the Kusuoka measure is defined in a different sort of way and has a different kind of potential...
Classical examples

Example (Obvious example revisited)

If μ is the $(\frac{1}{3}, \frac{1}{3}, \frac{1}{3})$-Bernoulli measure on Σ then $\mu[x_0, \ldots, x_{n-1}] = \frac{1}{3^n}$ and $\log \psi(x) = -\log 3$ is a constant function.

Example (Next most obvious example)

If μ is the (p_1, p_2, p_3)-Bernoulli measure on Σ (with $p_1 + p_2 + p_3 = 1$) then $\mu([x_0, \ldots, x_{n-1}]) = p_{x_0} p_{x_1} \cdots p_{x_{n-1}}$ and for $x = (x_n)_{n=0}^{\infty}$:

$$\log \psi(x) = \begin{cases}
\log p_1 & \text{if } x_0 = 1 \\
\log p_2 & \text{if } x_0 = 2 \\
\log p_3 & \text{if } x_0 = 3
\end{cases}$$

is a locally constant function.
Classical examples

Example (Obvious example revisited)

If μ is the $(\frac{1}{3}, \frac{1}{3}, \frac{1}{3})$-Bernoulli measure on Σ then $\mu[x_0, \ldots, x_{n-1}] = \frac{1}{3^n}$ and $\log \psi(x) = -\log 3$ is a constant function.

Example (Next most obvious example)

If μ is the (p_1, p_2, p_3)-Bernoulli measure on Σ (with $p_1 + p_2 + p_3 = 1$) then $\mu([x_0, \ldots, x_{n-1}]) = p_{x_0} p_{x_1} \cdots p_{x_{n-1}}$ and for $x = (x_n)_{n=0}^\infty$:

$$\log \psi(x) = \begin{cases}
\log p_1 & \text{if } x_0 = 1 \\
\log p_2 & \text{if } x_0 = 2 \\
\log p_3 & \text{if } x_0 = 3
\end{cases}$$

is a locally constant function.

More generally, in the standard Gibbs theory approach one likes the potential $\log \psi$ to be Hölder continuous.

However, the Kusuoka measure is defined in a different sort of way and has a different kind of potential . . .
Kusuoka measure

The Kusuoka measure was originally defined on the Sierpiński triangle X, but to describe the corresponding measure μ on Σ we want to specify the measure of cylinder sets

$$[i_0, \cdots, i_{n-1}] = \{x = (x_k)_{k=0}^{\infty} : x_j = i_j \text{ for } 0 \leq j \leq n-1\}, \text{ for } i_0, \cdots, i_{n-1} \in \{1, 2, 3\}.$$
Kusuoka measure

The Kusuoka measure was originally defined on the Sierpiński triangle X, but to describe the corresponding measure μ on Σ we want to specify the measure of cylinder sets

$$[[i_0, \cdots, i_{n-1}]] = \{x = (x_k)_{k=0}^{\infty} : x_j = i_j \text{ for } 0 \leq j \leq n - 1\}, \text{ for } i_0, \cdots, i_{n-1} \in \{1, 2, 3\}.$$

For concreteness, let us begin with the classical case.

Definition (Classical Kusuoka measure)

Let $A_1 = \begin{pmatrix} 3 \sqrt{15} & 0 \\ 0 & 1 \sqrt{15} \end{pmatrix}$, $A_2 = \frac{\sqrt{5}}{2} \begin{pmatrix} \sqrt{3} & 1 \\ 5 & \frac{1}{\sqrt{3}} \end{pmatrix}$ and $A_3 = \frac{\sqrt{5}}{2} \begin{pmatrix} \sqrt{3} & -1 \\ 5 & \frac{1}{\sqrt{3}} \end{pmatrix}$.

Let $E = \begin{pmatrix} 1/2 & 0 \\ 0 & 1/2 \end{pmatrix}$.

We define

$$\mu([[i_0, \cdots, i_{n-1}])] = \text{trace} \left((A_{i_0} \cdots A_{i_{n-1}})^T E (A_{i_0} \cdots A_{i_{n-1}}) \right) \text{ for } i_0, \cdots, i_{n-1} \in \{1, 2, 3\}$$
Kusuoka measure
The Kusuoka measure was originally defined on the Sierpiński triangle X, but to describe the corresponding measure μ on Σ we want to specify the measure of cylinder sets

$$[i_0, \cdots, i_{n-1}] = \{ x = (x_k)_{k=0}^{\infty} : x_j = i_j \text{ for } 0 \leq j \leq n - 1 \}, \text{ for } i_0, \cdots, i_{n-1} \in \{1, 2, 3\}.$$

For concreteness, let us begin with the classical case.

Definition (Classical Kusuoka measure)

Let $A_1 = \begin{pmatrix} \frac{3}{\sqrt{15}} & 0 \\ 0 & \frac{1}{\sqrt{15}} \end{pmatrix}$, $A_2 = \frac{\sqrt{5}}{2} \begin{pmatrix} \frac{\sqrt{3}}{5} & \frac{1}{5} \\ \frac{1}{5} & \frac{\sqrt{3}}{3} \end{pmatrix}$ and $A_3 = \frac{\sqrt{5}}{2} \begin{pmatrix} \frac{\sqrt{3}}{5} & -\frac{1}{5} \\ -\frac{1}{5} & \frac{\sqrt{3}}{3} \end{pmatrix}$.

Let $E = \begin{pmatrix} \frac{1}{2} & 0 \\ 0 & \frac{1}{2} \end{pmatrix}$.

We define

$$\mu([i_0, \cdots, i_{n-1}]) = \text{trace} \left((A_{i_0} \cdots A_{i_{n-1}})^T E (A_{i_0} \cdots A_{i_{n-1}}) \right) \text{ for } i_0, \cdots, i_{n-1} \in \{1, 2, 3\}$$

- The measure μ is well defined (by explicit computation).
Kusuoka measure

The Kusuoka measure was originally defined on the Sierpiński triangle X, but to describe the corresponding measure μ on Σ we want to specify the measure of cylinder sets

$$[i_0, \ldots, i_{n-1}] = \{x = (x_k)_{k=0}^\infty : x_j = i_j \text{ for } 0 \leq j \leq n-1\}, \text{ for } i_0, \ldots, i_{n-1} \in \{1, 2, 3\}.$$

For concreteness, let us begin with the classical case.

