Error term of the prime periodic orbit theorem for expanding semiflows

Masato Tsujii

Kyushu University

at School and Conference on Dynamical Systems ICTP, Trieste, August, 2015

Counting periodic orbits for hyperbolic flows (1)

Theorem (Prime Periodic Orbit Theorem, Margulis, Parry-Pollicott)

For a topologically mixing Anosov flow $F^t: \mathbf{N} \to \mathbf{N}$,

$$\pi(T) := \#\{\gamma \in \text{P.P.O} \mid |\gamma| \leq T\} = (1 + o(1)) \cdot \int_1^T \frac{e^{ht}}{t} dt$$

as $T o \infty$. (h: topological entropy)

More recently, it is obtained that

Theorem (Pollicott-Sharp, Stoyanov)

For a contact Anosov flow $F^t: N \to N$ (especially, for the geodesic flow on a negatively curved manifold), the (relative) error term o(1) above is actually exponentially small as $T \to \infty$, that is, $\mathcal{O}(e^{-\varepsilon T})$ for some $\varepsilon > 0$.

Counting periodic orbits for hyperbolic flows (2)

For the geodesic flows on closed hyperbolic surfaces \mathbf{S} , the following precise asymptotic formula admitting a few "resonance terms" is known (by using Selberg trace formula).

Theorem (Huber, 1961)

For the geodesic flow $F^t: T_1S \to T_1S$, we have

$$(\star) \qquad \pi(T) = \int_1^T \frac{e^{ht}}{t} dt + \sum_{j=1}^k \int_1^T \frac{e^{\chi_j t}}{t} dt + \mathcal{O}(e^{\rho T})$$

as $T \to \infty$, where $\rho = (3/4)h$, $\rho < \chi_j < h$, $1 \le j \le k$, are real constants. (Actually h = 1 and $\chi_j = \frac{1}{2} + \sqrt{\frac{1}{4} - \lambda_j}$, $\lambda_j \in \text{e.v. of } \Delta_M$.)

Question: How general does this kind of asymptotic formula holds true?

"Theorem"([T]) For a contact Anosov flow $F^t: \mathbb{N}^3 \to \mathbb{N}^3$ in 3-dim, we have the formula (\star) with error term

$$\mathcal{O}\left(\exp\left(\left(\frac{h+(\lambda_{\max}/2)}{2}\right)\right)\right)$$

where

$$\lambda_{\mathsf{max}} := \lim_{t o \infty} rac{1}{t} \log \max |\det(\mathit{DF}^t|_{E_u})| \geq h$$

and χ_{j} (now) are complex numbers s.t. $ho < {
m Re} \chi_{j} < h$.

- This is very good when $\lambda_{\max} \sim h \ (\Rightarrow \rho \approx (3/4)h)$.
- But vacuous when $\lambda_{\max} \geq 2h \ (\Rightarrow \rho \geq h)$.

Question: Why does this happen? How we can modify the arguement?

Simplified model

As a simplified model of Anosov flows, we henceforth consider suspension flow of expanding map on ${\bf S}^1$:

Let $\tau:S^1 \to S^1$ be the map $x \mapsto \ell x$ with $\ell \geq 2$. Let $T^t:X_f \to X_f$ be the suspension semi-flow of τ with C^∞ ceiling function $f:S^1 \to \mathbb{R}$.

$$X_f = \{(x,s) \in S^1 \times \mathbb{R} \mid 0 \le s < f(x)\}$$

This is an expanding semiflow

Transfer operator

We consider the one parameter (semi)group of transfer operators

$$\mathcal{L}^t: C^{\infty}(X_f) \to C^{\infty}(X_f), \qquad \mathcal{L}^t u(z) = \sum_{T^t(w)=z} u(w).$$

Its Atiyah-Bott trace is

$$\operatorname{Tr}^{\flat} \mathcal{L}^{t} = \sum_{n \geq 1} \sum_{\gamma \in \mathrm{P.P.O.}} \frac{|\gamma|}{1 - D_{\gamma}^{-n}} \cdot \delta(t - n|\gamma|)$$

where ${\it D}_{\gamma}>1$ is the expansion rate along a prime periodic orbit $\gamma.$ Then we obtain

$$\int_1^T rac{1}{t} \mathrm{Tr}^{lat} \mathcal{L}^t dt = \pi(T) + \mathcal{O}(e^{(h/2)T}).$$

