Takens’ Last Problem and Existence of Non-trivial Wandering Domains

S. Kiriki* T. Soma†

*Tokai Univ. (Japan)
†Tokyo Metro. Univ. (Japan)

arXiv:1503.06258
Contents

1. Wandering domains: trivial/non-trivial examples
2. Colli & Vargas’ example
3. Existence of non-trivial wandering domain (Conjecture of Colli & Vargas)
4. An answer to Takens’ Last Problem
5. An answer to van Strien’s question
What is a wandering domain?

\(M \): compact smooth manifold

Definition

\(D \) is a *wandering domain* for \(f \in \text{Diff}^r(M) \) if

- \(D \) : nonempty, connected, open set of \(M \)
- \(f^i(D) \cap f^j(D) = \emptyset \) for all \(i, j \in \mathbb{Z} \) with \(i \neq j \)
What is a wandering domain?

M: compact smooth manifold

Definition

D is a *wandering domain* for $f \in \text{Diff}^r(M)$ if

- D: nonempty, connected, open set of M
- $f^i(D) \cap f^j(D) = \emptyset$ for $\forall i, j \in \mathbb{Z}$ with $i \neq j$
What is a wandering domain?

M: compact smooth manifold

Definition

D is a *wandering domain* for $f \in \text{Diff}^r(M)$ if

- D: nonempty, connected, open set of M
- $f^i(D) \cap f^j(D) = \emptyset$ for $\forall i, j \in \mathbb{Z}$ with $i \neq j$
Trivial example

\[f(D) \]

sink

\[f^2(D) \]

source

\[D \]
Non-trivial example

[Bohl(1916), Denjoy(1932)]

\[\exists f \in \text{Diff}^1(S^1), \exists \{ D_i \}_{i \in \mathbb{N}} \subset S^1 \text{ with } f(D_i) = D_{i+1} \text{ s.t.} \]

Non-trivial example

[Bohl(1916), Denjoy(1932)]

\[\exists f \in \text{Diff}^1(S^1), \exists \{D_i\}_{i \in \mathbb{N}} \subset S^1 \text{ with } f(D_i) = D_{i+1} \text{ s.t.} \]

- rotation number of \(f \) is irrational;

\[\hat{\alpha} := S^1 \cap \bigcap_{n=1}^{\infty} \text{Int}(D^n) \] is a \(f \)-invariant Cantor set satisfying \(\hat{\alpha} = \emptyset \).
Non-trivial example

[Bohl(1916), Denjoy(1932)]

\[\exists f \in \text{Diff}^1(S^1), \exists \{D_i\}_{i \in \mathbb{N}} \subset S^1 \text{ with } f(D_i) = D_{i+1} \text{ s.t.} \]

- rotation number of \(f \) is irrational;
- \(D_i \cap D_j = \emptyset \) for \(\forall i, j \in \mathbb{N} \) with \(i \neq j \);
[Bohl(1916), Denjoy(1932)]

\[\exists f \in \text{Diff}^1(S^1), \exists \{D_i\}_{i \in \mathbb{N}} \subset S^1 \text{ with } f(D_i) = D_{i+1} \text{ s.t.} \]

- rotation number of \(f \) is irrational;
- \(D_i \cap D_j = \emptyset \) for \(\forall i, j \in \mathbb{N} \) with \(i \neq j \);
- \(\Lambda := S^1 \setminus \bigcup_{i \in \mathbb{N}} \text{Int}(D_n) \) is a \(f \)-invariant Cantor set satisfying \(\Lambda = \omega_D \).
Non-trivial example

[Bohl(1916), Denjoy(1932)]

\[\exists f \in \text{Diff}^1(S^1), \exists \{D_i\}_{i \in \mathbb{N}} \subset S^1 \text{ with } f(D_i) = D_{i+1} \text{ s.t.} \]

- rotation number of \(f \) is irrational;
- \(D_i \cap D_j = \emptyset \) for \(\forall i, j \in \mathbb{N} \) with \(i \neq j \);
- \(\Lambda := S^1 \setminus \bigcup_{i \in \mathbb{N}} \text{Int}(D_n) \) is a \(f \)-invariant Cantor set satisfying \(\Lambda = \omega_D \).