Definition (Classical Kusuoka measure)

Let $A_1 = \begin{pmatrix} 3 & 0 \\ \sqrt{15} & 1 \end{pmatrix}$, $A_2 = \frac{\sqrt{5}}{2} \begin{pmatrix} \frac{\sqrt{3}}{5} & \frac{1}{5} \\ \frac{1}{\sqrt{3}} & \frac{1}{5} \end{pmatrix}$ and $A_3 = \frac{\sqrt{5}}{2} \begin{pmatrix} \frac{\sqrt{3}}{5} & -\frac{1}{5} \\ -\frac{1}{5} & \frac{1}{\sqrt{3}} \end{pmatrix}$.

Let $E = \begin{pmatrix} 1/2 & 0 \\ 0 & 1/2 \end{pmatrix}$.

We define

$$\mu([i_0, \ldots, i_{n-1}]) = \text{trace} \left((A_{i_0} \cdots A_{i_{n-1}})^T E (A_{i_0} \cdots A_{i_{n-1}}) \right) \text{ for } i_0, \ldots, i_{n-1} \in \{1, 2, 3\}$$

- The measure μ is well defined (by explicit computation).
- The measure μ is σ-invariant (by explicit computation).
Kusuoka measure

The Kusuoka measure was originally defined on the Sierpiński triangle \(X \), but to describe the corresponding measure \(\mu \) on \(\Sigma \) we want to specify the measure of cylinder sets

\[
[i_0, \cdots, i_{n-1}] = \{x = (x_k)_{k=0}^\infty : x_j = i_j \text{ for } 0 \leq j \leq n-1\}, \text{ for } i_0, \cdots, i_{n-1} \in \{1, 2, 3\}.
\]

For concreteness, let us begin with the classical case.

Definition (Classical Kusuoka measure)

Let

\[
A_1 = \begin{pmatrix} \frac{3}{\sqrt{15}} & 0 \\ 0 & \frac{1}{\sqrt{15}} \end{pmatrix},
A_2 = \frac{\sqrt{5}}{2} \begin{pmatrix} \frac{\sqrt{3}}{5} & \frac{1}{5} \\ \frac{1}{\sqrt{3}} & \frac{1}{5} \end{pmatrix}
\text{ and } A_3 = \frac{\sqrt{5}}{2} \begin{pmatrix} \frac{\sqrt{3}}{5} & -\frac{1}{5} \\ -\frac{1}{\sqrt{3}} & \frac{1}{5} \end{pmatrix}.
\]

Let \(\mathcal{E} = \begin{pmatrix} \frac{1}{2} & 0 \\ 0 & \frac{1}{2} \end{pmatrix} \).

We define

\[
\mu([i_0, \cdots, i_{n-1}]) = \text{trace} \left((A_{i_0} \cdots A_{i_{n-1}})^T \mathcal{E} (A_{i_0} \cdots A_{i_{n-1}}) \right) \text{ for } i_0, \cdots, i_{n-1} \in \{1, 2, 3\}
\]

- The measure \(\mu \) is well defined (by explicit computation).
- The measure \(\mu \) is \(\sigma \)-invariant (by explicit computation).

Theorem (Kusuoka, 1989)

The measure \(\mu \) is ergodic.
Kusuoka measure

The Kusuoka measure was originally defined on the Sierpiński triangle \(X \), but to describe the corresponding measure \(\mu \) on \(\Sigma \) we want to specify the measure of cylinder sets

\[[i_0, \cdots, i_{n-1}] = \{ x = (x_k)_{k=0}^\infty : x_j = i_j \text{ for } 0 \leq j \leq n - 1 \}, \text{ for } i_0, \cdots, i_{n-1} \in \{1, 2, 3\}.\]

For concreteness, let us begin with the classical case.

Definition (Classical Kusuoka measure)

Let \(A_1 = \begin{pmatrix} 3 & 0 \\ \sqrt{15} & 1 \end{pmatrix}, \quad A_2 = \frac{\sqrt{5}}{2} \begin{pmatrix} \sqrt{3} & 1 \\ 5 & \frac{1}{\sqrt{3}} \end{pmatrix}, \quad A_3 = \frac{\sqrt{5}}{2} \begin{pmatrix} \sqrt{3} & -1 \\ -5 & \frac{1}{\sqrt{3}} \end{pmatrix}. \)

Let \(\mathcal{E} = \begin{pmatrix} 1/2 & 0 \\ 0 & 1/2 \end{pmatrix}. \)

We define

\[\mu([i_0, \cdots, i_{n-1}]) = \text{trace} \left((A_{i_0} \cdots A_{i_{n-1}})^T \mathcal{E} (A_{i_0} \cdots A_{i_{n-1}}) \right) \text{ for } i_0, \cdots, i_{n-1} \in \{1, 2, 3\}.\]

- The measure \(\mu \) is well defined (by explicit computation).
- The measure \(\mu \) is \(\sigma \)-invariant (by explicit computation).

Theorem (Kusuoka, 1989)

The measure \(\mu \) is ergodic.

The corresponding measure on \(X \) is important in defining the “Laplacian” on the fractal.
The potential for the Kusuoka measure

We can attempt to define the “potential”

$$\psi(x) = \lim_{n \to +\infty} \frac{\mu[x_0, \cdots, x_n]}{\mu[x_1, \cdots, x_n]}.$$

If $\psi : \Sigma \to \mathbb{R}$ were Hölder continuous then we could apply general ideas from “theormodynamical formalism”.

Theorem (Bell-Ho-Strichartz, 2014)

There exist a dense set of discontinuities for $\psi(x)$. Despite this, it is possible to establish familiar ergodic properties.
The potential for the Kusuoka measure

We can attempt to define the “potential”

\[\psi(x) = \lim_{n \to +\infty} \frac{\mu[X_0, \ldots, X_n]}{\mu[X_1, \ldots, X_n]} \]

If \(\psi : \Sigma \to \mathbb{R} \) were Hölder continuous then we could apply general ideas from “thermodynamical formalism”. However, this is far from being Hölder continuous.