Transfer operator

We consider the one parameter (semi)group of transfer operators

$$\mathcal{L}^t: C^{\infty}(X_f) \to C^{\infty}(X_f), \qquad \mathcal{L}^t u(z) = \sum_{T^t(w)=z} u(w).$$

Its Atiyah-Bott trace is

$$\mathrm{Tr}^{\flat}\mathcal{L}^{t} = \sum_{n\geq 1} \sum_{\gamma\in\mathrm{P.P.O.}} rac{|\gamma|}{1-D_{\gamma}^{-n}} \cdot \delta(t-n|\gamma|)$$

where $extbf{ extit{D}}_{\gamma} > 1$ is the expansion rate along a prime periodic orbit γ . Then we obtain

$$\int_1^T \frac{1}{t} \mathrm{Tr}^{\flat} \mathcal{L}^t dt = \pi(T) + \mathcal{O}(e^{(h/2)T}).$$

Essential spectral radius

If a bounded operator $L:B \to B$ on a B-space B is written

$$\textbf{\textit{L}} = \textbf{\textit{L}}_0 + \textbf{\textit{K}}, \quad \textbf{\textit{K}} : \text{compact}, \ \|\textbf{\textit{L}}_0\| < \lambda,$$

the spectral set of L in $\{|z|>\lambda\}$ consists of discrete eigenvalues. The infimum of such $\lambda>0$ is called the essential spectral radius.

Question: How small can we make the essential spectral radius of $\mathcal{L}^t: B \to E$ by choosing appropriate function spaces B?

Remark:
$$\rho_{ess}(\mathcal{L}^t) < \exp(\rho t)$$

 \Rightarrow error term in $(\star) \leq \exp((\rho + h)t/2)$
(by a technical reason).

Essential spectral radius

If a bounded operator $L:B \to B$ on a B-space B is written

$$\textbf{\textit{L}} = \textbf{\textit{L}}_0 + \textbf{\textit{K}}, \quad \textbf{\textit{K}} : \text{compact}, \ \|\textbf{\textit{L}}_0\| < \lambda,$$

the spectral set of L in $\{|z|>\lambda\}$ consists of discrete eigenvalues. The infimum of such $\lambda>0$ is called the essential spectral radius.

Question: How small can we make the essential spectral radius of $\mathcal{L}^t: B \to B$ by choosing appropriate function spaces B?

Remark:
$$\rho_{ess}(\mathcal{L}^t) < \exp(\rho t)$$

 \Rightarrow error term in $(\star) \leq \exp((\rho + h)t/2)$
(by a technical reason).

Essential spectral radius

If a bounded operator $L: B \rightarrow B$ on a B-space B is written

$$\textbf{\textit{L}} = \textbf{\textit{L}}_0 + \textbf{\textit{K}}, \quad \textbf{\textit{K}} : \text{compact}, \ \|\textbf{\textit{L}}_0\| < \lambda,$$

the spectral set of L in $\{|z|>\lambda\}$ consists of discrete eigenvalues. The infimum of such $\lambda>0$ is called the essential spectral radius.

Question: How small can we make the essential spectral radius of $\mathcal{L}^t: B \to B$ by choosing appropriate function spaces B?

Remark:
$$\rho_{\rm ess}(\mathcal{L}^t) < \exp(\rho t)$$

 \Rightarrow error term in $(\star) \leq \exp((\rho + h)t/2)$
(by a technical reason).

Decomposition w.r.t. frequency in the flow direction

The semiflow F^t is locally just a translation along the flow line. If we decompose functions X_f with respect to frequency ω in the flow direction, the decomposition is preserved, so that

$$\mathcal{L}^t = \bigoplus_{\omega} \mathcal{L}^t_{\omega} \qquad (\text{almost})$$

We estimate the operator norm of \mathcal{L}_{ω}^{t} in the limit $|\omega| \to \infty$.