Note: \(\forall f \in \text{Diff}^2(S^2) \) has no wandering domain
In 1-dimension

Definition (de Melo & van Strien)

For a circle diffeomorphism f, an open interval in S^1 is a non-trivial wandering domain if

- $D, f(D), f^2(D), \ldots$ are pairwise disjoint;
- the ω-limit set of D is not equal to a single periodic orbit.
In 1-dimension

Definition (de Melo & van Strien)
For a circle diffeomorphism f, an open interval in S^1 is a \textit{non-trivial wandering domain} if

- $D, f(D), f^2(D), \ldots$ are pairwise disjoint;
- the ω-limit set of D is not equal to a single periodic orbit.
Definition (de Melo & van Strien)

For a circle diffeomorphism f, an open interval in S^1 is a **non-trivial wandering domain** if

- $D, f(D), f^2(D), \ldots$ are pairwise disjoint;
- the ω-limit set of D is not equal to a single periodic orbit.
In 2-dimensions

\[B_f(\{p\}) \]

\[B_f(A) := \{ x \in M; f^n(x) \to A \text{ as } n \to \infty \} \]
In 2-dimnsion

\[B_f(p) \]

sink

\[B_f(A) := \{ x \in M; f^n(x) \to A \text{ as } n \to \infty \} \]
In 2-dimensions

\[B_f(\{p\}) \]

sink

\[B_f(\{q\}) \]

(dissipative) saddle-node
Definition

Let M: closed surface and $f \in \text{Diff}^r(M)$. An open set $D \subset M$ is a *non-trivial wandering domain* if

- $f^i(D) \cap f^j(D) \neq \emptyset$ if $i \neq j$;
- the ω-limit set of D is not equal to a single periodic orbit.
In 2-dimension

Definition?

Let M: closed surface and $f \in \text{Diff}^r(M)$. An open set $D \subset M$ is a *non-trivial wandering domain* if

- $f^i(D) \cap f^j(D) \neq \emptyset$ if $i \neq j$;
- the ω-limit set of D is not equal to a single periodic orbit.

![Attracting irrational rotation](image)

$\omega_D = S^1$
In 2-dimension

Definition?

Let \(M \): closed surface and \(f \in \text{Diff}^r(M) \). An open set \(D \subset M \) is a *non-trivial wandering domain* if

- \(f^i(D) \cap f^j(D) \neq \emptyset \) if \(i \neq j \);
- the \(\omega \)-limit set of \(D \) is not equal to a single periodic orbit.

![attracting irrational rotation](attachment:image.png)

\[\omega_D = S^1 \]
In 2-dimension

\[f \in \text{Diff}^r(S^2) \text{ with } \]
- sink \(p_0 \);
- horseshoe \(\Lambda \);
- source \(p_\infty \)
In 2-dimension

$f \in \text{Diff}^r(S^2)$ with

- sink p_0;
- horseshoe Λ;
- source p_∞

$D \subset \text{basin of } p_0 \implies f^i(D) \cap f^j(D) = \emptyset \text{ if } i \neq j$;

$\omega_D = \{p_0\}$;

$\lim_{n \to \infty} \text{diam}(f^n(D)) \to 0$
In 2-dimension

\[D \subset R \setminus f(R) \implies f^i(D) \cap f^j(D) = \emptyset \text{ if } i \neq j; \]
\[\omega_D = \{ p_0 \} \cup \Lambda; \]
\[\lim_{n \to \infty} \text{diam}(f^n(D)) = c > 0 \]

\(f \in \text{Diff}^r(S^2) \) with
- sink \(p_0 \);
- horseshoe \(\Lambda \);
- source \(p_\infty \)
Non-trivial wandering domains in 2-dimension

M: closed surface

Definition
A nonempty connected open set D in M is a *non-trivial wandering domain* for $f \in \text{Diff}^r(M)$ if

- $f^i(D) \cap f^j(D) = \emptyset$ for any $i, j \in \mathbb{Z}$ with $i \neq j$;
- there is a non-trivial basic set Λ such that, for any $x \in D$, the ω-limit set $\omega(x)$ contains Λ.