Theorem (Bell-Ho-Strichartz, 2014)

There exist a dense set of discontinuities for \(\psi(x) \).
The potential for the Kusuoka measure

We can attempt to define the “potential”

\[\psi(x) = \lim_{n \to +\infty} \frac{\mu[x_0, \cdots, x_n]}{\mu[x_1, \cdots, x_n]} \]

If \(\psi : \Sigma \to \mathbb{R} \) were Hölder continuous then we could apply general ideas from “theormodynamical formalism”. However, this is far from being Hölder continuous.

Theorem (Bell-Ho-Strichartz, 2014)

There exist a dense set of discontinuities for \(\psi(x) \).

Despite this, it is possible to establish familiar ergodic properties
Main result

We can prove stronger ergodic results, such as exponential mixing:

Theorem (Johansson-Öberg-P.)

The measure \(\mu \) mixed exponentially fast, i.e., there exists \(0 < \alpha < 1 \) such that for Lipschitz \(f_1, f_2 : \Sigma \to \mathbb{R} \) we can find \(C > 0 \) with

\[
\left| \int f_1 \circ \sigma^n f_2 \, d\mu - \int f_1 \, d\mu \int f_2 \, d\mu \right| \leq C \alpha^n
\]

In fact, \(\alpha \) isn’t very mysterious - we can take any value \(\frac{5}{7} < \alpha < 1 \).
Main result

We can prove stronger ergodic results, such as exponential mixing:

Theorem (Johansson-Öberg-P.)

The measure μ mixed exponentially fast, i.e., there exists $0 < \alpha < 1$ such that for Lipschitz $f_1, f_2 : \Sigma \to \mathbb{R}$ we can find $C > 0$ with

$$\left| \int f_1 \circ \sigma^n f_2 d\mu - \int f_1 d\mu \cdot \int f_2 d\mu \right| \leq C \alpha^n$$

In fact, α isn’t very mysterious - we can take any value $\frac{5}{7} < \alpha < 1$.

Anders Öberg and Anders Johansson
Main result

We can prove stronger ergodic results, such as exponential mixing:

Theorem (Johansson-Öberg-P.)

The measure μ mixed exponentially fast, i.e., there exists $0 < \alpha < 1$ such that for Lipschitz $f_1, f_2 : \Sigma \to \mathbb{R}$ we can find $C > 0$ with

$$\left| \int f_1 \circ \sigma^n f_2 d\mu - \int f_1 d\mu. \int f_2 d\mu \right| \leq C \alpha^n$$

In fact, α isn’t very mysterious - we can take any value $\frac{5}{7} < \alpha < 1$.

Anders Öberg and Anders Johansson (explaining something very patiently to a coauthor)
The ergodicity of the Kusuoka measure gives the

<table>
<thead>
<tr>
<th>Theorem (Birkhoff ergodic theorem)</th>
</tr>
</thead>
<tbody>
<tr>
<td>For any $f \in L^1(\Sigma, \mu)$ we have that for a.e. $(\mu)x \in \Sigma$, $\lim_{n \to +\infty} \frac{1}{n} \sum_{k=0}^{n-1} f(\sigma^k x) = \int f d\mu.$</td>
</tr>
</tbody>
</table>
Applications: Summary
The ergodicity of the Kusuoka measure gives the

Theorem (Birkhoff ergodic theorem)

For any $f \in L^1(\Sigma, \mu)$ we have that for a.e. $(\mu) x \in \Sigma$, $\lim_{n \to +\infty} \frac{1}{n} \sum_{k=0}^{n-1} f(\sigma^k x) = \int f d\mu$.

The Birkhoff Ergodic Theorem was mentioned in the talk of Corinna Ulcigrai.
Applications: Summary

The ergodicity of the Kusuoka measure gives the

Theorem (Birkhoff ergodic theorem)

For any $f \in L^1(\Sigma, \mu)$ we have that for a.e. $(\mu) \times \in \Sigma$, $\lim_{n \to +\infty} \frac{1}{n} \sum_{k=0}^{n-1} f(\sigma^k x) = \int f d\mu$.

The Birkhoff Ergodic Theorem was mentioned in the talk of Corinna Ulcigrai. Our result leads to various strengthenings via stronger statistical results under the stronger assumption that $f : \Sigma \to \mathbb{R}$ is Lipschitz.
Applications: Summary
The ergodicity of the Kusuoka measure gives the

Theorem (Birkhoff ergodic theorem)

For any $f \in L^1(\Sigma, \mu)$ we have that for a.e. $(\mu) x \in \Sigma$, $\lim_{n \to +\infty} \frac{1}{n} \sum_{k=0}^{n-1} f(\sigma^k x) = \int f d\mu$.

The Birkhoff Ergodic Theorem was mentioned in the talk of Corinna Ulcigrai. Our result leads to various strengthenings via stronger statistical results under the stronger assumption that $f : \Sigma \to \mathbb{R}$ is Lipschitz.

For example,

1. Central Limit Theorems
Applications: Summary
The ergodicity of the Kusuoka measure gives the

Theorem (Birkhoff ergodic theorem)

For any \(f \in L^1(\Sigma, \mu) \) we have that for a.e. \((\mu) x \in \Sigma\), \(\lim_{n \to +\infty} \frac{1}{n} \sum_{k=0}^{n-1} f(\sigma^k x) = \int f d\mu\).

The Birkhoff Ergodic Theorem was mentioned in the talk of Corinna Ulcigrai. Our result leads to various strengthenings via stronger statistical results under the stronger assumption that \(f : \Sigma \to \mathbb{R} \) is Lipschitz.