The essence of the problem

Consider superposition of some plane waves $\varphi_k(z) = A_k \exp(i\xi_k \cdot z)$ with $|\xi_k| \sim \omega \gg 1$, $|A_k| = a$

- L^{∞} estimate gives the trivial bound $\|\mathcal{L}_{\omega}^{t}\|_{L^{\infty}} \lesssim \exp(ht)$.
- L^2 estimate + "transversality condition" give the bound $\|\mathcal{L}_{\omega}^t\|_{L^2} \lesssim \exp((\chi_{\max}/2)t)$ This corresponds to the estimate in "Theorem".

The essence of the problem (again)

The problem in the L^2 estimate is that we do not how the result of superposition can concentrate on a small fractal like subset on which the expansion of F^t is relatively large.

Idea: Let us consider the L^{2p} norm!

Main result

Theorem (Spectrum of \mathcal{L}^t)

There is a Banach space $C^{\infty}(X_f) \subset \mathcal{B}^{2p}(X_f) \subset L^{2p}(X_f)$ for $p \in \mathbb{N}$ such that $\mathcal{L}^t : \mathcal{B}^{2p}(X_f) \to \mathcal{B}^{2p}(X_f)$ for sufficiently large t is bounded and the spectral radius of \mathcal{L}^t is e^{ht} .

For any $\varepsilon > 0$, there exists an open and dense subset $\mathcal{U}_p(\varepsilon) \subset C_+^{\infty}(S^1)$ such that, if $f \in \mathcal{U}_{2p}(\varepsilon)$, the essential spectral radius of \mathcal{L}^t for large t is bounded by $\exp((\rho_{2p}(f) + \varepsilon)t)$ where

$$\rho_{2p}(f) := \frac{1}{2} \left(1 + \frac{\max\{p, \chi_{\max}(f)/h(f)\} - 1}{p} \right) \cdot h(f)$$

Theorem (restatement of the last part)

..., the essential spectral radius of \mathcal{L}^t for large t is bounded by $\exp((\rho_{2p}(f) + \varepsilon)t)$ where

$$\rho_{2p}(f) := \frac{1}{2} \left(1 + \frac{\max\{p, \chi_{\max}(f)/h(f)\} - 1}{p} \right) \cdot h(f)$$

For the case p=1, since $\chi_{\max}(f)/h(f) \geq 1$, we have

$$\rho_2(f) = \chi_{\max}(f)/2.$$

If we set $p_0 = \lceil \chi_{\max}(f)/h(f) \rceil$, we have

$$\min_{\boldsymbol{p} \geq 1} \rho_{2\boldsymbol{p}(f)} \leq \rho_{2\boldsymbol{p}_0}(f) \leq \left(1 - \frac{1}{2\boldsymbol{p}_0}\right) \cdot h(f)$$

This is always smaller than h(f)!

A consequence of the main theorem

Theorem (An asymptotic formula for $\pi(T)$)

For the expanding semi-flow $F^t: X_f \to X_f$ for C^∞ generic ceiling function f, we have, for any $\varepsilon > 0$, that

$$\pi(T) = \int_1^T \frac{e^{ht}}{t} dt + \sum_{j=1}^K \int_1^T \frac{e^{\chi_j t}}{t} dt + \mathcal{O}(e^{(\bar{\rho} + \varepsilon)T})$$

as $T \to \infty$, where

$$\bar{\rho} = \frac{h(f) + \min_{p \geq 1} \rho_p(f)}{2} \leq \left(1 - \frac{1}{4\lceil \chi_{\max}(f)/h(f) \rceil}\right) \cdot h(f).$$

and $\chi_j \in \mathbb{C}$, $1 \leq j \leq k$.

Idea of the proof

Theorem

For any $\varepsilon > 0$, there exists an open and dense subset $\mathcal{U}_p(\varepsilon) \subset C_+^{\infty}(S^1)$ such that, if $f \in \mathcal{U}_{2p}(\varepsilon)$, the essential spectral radius of \mathcal{L}^t for large t is bounded by $\exp((\rho_{2p}(f) + \varepsilon)t)$ where

$$\rho_{2p}(f) := \frac{1}{2} \left(1 + \frac{\max\{p, \chi_{\mathsf{max}}(f)/h(f)\} - 1}{p} \right) \cdot h(f)$$

Idea of the proof:

$$\exp((\chi_{\max} + \max\{0, hp - \chi_{\max}\} + (p-1)h)/2p).$$

Question: How about non-integer **p**?

Thank you for your attention!