Definition
A non-trivial wandering domain D is called *contracting* if the diameter of $f^n(D)$ converges to zero as $n \to \infty$.
Non-trivial wandering domains in 2-dimension

\(M \): closed surface

Definition

A nonempty connected open set \(D \) in \(M \) is a *non-trivial wandering domain* for \(f \in \text{Diff}^r(M) \) if

- \(f^i(D) \cap f^j(D) = \emptyset \) for any \(i, j \in \mathbb{Z} \) with \(i \neq j \);
- there is a non-trivial basic set \(\Lambda \) such that, for any \(x \in D \), the \(\omega \)-limit set \(\omega(x) \) contains \(\Lambda \).

Definition

A non-trivial wandering domain \(D \) is called *contracting* if the diameter of \(f^n(D) \) converges to zero as \(n \to \infty \).
Non-trivial wandering domains in 2-dimension

M: closed surface

Definition

A nonempty connected open set D in M is a *non-trivial wandering domain* for $f \in \text{Diff}^r(M)$ if

- $f^i(D) \cap f^j(D) = \emptyset$ for any $i, j \in \mathbb{Z}$ with $i \neq j$;
- there is a non-trivial basic set Λ such that, for any $x \in D$, the ω-limit set $\omega(x)$ contains Λ.

Definition

A non-trivial wandering domain D is called *contracting* if the diameter of $f^n(D)$ converges to zero as $n \to \infty$.
Non-trivial wandering domains in 2-dimension

\(M \) : closed surface

Definition

A nonempty connected open set \(D \) in \(M \) is a *non-trivial wandering domain* for \(f \in \text{Diff}^r(M) \) if

- \(f^i(D) \cap f^j(D) = \emptyset \) for any \(i, j \in \mathbb{Z} \) with \(i \neq j \);
- there is a non-trivial basic set \(\Lambda \) such that, for any \(x \in D \), the \(\omega \)-limit set \(\omega(x) \) contains \(\Lambda \).

Definition

A non-trivial wandering domain \(D \) is called *contracting* if the diameter of \(f^n(D) \) converges to zero as \(n \to \infty \).
Non-trivial wandering domains in 2-dimension

M: closed surface

Definition

A nonempty connected open set D in M is a *non-trivial wandering domain* for $f \in \text{Diff}^r(M)$ if

- $f^i(D) \cap f^j(D) = \emptyset$ for any $i, j \in \mathbb{Z}$ with $i \neq j$;
- there is a non-trivial basic set Λ such that, for any $x \in D$, the ω-limit set $\omega(x)$ contains Λ.

Definition

A non-trivial wandering domain D is called *contracting* if the diameter of $f^n(D)$ converges to zero as $n \to \infty$.
Smale horseshoe map

$f \in \text{Diff}^r(S^2)$ with

- sink p_0;
- horseshoe Λ;
- source p_∞

There are trivial wandering domains but no non-trivial ones.
Question

Does there exist a diffeomorphism having non-trivial wandering domains?
Question

Does there exist a diffeomorphism having non-trivial wandering domains?
Colli-Vargas’ example
Colli-Vargas’ example
Colli-Vargas’ example

\[\tau^S \tau^U > 1 \]
Colli-Vargas’ example

\[D_0 \subset G_{i_0} \]
Colli-Vargas’ example

\[\exists k_0 \in \mathbb{N} \text{ s.t. } f^{k_0}(D_0) \cap B_{i_0} \neq \emptyset \]
Colli-Vargas’ example

center of $f_{\delta_1}^{k_1}(D_0) = \text{center of } \mathcal{B}_{i_0}$
Colli-Vargas’ example

\[D_1 \subset G_{i_1}, \quad D_1 \cap f_{\delta_0}^{k_0}(D_0) \neq \emptyset \]
Colli-Vargas’ example

\[f_{\delta_1}^{k_1}(D_1) \cap B_{i_1} \neq \emptyset \]
Colli-Vargas’ example

\[D_0 \xrightarrow{f_{\delta_0}^{k_0}} D_1 \xrightarrow{f_{\delta_1}^{k_1}} D_2 \]
Colli-Vargases' example

\[D_0 \xrightarrow{f_{\delta_0}^k} D_1 \xrightarrow{f_{\delta_1}^k} D_2 \xrightarrow{f_{\delta_2}^k} D_3 \xrightarrow{\ldots} \]
There exists a 2-dimensional C^r, $r \geq 2$, diffeomorphism having a **contracting non-trivial wandering domain** whose ω-limit set is contained in the **horseshoe Λ** with its **homoclinic tangencies**.