For example,

1. Central Limit Theorems
2. Large Deviation Theorems
Applications: Summary

The ergodicity of the Kusuoka measure gives the

Theorem (Birkhoff ergodic theorem)

For any \(f \in L^1(\Sigma, \mu) \) we have that for a.e. \((\mu) x \in \Sigma\),

\[
\lim_{n \to +\infty} \frac{1}{n} \sum_{k=0}^{n-1} f(\sigma^k x) = \int f \, d\mu.
\]

The Birkhoff Ergodic Theorem was mentioned in the talk of Corinna Ulcigrai. Our result leads to various strengthenings via stronger statistical results under the stronger assumption that \(f : \Sigma \to \mathbb{R} \) is Lipschitz.

For example,

1. Central Limit Theorems
2. Large Deviation Theorems
3. Pointwise error terms in the Birkhoff ergodic theorem.
1. Central Limit Theorems

As we observed, ergodicity of the measure μ implies that:

Theorem (Birkhoff Ergodic Theorem)

For any $L^1(\Sigma, \mu)$ function $f : \Sigma \to \mathbb{R}$ we have that

$$\frac{1}{N} \sum_{n=0}^{N-1} f(\sigma^n x) \to \int f d\mu \text{ as } N \to +\infty,$$

for a.e.$(\mu) x \in \Sigma$.
1. Central Limit Theorems

As we observed, ergodicity of the measure μ implies that:

Theorem (Birkhoff Ergodic Theorem)

For any $L^1(\Sigma, \mu)$ function $f : \Sigma \rightarrow \mathbb{R}$ we have that

$$
\frac{1}{N} \sum_{n=0}^{N-1} f(\sigma^n x) \rightarrow \int f d\mu \text{ as } N \rightarrow +\infty,
$$

for a.e. $(\mu) x \in \Sigma$.

The central limit theorem gives stronger results where $1/N$ is replaced by $1/\sqrt{N}$.

Theorem (Central Limit Theorem)

Assume $f : \Sigma \rightarrow \mathbb{R}$ is a Lipschitz function not cohomologous to a constant (i.e., $f - \int fd\mu = u \circ \sigma - u$ where $u \in B$). Then there exists $\sigma^2 > 0$ such that we have that for any $\alpha < \beta$ we have

$$
\mu \left(\left\{ x \in \Sigma : \alpha \leq \frac{1}{\sqrt{N}} \sum_{n=0}^{N-1} f(\sigma^n x) - \int f d\mu \leq \beta \right\} \right) \rightarrow \frac{1}{\sqrt{2\pi \sigma}} \int_{\alpha}^{\beta} e^{-\frac{u^2}{2\sigma^2}} du
$$

as $N \rightarrow +\infty$.

2. Large Deviation results

Recall that:

Theorem (Birkhoff Ergodic Theorem)

For any $L^1(\Sigma, \mu)$ function $f : \Sigma \rightarrow \mathbb{R}$ we have that

\[
\frac{1}{N} \sum_{n=0}^{N-1} f(\sigma^n x) \rightarrow \int f \, d\mu \text{ as } N \rightarrow +\infty,
\]

*for a.e. $(\mu) x \in \Sigma$.\]
2. Large Deviation results

Recall that:

Theorem (Birkhoff Ergodic Theorem)

For any $L^1(\Sigma, \mu)$ function $f : \Sigma \to \mathbb{R}$ we have that

$$\frac{1}{N} \sum_{n=0}^{N-1} f(\sigma^n x) \to \int f d\mu \text{ as } N \to +\infty,$$

for a.e. $(\mu) x \in \Sigma$.

Another form of generalisation of the Birkhoff theorem is the following.

Theorem (Large Deviation Theorem)

Let $f : \Sigma \to \mathbb{R}$ be Lipschitz. For each $\epsilon > 0$ there exists $C > 0, 0 < \rho < 1$ such that

$$\mu \left(\left\{ x \in \Sigma : \left| \frac{1}{N} \sum_{n=0}^{N-1} f(\sigma^n x) - \int f d\mu \right| > \epsilon \right\} \right) \leq C \rho^n$$

as $N \to +\infty$.

There is also be a corresponding version for measures $\frac{1}{N} \sum_{n=0}^{N-1} \delta_{\sigma^n x}$.
3. Error terms for Birkhoff Ergodic Theorem

Recall yet again that:

Theorem (Birkhoff Ergodic Theorem)

For any $L^1(\Sigma, \mu)$ function $f : \Sigma \to \mathbb{R}$ we have that

\[
\frac{1}{N} \sum_{n=0}^{N-1} f(\sigma^n x) \to \int f d\mu \text{ as } N \to +\infty,
\]

*for a.e. $(\mu) x \in \Sigma$.***
3. Error terms for Birkhoff Ergodic Theorem

Recall yet again that:

Theorem (Birkhoff Ergodic Theorem)

For any $L^1(\Sigma, \mu)$ function $f : \Sigma \to \mathbb{R}$ we have that

$$\frac{1}{N} \sum_{n=0}^{N-1} f(\sigma^n x) \to \int f d\mu \text{ as } N \to +\infty,$$

for a.e. $(\mu) x \in \Sigma$.

The following is a simple consequence of the mixing.

Theorem (Error terms)

Let $f : \Sigma \to \mathbb{R}$ be Lipschitz. We can deduce that, for any $\delta > 0$ can write

$$\frac{1}{N} \sum_{n=0}^{N-1} f(\sigma^n x) = \int f d\mu + O\left(\left(\frac{(\log N)^{3/2} (\log \log N)^{1/2} (\log \log \log N)^{1/2+\delta}}{N^{1/2}}\right)\right).$$
3. Error terms for Birkhoff Ergodic Theorem

Recall yet again that:

Theorem (Birkhoff Ergodic Theorem)

For any $L^1(\Sigma, \mu)$ function $f : \Sigma \to \mathbb{R}$ we have that

$$
\frac{1}{N} \sum_{n=0}^{N-1} f(\sigma^n x) \to \int f d\mu \text{ as } N \to +\infty,
$$

for a.e. $(\mu) x \in \Sigma$.

The following is a simple consequence of the mixing.