[Colli-Varg'as '01]
Colli-Vargas’ example

There exists a 2-dimensional C^r, $r \geq 2$, diffeomorphism having a contracting non-trivial wandering domain whose ω-limit set is contained in the horseshoe Λ with its homoclinic tangencies.

[Colli-Vargas ’01]
Main results

M: closed surface $f \in \text{Diff}^r(M)$, $r \geq 2$, with
- saddle fixed point p;
- homoclinic tangency for p

\exists open set $\mathcal{N}_f \subset \text{Diff}^r(M)$
s.t. $f \in \text{Cl}(\mathcal{N}_f)$ and \mathcal{N}_f has persistent tangencies.

$\mathcal{N} \overset{\text{def}}{=} \bigcup_f \mathcal{N}_f$: Newhouse open set
Main results

M: closed surface
$f \in \text{Diff}^r(M)$, $r \geq 2$, with
- saddle fixed point p;
- homoclinic tangency for p

\exists open set $\mathcal{N}_f \subset \text{Diff}^r(M)$

s.t. $f \in \text{Cl}(\mathcal{N}_f)$ and \mathcal{N}_f has persistent tangencies.

$\mathcal{N} \overset{\text{def}}{=} \bigcup_f \mathcal{N}_f$: Newhouse open set
Main results

\(M \): closed surface
\(f \in \text{Diff}^r(M), \ r \geq 2, \) with
- saddle fixed point \(p \);
- homoclinic tangency for \(p \);

\(\exists \) open set \(\mathcal{N}_f \subseteq \text{Diff}^r(M) \)
s.t. \(f \in \text{Cl}(\mathcal{N}_f) \) and \(\mathcal{N}_f \) has persistent tangencies.

\(\mathcal{N} \overset{\text{def}}{=} \bigcup_f \mathcal{N}_f \): Newhouse open set
Main results

M: closed surface

$f \in \text{Diff}^r(M), \ r \geq 2$, with

- saddle fixed point p;
- homoclinic tangency for p

\exists open set $\mathcal{N}_f \subset \text{Diff}^r(M)$

s.t. $f \in \text{Cl}(\mathcal{N}_f)$ and \mathcal{N}_f has persistent tangencies.

$\mathcal{N} \overset{\text{def}}{=} \bigcup_f \mathcal{N}_f$: Newhouse open set
Main results

$\mathcal{N} \overset{\text{def}}{=} \bigcup_{f} \mathcal{N}_f$: Newhouse open set

M: closed surface

$f \in \text{Diff}^r(M)$, $r \geq 2$, with

- saddle fixed point p;
- homoclinic tangency for p.

\exists open set $\mathcal{N}_f \subset \text{Diff}^r(M)$ s.t. $f \in \text{Cl}(\mathcal{N}_f)$ and \mathcal{N}_f has persistent tangencies.

Theorem A (Colli-Vargas’ conjecture ’01)

The Newhouse open set \mathcal{N} is contained in the closure of a subset of $\text{Diff}^r(M)$, $2 \leq r < \infty$, whose any diffeomorphism has a contracting non-trivial wandering domains.
Main results

M: closed surface

$f \in \text{Diff}^r(M), \ r \geq 2$, with

- saddle fixed point p;
- homoclinic tangency for p

\exists open set $\mathcal{N}_f \subset \text{Diff}^r(M)$ s.t. $f \in \text{Cl}(\mathcal{N}_f)$ and \mathcal{N}_f has persistent tangencies.

$$\mathcal{N} \overset{\text{def}}{=} \bigcup_f \mathcal{N}_f: \text{Newhouse open set}$$

Theorem A (Colli-Vargas’ conjecture ’01)

The Newhouse open set \mathcal{N} is contained in the closure of a subset of $\text{Diff}^r(M), \ 2 \leq r < \infty$, whose any diffeomorphism has a contracting non-trivial wandering domains.
Main results