Theorem (Error terms)

Let $f : \Sigma \to \mathbb{R}$ be Lipschitz. We can deduce that, for any $\delta > 0$ can write

$$
\frac{1}{N} \sum_{n=0}^{N-1} f(\sigma^n x) = \int f d\mu + O \left(\frac{(\log N)^{3/2}(\log \log N)^{1/2}(\log \log \log N)^{1/2+\delta}}{N^{1/2}} \right).
$$

In particular, for any $\epsilon > 0$ can write

$$
\frac{1}{N} \sum_{n=0}^{N-1} f(\sigma^n x) = \int f d\mu + O \left(\frac{1}{N^{1/2-\epsilon}} \right).
$$
The strategy of the proof

Let us define a function $g : X \to \mathbb{R}$ by

$$
\psi(x) = \lim_{n \to +\infty} \frac{\mu[x_0, \cdots, x_{n-1}]}{\mu[x_1, \cdots, x_{n-1}]} \text{ for } a.e. (\mu)x = (x_n)_{n=0}^\infty \in \Sigma.
$$
The strategy of the proof

Let us define a function \(g : X \to \mathbb{R} \) by

\[
\psi(x) = \lim_{n \to +\infty} \frac{\mu[x_0, \cdots, x_{n-1}]}{\mu[x_1, \cdots, x_{n-1}]} \quad \text{for a.e.} \ (\mu)x = (x_n)_{n=0}^{\infty} \in \Sigma.
\]

As we observed, if \(\mu \) were a classical Gibbs measure then \(\psi(x) \) would be Hölder continuous, but alas it has a dense set of discontinuities.
The strategy of the proof

Let us define a function \(g : X \rightarrow \mathbb{R} \) by

\[
\psi(x) = \lim_{n \to +\infty} \frac{\mu[x_0, \cdots, x_{n-1}]}{\mu[x_1, \cdots, x_{n-1}]} \text{ for a.e.} \mu x = (x_n)_{n=0}^\infty \in \Sigma.
\]

As we observed, if \(\mu \) were a classical Gibbs measure then \(\psi(x) \) would be Hölder continuous, but alas it has a dense set of discontinuities. Despite \(\mu \) not being a classical Gibbs measure, we show that on a suitable space \(B \) of functions the associated Transfer Operator \(L : B \rightarrow B \) defined by

\[
Lf(x) = \sum_{\sigma y = x} \psi(y)f(y), \quad f \in B,
\]

still has a “spectral gap”.

Mark Pollicott

Ergodic Properties of the Kusuoka measure 16 / 23
The strategy of the proof

Let us define a function $g : X \to \mathbb{R}$ by

$$
\psi(x) = \lim_{n \to +\infty} \frac{\mu[x_0, \cdots, x_{n-1}]}{\mu[x_1, \cdots, x_{n-1}]} \text{ for a.e.}(\mu)x = (x_n)_{n=0}^{\infty} \in \Sigma.
$$

As we observed, if μ were a classical Gibbs measure then $\psi(x)$ would be Hölder continuous, but alas it has a dense set of discontinuities. Despite μ not being a classical Gibbs measure, we show that on a suitable space B of functions the associated Transfer Operator $L : B \to B$ defined by

$$
Lf(x) = \sum_{\sigma y = x} \psi(y)f(y), \quad f \in B,
$$

still has a “spectral gap”.

Then using $\int (f_1 \circ \sigma^n)f_2 d\mu = \int f_1(L^n f_2)d\mu$ the result follows as usual.
The strategy of the proof

Let us define a function \(g : X \to \mathbb{R} \) by

\[
\psi(x) = \lim_{n \to +\infty} \frac{\mu[x_0, \ldots, x_{n-1}]}{\mu[x_1, \ldots, x_{n-1}]} \text{ for a.e.} (\mu)x = (x_n)_{n=0}^{\infty} \in \Sigma.
\]

As we observed, if \(\mu \) were a classical Gibbs measure then \(\psi(x) \) would be Hölder continuous, but alas it has a dense set of discontinuities. Despite \(\mu \) not being a classical Gibbs measure, we show that on a suitable space \(B \) of functions the associated Transfer Operator \(L : B \to B \) defined by

\[
Lf(x) = \sum_{\sigma y = x} \psi(y)f(y), \quad f \in B,
\]

still has a “spectral gap”.

Then using \(\int (f_1 \circ \sigma^n)f_2 d\mu = \int f_1(L^n f_2) d\mu \) the result follows as usual.

Thus we need

- to define a suitable \(B \);
The strategy of the proof

Let us define a function \(g : X \to \mathbb{R} \) by

\[
\psi(x) = \lim_{n \to +\infty} \frac{\mu[x_0, \ldots, x_{n-1}]}{\mu[x_1, \ldots, x_{n-1}]} \quad \text{for a.e.}(\mu)x = (x_n)_{n=0}^\infty \in \Sigma.
\]

As we observed, if \(\mu \) were a classical Gibbs measure then \(\psi(x) \) would be Hölder continuous, but alas it has a dense set of discontinuities. Despite \(\mu \) not being a classical Gibbs measure, we show that on a suitable space \(B \) of functions the associated Transfer Operator \(L : B \to B \) defined by

\[
Lf(x) = \sum_{\sigma y = x} \psi(y)f(y), \quad f \in B,
\]

still has a “spectral gap”.

Then using \(\int (f_1 \circ \sigma^n)f_2 d\mu = \int f_1(L^n f_2)d\mu \) the result follows as usual.

Thus we need

- to define a suitable \(B \); and
- to prove there is a spectral gap for \(L \).
The space of functions B

Let \mathcal{A}_n ($n \geq 0$) be the finite sigma algebra consisting of all cylinders $[i_0, \cdots, i_{n-1}]$ of length n (N.B. those traditionally used in the definition of entropy).

Given $0 < \theta < 1$, let $B = B_\theta := \{ f : \| f \|_2^\theta := \infty \sum_{n=1}^{\infty} \| E(f | A_n) - E(f | A_{n-1}) \|_2^2 \theta^n < +\infty \}$ with norm $\| f \| = \| f \|_2 + \| f \|_\theta$.

Providing $\theta > \frac{1}{2}$ we have that B contains the Lipschitz functions.
Let \mathcal{A}_n ($n \geq 0$) be the finite sigma algebra consisting of all cylinders $[i_0, \ldots, i_{n-1}]$ of length n (N.B. those traditionally used in the definition of entropy).

Let $\mathbb{E}(\cdot | \mathcal{A}_n) : L^2(X, \mathcal{B}, \mu) \to L^2(X, \mathcal{B}, \mu)$ be the usual expectation projection, i.e.,

$$\mathbb{E}(f | \mathcal{A}_n)(x) = \frac{\int_{[x_0, \ldots, x_{n-1}]} f d\mu}{\mu[x_0, \ldots, x_{n-1}]}$$

where $x = (x_n)_{n=0}^\infty$,

is a locally constant approximation depending on the first n-coordinates.
The space of functions B

Let $\mathcal{A}_n (n \geq 0)$ be the finite sigma algebra consisting of all cylinders $[i_0, \cdots, i_{n-1}]$ of length n (N.B. those traditionally used in the definition of entropy).

Let $\mathbb{E}(\cdot | \mathcal{A}_n) : L^2(X, \mathcal{B}, \mu) \rightarrow L^2(X, \mathcal{B}, \mu)$ be the usual expectation projection, i.e.,

$$\mathbb{E}(f | \mathcal{A}_n)(x) = \frac{\int_{[x_0, \cdots, x_{n-1}]} f \, d\mu}{\mu_{[x_0, \cdots, x_{n-1}]}}$$

where $x = (x_n)_{n=0}^{\infty}$, is a locally constant approximation depending on the first n-coordinates.

Given $0 < \theta < 1$, let

$$B = B_\theta := \left\{ f : \|f\|^2_\theta := \sum_{n=1}^{\infty} \frac{\|\mathbb{E}(f | \mathcal{A}_n) - \mathbb{E}(f | \mathcal{A}_{n-1})\|^2_2}{\theta^n} < +\infty \right\}$$

with norm $\|f\| = \|f\|_2 + \|f\|_\theta$.
The space of functions \mathcal{B}

Let $\mathcal{A}_n \ (n \geq 0)$ be the finite sigma algebra consisting of all cylinders $[i_0, \cdots, i_{n-1}]$ of length n (N.B. those traditionally used in the definition of entropy).

Let $\mathbb{E}(\cdot | \mathcal{A}_n) : L^2(X, \mathcal{B}, \mu) \to L^2(X, \mathcal{B}, \mu)$ be the usual expectation projection, i.e.,

$$\mathbb{E}(f | \mathcal{A}_n)(x) = \frac{\int_{[x_0, \cdots, x_{n-1}]} fd\mu}{\mu[x_0, \cdots, x_{n-1}]}$$

where $x = (x_n)_{n=0}^{\infty}$, is a locally constant approximation depending on the first n-coordinates.

Given $0 < \theta < 1$, let

$$\mathcal{B} = \mathcal{B}_\theta := \left\{ f : \| f \|\theta^2 := \sum_{n=1}^{\infty} \frac{\| \mathbb{E}(f | \mathcal{A}_n) - \mathbb{E}(f | \mathcal{A}_{n-1}) \|_2^2}{\theta^n} < +\infty \right\}$$

with norm $\| f \| = \| f \|_2 + \| f \|_\theta$.

Providing $\theta > \frac{1}{2}$ we have that \mathcal{B} contains the Lipschitz functions.
The spectrum and an indirect approach

There is an operator theorem has a reassuringly familiar statement

Theorem

For $0 < \theta < 1$ sufficiently large, $L : B \to B$ defined by $Lf(x) = \sum_{\sigma y = x} g(y)f(y)$ is well defined. Moreover,

- $L(1) = 1$ (i.e., preserves the constant functions \mathbb{C})
- The spectral radius of $L : B/\mathbb{C} \to B/\mathbb{C}$ is strictly smaller than 1

In particular, there is a spectral gap, as required.
The spectrum and an indirect approach

There is an operator theorem has a reassuringly familiar statement

Theorem

For $0 < \theta < 1$ sufficiently large, $L : B \rightarrow B$ defined by $L f(x) = \sum_{\sigma y = x} g(y) f(y)$ is well defined. Moreover,

- $L(1) = 1$ (i.e., preserves the constant functions \mathbb{C})
- The spectral radius of $L : B/\mathbb{C} \rightarrow B/\mathbb{C}$ is strictly smaller than 1

In particular, there is a spectral gap, as required.

One might hope that a “traditional approach” would lead to the results on the spectrum of L (e.g., Lasota-Yorke inequality, etc.).
The spectrum and an indirect approach

There is an operator theorem has a reassuringly familiar statement

Theorem

For $0 < \theta < 1$ sufficiently large, $L : B \to B$ defined by $L f(x) = \sum_{\sigma y = x} g(y) f(y)$ is well defined. Moreover,

- $L(1) = 1$ (i.e., preserves the constant functions \mathbb{C})
- The spectral radius of $L : B/\mathbb{C} \to B/\mathbb{C}$ is strictly smaller than 1

In particular, there is a spectral gap, as required.

One might hope that a “traditional approach” would lead to the results on the spectrum of L (e.g., Lasota-Yorke inequality, etc.).

Unfortunately, we couldn’t get that to work - so there is a more indirect approach working with Banach spaces of matrix valued functions, and operators on these (which then project down to operators on functions of the above form).
Generalizations

The Kusuoka measure is a special case of a more general class of invariant measures on Σ.

Given any full shift $\Sigma = \{1, \cdots, k\}^\mathbb{Z}$, assume that we have:

- $d \times d$ matrices A_1, \cdots, A_k;
- and a positive definite $d \times d$ matrix E,

(for some $d \geq 1$) which satisfy

$$
\begin{align*}
 k \sum_{i=1}^{k} A_i A_i^T &= I \\
 k \sum_{i=1}^{k} A_i^T E A_i &= I
\end{align*}
$$

and a strong irreducibility condition.

We can define a (generalized) Kusuoka measure on Σ using

$$
\mu(\lfloor i_0, \cdots, i_{n-1} \rfloor) = \text{trace} \left(A_{i_0} \cdots A_{i_{n-1}} \right)^T E A_{i_0} \cdots A_{i_{n-1}}.
$$

This is well defined and invariant under the shift $\sigma: \Sigma \rightarrow \Sigma$.