\(M \): closed surface \\
\(f \in \text{Diff}^r(M), \ r \geq 2, \) with \\
- saddle fixed point \(p \); \\
- homoclinic tangency for \(p \) \\
\(\exists \) open set \(\mathcal{N}_f \subset \text{Diff}^r(M) \) s.t. \(f \in \text{Cl}(\mathcal{N}_f) \) and \(\mathcal{N}_f \) has persistent tangencies.

\[\mathcal{N} \overset{\text{def}}{=} \bigcup_f \mathcal{N}_f: \text{Newhouse open set} \]

Theorem A (Colli-Vargas’ conjecture ’01)

The Newhouse open set \(\mathcal{N} \) is contained in the closure of a subset of \(\text{Diff}^r(M), \ 2 \leq r < \infty, \) whose any diffeomorphism has a contracting non-trivial wandering domains.
Takens’ Last Problem

\(X\): compact state space
\(\varphi : X \rightarrow X\): continuous map

Definition

An orbit \(\{x, \varphi(x), \varphi^2(x), \ldots\}\) has **historic behavior** if the measure

\[
\mu_{x,n} := \frac{1}{n+1} \sum_{i=0}^{n} \delta_{\varphi^i(x)},
\]

where \(\delta_{\varphi^i(x)}\) is the Dirac measure on \(X\) supported at \(\varphi^i(x)\) does not converge in the weak topology as \(n \rightarrow \infty\).
X: compact state space
$\varphi: X \rightarrow X$: continuous map

Definition

An orbit $\{x, \varphi(x), \varphi^2(x), \ldots \}$ has *historic behavior* if the measure

$$\mu_{x,n} := \frac{1}{n + 1} \sum_{i=0}^{n} \delta_{\varphi^i(x)},$$

where $\delta_{\varphi^i(x)}$ is the Dirac measure on X supported at $\varphi^i(x)$ does *not* converge in the weak topology as $n \rightarrow \infty$.
X: compact state space
$\varphi : X \to X$: continuous map

Definition

An orbit $\{x, \varphi(x), \varphi^2(x), \ldots \}$ has *historic behavior* if the measure

$$\mu_{x,n} := \frac{1}{n + 1} \sum_{i=0}^{n} \delta_{\varphi^i(x)},$$

where $\delta_{\varphi^i(x)}$ is the Dirac measure on X supported at $\varphi^i(x)$ does not converge in the weak topology as $n \to \infty$.
Takens’ Last Problem

\(X \): compact state space
\(\varphi: X \to X \): continuous map

Definition

An orbit \(\{x, \varphi(x), \varphi^2(x), \ldots \} \) has *historic behavior* if the measure

\[
\mu_{x,n} := \frac{1}{n+1} \sum_{i=0}^{n} \delta_{\varphi^i(x)},
\]

where \(\delta_{\varphi^i(x)} \) is the Dirac measure on \(X \) supported at \(\varphi^i(x) \) does *not* converge in the weak topology as \(n \to \infty \).
Takens’ last problem [Takens 2008]

Whether are there *persistent classes* of smooth dynamical systems such that the set of initial states which give rise to orbits with *historic behavior* has *positive Lebesgue measure*?

Theorem B (Answer to Takesn’s last problem)

The Newhouse open set \(\mathcal{N} \subset \text{Diff}^r(M) \) has a dense subset where any diffeomorphism \(f \) has a contracting non-trivial wandering domain \(D \) such that, for any \(x \in D \), the forward orbit of \(x \) under \(f \) has *historic behavior*.
Takens’ last problem [Takens 2008]

Whether are there persistent classes of smooth dynamical systems such that the set of initial states which give rise to orbits with historic behavior has positive Lebesgue measure?

Theorem B (Answer to Takens’ last problem)

The Newhouse open set $\mathcal{N} \subset \text{Diff}^r(M)$ has a dense subset where any diffeomorphism f has a contracting non-trivial wandering domain D such that, for any $x \in D$, the forward orbit of x under f has historic behavior.
Takens’ last problem [Takens 2008]

Whether are there *persistent classes* of smooth dynamical systems such that the set of initial states which give rise to orbits with *historic behavior* has *positive Lebesgue measure*?