Theorem (Johansson-¨Oberg-P.)

The measure μ mixing exponentially fast, i.e., there exists $\alpha > 0$ such that for Lipschitz $f_1, f_2: \Sigma \rightarrow \mathbb{R}$ we can find $C > 0$ with

$$
\begin{align*}
 \int f_1 \circ \sigma^n d\mu - \int f_1 d\mu &\leq C \alpha^n \\
 \int f_2 d\mu &\leq C \alpha^n
\end{align*}
$$
Generalizations

The Kusuoka measure is a special case of a more general class of invariant measures on Σ. Given any full shift $\Sigma = \{1, \cdots, k\}^{\mathbb{Z}+}$ assume that we have:

- $d \times d$ matrices A_1, \cdots, A_k; and
- a positive definite $d \times d$ smatrix E,

(for some $d \geq 1$) which satisfy

$$\sum_{i=1}^{k} A_i A_i^T = I \text{ and } \sum_{i=1}^{k} A_i^T E A_i = I.$$

and a strong irreducibility condition.

Theorem (Johansson-¨Oberg-P.)

The measure μ mixed exponentially fast, i.e., there exists $0 < \alpha < 1$ such that for Lipschitz functions $f_1, f_2: \Sigma \to \mathbb{R}$ we can find $C > 0$ with

$$\left| \int f_1 \circ \sigma^n \, f_2 \, d\mu - \int f_1 \, d\mu \right| \leq C \alpha^n.$$
Generalizations

The Kusuoka measure is a special case of a more general class of invariant measures on Σ.

Given any full shift $\Sigma = \{1, \cdots, k\}^{\mathbb{Z}+}$ assume that we have:

- $d \times d$ matrices A_1, \cdots, A_k; and
- a positive definite $d \times d$ smatrix E,

(for some $d \geq 1$) which satisfy

$$\sum_{i=1}^{k} A_i A_i^T = I \quad \text{and} \quad \sum_{i=1}^{k} A_i^T E A_i = I.$$

and a strong irreducibility condition. We can define a (generalized) Kusuoka measure on Σ using

$$\mu([i_0, \cdots, i_{n-1}]) = \text{trace} \left((A_{i_0} \cdots A_{i_{n-1}})^T E (A_{i_0} \cdots A_{i_{n-1}}) \right).$$

This is well defined and invariant under the shift $\sigma : \Sigma \rightarrow \Sigma$.
Generalizations

The Kusuoka measure is a special case of a more general class of invariant measures on Σ. Given any full shift $\Sigma = \{1, \cdots, k\}^{\mathbb{Z}^+}$ assume that we have:
- $d \times d$ matrices A_1, \cdots, A_k; and
- a positive definite $d \times d$ smatrix \mathcal{E},
(for some $d \geq 1$) which satisfy

$$\sum_{i=1}^{k} A_i A_i^T = I \quad \text{and} \quad \sum_{i=1}^{k} A_i^T \mathcal{E} A_i = I.$$

and a strong irreducibility condition. We can define a (generalized) Kusuoka measure on Σ using

$$\mu([i_0, \cdots, i_{n-1}]) = \text{trace} \left((A_{i_0} \cdots A_{i_{n-1}})^T \mathcal{E}(A_{i_0} \cdots A_{i_{n-1}}) \right).$$

This is well defined and invariant under the shift $\sigma : \Sigma \to \Sigma$.

Theorem (Johansson-Öberg-P.)

The measure μ mixed exponentially fast, i.e., there exists $0 < \alpha < 1$ such that for Lipschitz $f_1, f_2 : \Sigma \to \mathbb{R}$ we can find $C > 0$ with

$$\left| \int f_1 \circ \sigma^n . f_2 \, d\mu - \int f_1 \, d\mu \cdot \int f_2 \, d\mu \right| \leq C \alpha^n$$

Mark Pollicott
Ergodic Properties of the Kusuoka measure 19 / 23
Aside: The origins of the Kusuoka measure

Question

Why was the Kusuoka measure introduced?

The Kusuoka measure arises naturally in the construction of a "laplacian" on function on X, via energy and harmonic functions.

Definition

Given $u \in C_0(X, \mathbb{R})$ we define the energy in terms of the values on smaller triangles (with vertices $v(i)_1$, $v(i)_2$, $v(i)_3$ corresponding to cylinders $i = [i_0, \ldots, i_{n-1}]$ in graphs approximating the fractal X.

$$ E(u) := \lim_{n \to +\infty} \sum_{i \in \{1, 2, 3\}} n \leq r < s \leq 3 (u_{v(i)_r} - u_{v(i)_s})^2 \in [0, +\infty] $$

and

$$ E(u, v) = \frac{1}{4} (E(u + v) - E(u - v)) $$

for $u, v \in C_0(X, \mathbb{R})$.
Aside: The origins of the Kusuoka measure

Question

Why was the Kusuoka measure introduced?

The Kusuoka measure μ arises naturally in the construction of a "laplacian" on function on X, via energy and harmonic functions.
Aside: The origins of the Kusuoka measure

Question

Why was the Kusuoka measure introduced?

The Kusuoka measure μ arises naturally in the construction of a “laplacian” on function on X, via energy and harmonic functions.

Definition

Given $u \in C^0(X, \mathbb{R})$ we define the energy in terms of the values on smaller triangles (with vertices $v_1^{(i)}, v_2^{(i)}, v_3^{(i)}$ corresponding to cylinders $[i] = [i_0, \cdots, i_{n-1}]$) in graphs approximating the fractal X.

\[
\mathcal{E}(u) := \lim_{n \to +\infty} \sum_{i \in \{1, 2, 3\}^n} \sum_{1 \leq r < s \leq 3} \left(u \left(v_r^{(i)} \right) - u \left(v_s^{(i)} \right) \right)^2 \in [0, +\infty]
\]
Aside: The origins of the Kusuoka measure

Question

Why was the Kusuoka measure introduced?

The Kusuoka measure μ arises naturally in the construction of a “laplacian” on function on X, via energy and harmonic functions.

Definition

Given $u \in C^0(X, \mathbb{R})$ we define the energy in terms of the values on smaller triangles (with vertices $v_1(i)$, $v_2(i)$, $v_3(i)$ corresponding to cylinders $[i] = [i_0, \cdots, i_{n-1}]$) in graphs approximating the fractal X.

$$\mathcal{E}(u) := \lim_{n \to +\infty} \sum_{i \in \{1,2,3\}^n} \sum_{1 \leq r < s \leq 3} \left(u\left(v_r(i)\right) - u\left(v_s(i)\right) \right)^2 \in [0, +\infty]$$

and $\mathcal{E}(u, v) = \frac{1}{4} \left(\mathcal{E}(u + v) - \mathcal{E}(u - v) \right)$ for $u, v \in C^0(X, \mathbb{R})$
Harmonic functions and Harmonic measures

We need to define analogues of harmonic functions and measures on the Sierpiński triangle X.

Definition
Specifying the three values $u(0,1), u(1,0), u_1 \frac{\sqrt{3}}{2} \in \mathbb{R}$ there is a unique function $u \in C(X, \mathbb{R})$ achieving these values and minimizing $E(u)$. This is called a harmonic function.

If we quotient out by the constants, the space of harmonic functions is two dimensional.

Definition
We can associated to a harmonic function $u \in C(X, \mathbb{R})$ a harmonic measure ν_u on X by

$$
\nu_u(\pi([i_0, \ldots, i_{n-1}])) = \frac{5}{3} \lim_{n \to \infty} E(u \circ \pi(i_0, \ldots, i_{n-1}, x_0, x_1, \ldots))
$$

where $i_0, \ldots, i_{n-1} \in \{1, 2, 3\}$.

Mark Pollicott
Ergodic Properties of the Kusuoka measure 21 / 23
Harmonic functions and Harmonic measures

We need to define analogues of harmonic functions and measures on the Sierpiński triangle X.

Definition

Specifying the three values

$$u(0, 1), u(1, 0), u \left(\frac{1}{2}, \frac{\sqrt{3}}{2} \right) \in \mathbb{R}$$

there is a unique function $u \in C(X, \mathbb{R})$ achieving these three values and minimizing $E(u)$. This is called a **harmonic function**.

If we quotient out by the constants, the space of harmonic functions is two dimensional.
Harmonic functions and Harmonic measures

We need to define analogues of harmonic functions and measures on the Sierpiński triangle X.

Definition

Specifying the three values

$$u(0, 1), u(1, 0), u\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right) \in \mathbb{R}$$

there is a unique function $u \in C(X, \mathbb{R})$ achieving these three values and minimizing $\mathcal{E}(u)$. This is called a *harmonic function*.

If we quotient out by the constants, the space of harmonic functions is two dimensional.

Definition

We can associated to a harmonic function $u \in C(X, \mathbb{R})/\mathbb{R}$ a *harmonic measure* ν_u on X by

$$\nu_u(\pi([i_0, \cdots, i_{n-1}]))) = \left(\frac{5}{3}\right)^n \mathcal{E}(u \circ \pi(i_0, \cdots, i_{n-1}, x_0, x_1, \cdots))$$

where $i_0, \cdots, i_{n-1} \in \{1, 2, 3\}^n$.
The Kusuoka measure and the laplacian

Finally, fix a basis \(u_1, u_2 \) for harmonic functions satisfying \(E(u_1, u_2) = 0 \) and \(E(u_1) = E(u_2) = 1 \).
The Kusuoka measure and the laplacian

Finally, fix a basis u_1, u_2 for harmonic functions satisfying $\mathcal{E}(u_1, u_2) = 0$ and $\mathcal{E}(u_1) = \mathcal{E}(u_2) = 1$.

Definition (Alternative equivalent definition of Kusuoka measure)

The measure $\mu = \nu u_1 + \nu u_2$.

This is then used to define a laplacian.

Definition

One defines a *Laplacian* Δ on suitable functions $f_1 \in C(X, \mathbb{R})$ by

$$\int (\Delta f_1) f_2 d\mu = -\mathcal{E}(f_1, f_2)$$

for suitable $f_2 \in C(X, \mathbb{R})$.
The Kusuoka measure and the laplacian

Finally, fix a basis u_1, u_2 for harmonic functions satisfying $\mathcal{E}(u_1, u_2) = 0$ and $\mathcal{E}(u_1) = \mathcal{E}(u_2) = 1$.

Definition (Alternative equivalent definition of Kusuoka measure)

The measure $\mu = \nu_{u_1} + \nu_{u_2}$.

This is then used to define a laplacian.

Definition

One defines a *Laplacian* Δ on suitable functions $f_1 \in C(X, \mathbb{R})$ by

$$\int (\Delta f_1) f_2 d\mu = -\mathcal{E}(f_1, f_2)$$

for suitable $f_2 \in C(X, \mathbb{R})$.

In particular, the Kusuoka measure gives the Laplacian desirable properties (that wouldn’t happen with the Bernoulli measure, say).
The Kusuoka measure and the laplacian

Finally, fix a basis u_1, u_2 for harmonic functions satisfying $\mathcal{E}(u_1, u_2) = 0$ and $\mathcal{E}(u_1) = \mathcal{E}(u_2) = 1$.

Definition (Alternative equivalent definition of Kusuoka measure)

The measure $\mu = \nu u_1 + \nu u_2$.

This is then used to define a laplacian.

Definition

One defines a Laplacian Δ on suitable functions $f_1 \in C(X, \mathbb{R})$ by

$$\int (\Delta f_1) f_2 d\mu = -\mathcal{E}(f_1, f_2)$$

for suitable $f_2 \in C(X, \mathbb{R})$.

In particular, the Kusuoka measure gives the Laplacian desirable properties (that wouldn’t happen with the Bernoulli measure, say). For example,

Lemma

If $\Delta f \in L^2(\mu)$ then $\Delta(f^2) \in L^2(\mu)$.
Thank you for your time and attention