Theorem B (Answer to Takens’ last problem)

The Newhouse open set $\mathcal{N} \subset \text{Diff}^r(M)$ has a dense subset where any diffeomorphism f has a contracting non-trivial wandering domain D such that, for any $x \in D$, the forward orbit of x under f has *historic behavior*.
Takens’ last problem [Takens 2008]

Whether are there persistent classes of smooth dynamical systems such that the set of initial states which give rise to orbits with historic behavior has positive Lebesgue measure?

Theorem B (Answer to Takens’ last problem)

The Newhouse open set $\mathcal{N} \subset \text{Diff}^r(M)$ has a dense subset where any diffeomorphism f has a contracting non-trivial wandering domain D such that, for any $x \in D$, the forward orbit of x under f has historic behavior.
Taknes’ last problem [Taknes 2008]

Whether are there persistent classes of smooth dynamical systems such that the set of initial states which give rise to orbits with historic behavior has positive Lebesgue measure?

Theorem B (Answer to Takens’ last problem)

The Newhouse open set \(\mathcal{N} \subseteq \text{Diff}^r(M) \) has a dense subset where any diffeomorphism \(f \) has a contracting non-trivial wandering domain \(D \) such that, for any \(x \in D \), the forward orbit of \(x \) under \(f \) has historic behavior.
Hénon family $f_{a,b} : \mathbb{R}^2 \rightarrow \mathbb{R}^2$

$f_{a,b}(x, y) = (1 - ax^2 + y, bx)$

where a, b: real parameters
A flowchart showing the behavior of the Hénon family of maps. The text states:

Hénon family $f_{a,b} : \mathbb{R}^2 \to \mathbb{R}^2$

$f_{a,b}(x, y) = (1 - ax^2 + y, bx)$

where a, b: real parameters
An application to Hénon maps

Hénon family $f_{a,b} : \mathbb{R}^2 \to \mathbb{R}^2$

\[f_{a,b}(x, y) = (1 - ax^2 + y, bx) \]

where a, b: real parameters

Open problem [van Strien ’10], [Lyubich-Martens ’11]

Does the Hénon family have a non-trivial wandering domain?

Corollary C

There is an open set \mathcal{O} of the parameter space of Hénon family with $\text{Cl}(\mathcal{O}) \ni (2, 0)$ such that for every $(a, b) \in \mathcal{O}$, $f_{a,b}$ is approximated by C^r diffeomorphisms, $2 \leq r < \infty$, which have historic & non-trivial wandering domains.
An application to Hénon maps

Hénon family \(f_{a,b} : \mathbb{R}^2 \rightarrow \mathbb{R}^2 \)

\[f_{a,b}(x, y) = (1 - ax^2 + y, bx) \]

where \(a, b \): real parameters

Open problem [van Strien ’10], [Lyubich-Martens ’11]

Does the Hénon family have a non-trivial wandering domain?

Corollary C

There is an open set \(\mathcal{O} \) of the parameter space of Hénon family with \(\text{Cl}(\mathcal{O}) \ni (2, 0) \) such that for every \((a, b) \in \mathcal{O}, f_{a,b} \) is approximated by \(C^r \) diffeomorphisms, \(2 \leq r < \infty \), which have historic & non-trivial wandering domains.
An application to Hénon maps

Hénon family $f_{a,b} : \mathbb{R}^2 \to \mathbb{R}^2$

$$f_{a,b}(x, y) = (1 - ax^2 + y, bx)$$

where a, b: real parameters

Open problem [van Strien ’10], [Lyubich-Martens ’11]

Does the Hénon family have a non-trivial wandering domain?

Corollary C

There is an open set \mathcal{O} of the parameter space of Hénon family with $\text{Cl}(\mathcal{O}) \ni (2, 0)$ such that for every $(a, b) \in \mathcal{O}$, $f_{a,b}$ is approximated by C^r diffeomorphisms, $2 \leq r < \infty$, which have historic & non-trivial wandering domains.
Thank you for your kind attention!

The paper can be downloaded from:

arXiv:1503.06258

or

ResearchGate