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Classical Lagrange Spectrum

-Continued fraction expansion: α = [a1, a2, . . . ] :=
1

a1 +
1

a2 + . . .
-Define L : R \ Q → R+ by L(α) := lim sup , →∞

1
·| α− |

-Def/Prop α is badly approximable iff L(α) < +∞ iff ∃L > 0 such

that ∀� > 0 and all but finitely many p, q:

����α −
p

q

���� >
1

L + �
·

1

q2 .

In particular L(α) is the biggest L satisfying the condition.

-The set of such α is a totally disconnected, thick subset of R with

measure zero.

-The classical Lagrange Spectrum is the set L ⊂ R+ defined by

L := {L(α); α badly approximable}



Translation Surfaces
-Vectors ζ1, . . . , ζ in R2

defining a polygon P ⊂ R2
with 2d sides,

corresponding to two rearrangements of the ζ ’s.

-Translation surface: X = P/∂P, where any two sides in ∂P are

identified iff they correspond to the same ζ .

-Genus g flat surface, with conical points p1, . . . , p , the conical

angle at any p being 2(K + 1)π for any i = 1, . . . , r . Constraint:

2g − 2 = k1 + · · · + k . Normalization Area(X ) = 1.

-Saddle connection: geodesic segment γ in X connecting two

conical points with no other p in its interior. Let Hol(γ) be its

planar development. Point set Hol(X ) whose elements are Hol(γ)

for γ saddle connection.

-Moduli space: the orbifold H(k1, . . . , k ) of all X whose conical

points have prescribed angle. Local coordinates are the vectors

ζ1, . . . , ζ .

-Mahler criterion: K ⊂ H(k1, . . . , k ) has compact closure iff

∃c > 0 such that for any X ∈ K we have

Sys(X ) := min{|v |, v ∈ Hol(X )} > c



Examples of translation surfaces
-Standard torus X1 := R2/Z2

. Hol(X1) = {(p, q); gcd(p, q) = 1}.

-Generic flat torus X2 := R2/G · Z2
, where G ∈ SL(2, Z).

Hol(X2) = G · Hol(X1).

-Square tiled surface. Set ζ = (1, 0), ζ = (0, −2), ζ = (4, 0)

and ζ = (0, −1). Let E3 = P/∂P, where sides in P appear in the

two orderings (A, B, C , D) and (B, D, A, C).

E3 :=

There exists a covering π : E3 → X1 compatible with the two flat

structures.

-Generic surface in H(2): X4 = P
�/∂P

�
, where the identifications

in P
�

are as in P and the sides ζ �
of P

�
are generic perturbations of

the sides ζ of P.



Action of SL(2, R)
-For X ∈ H(k1, . . . , k ) take polygon P ⊂ R2

with X = P/∂P.

-For G ∈ SL(2, R) define G · X := GP/∂GP. It does not depend

on P but just on X and G . Set

g :=

�
e 0

0 e
−

�

; rθ :=

�
cos θ − sin θ
sin θ cos θ

�

-Stabilizer. For any X set Stab(X ) := {G ∈ SL(2, R); G · X = X}.

� We have Stab(X1) = Stab(X2) = SL(2, Z).

� Stab(E3) is a finite index subgroup of SL(2, Z).

� Stab(X4) for generic X4 ∈ H(2).

-Nice submanifolds (Eskin-Mirzakhani and Es.-Mir.-Mohammadi).

Any SL(2, R)-orbit closure M is an affine submanifold of the

moduli space carrying a nice SL(2, R)-ergodic and g -ergodic

probability measure.



Geometric interpretation and generalization
Consider X2 = R2/(ζ Z ⊕ ζ Z) and set α :=

|Re(ζ )|
|Re(ζ +ζ )| .

L(α)( )
= lim sup

|Im( )|→∞

1

|Re(v)| · |Im(v)|
where v ∈ Hol(X2)

( )
= lim sup

→+∞

2

Sys
2
(g · X2)

( )
= lim sup

→+∞
[a −1, a −2, . . . a1] + a + [a +1, a +2, . . . ]

-Equality (B) holds for any translation surface X . Generalize the

classical function α �→ L(α) by

L(X ) := lim sup

|Im( )|→∞

1

|Re(v)| · |Im(v)|
= lim sup

→+∞

2

Sys
2
(g · X )

.

-The Lagrange Spectrum of a nice manifold M is the set

L(M) := {L(X ); X ∈ M} ⊂ R+.



-Equality (A) can be generalized in terms of interval exchange

transformations.

-Formula (C) generalizes to different formulas with renormalization

1. Hubert-M.-Ulcigrai: L(M) is closed for any M, moreover

closed Teichmuller geodesics in M provide a dense subset of

values. Tool: Rauzy-Veech induction.

2. Artigiani-M.-Ulcigrai: If ∃X ∈ M such that Stab(X ) is a

lattice in SL(2, R) then L(M) has Hall’s ray. Tool: Stab(X )

acting by homographies.



Today’s statement

-Consider the finite words a := 1, 4, 2, 4 and b := 1, 3. Let

σ̃ : Ξ → Ξ be the shift on Ξ := {a, b}Z
.

-Consider the subset Ξ0 ⊂ Ξ of those ξ̄ = (ξ ) ∈Z such that

ξ0 = a

ξ for infinitely manyn ∈ Z+

then let σ : Ξ → Ξ be the first return of σ̃ to Ξ0.

-Define a function L
σ

: Ξ → R+ by

L
σ
(ξ̄) := lim sup

→+∞
[σ (ξ̄)](−) + [σ (ξ̄)](+) where

[ξ̄](−) := [1, 4, ξ−1, ξ−2, . . . ] and

[ξ̄](+) := [1, 4, ξ1, ξ2, . . . ].



φ1 := 7 + 14 · [3, 1] = 10, 696277 . . .

φ2 := 14 · [1, 4, 1, 3] = 11, 582576 . . .

φ∞ := 14 · [1, 4, 1, 4, 2, 4] = 11, 593101 . . .

An open interval (x , y) is a gap in a Lagrange spectrum L(M) if

(x , y) ∩ L(M) = ∅ and x , y ∈ L(M).

Theorem[Lelièvre-Hubert-M.-Ulcigrai] Consider the closed orbit

M := SL(2, R) · E3.

-φ1 is the minimum of L(M), moreover (φ1, φ2) is a gap in L(M).

-[φ2, φ∞] ∩ L(M) is the set K of values of L
σ

: Ξ0 → R+.

Corollary Above its isolated minimum, the Lagrange spectrum

L(M) has a rich structure.

Question: is K a Cantor set? Do we have a constant c > 0 such

that for any φ > φ2 we have HD ((φ2, φ)) > c?



Elements of the proof
-Parametrize L(M) by α �→ L(E3, α) := L(rarctan α)

-Any rational slope p/q induce a cylinder decomposition of E3. Set

m(p/q, X ) := min Deg(t �→ π ◦ γ(t))

(minimum taken over all saddle connection t �→ γ(t) in direction

p/q on the square tiled surface X ).

L(E3, α) = 7 · lim sup
, →+∞

1

q · |qα − p|
·

1

m2(p/q)

(∗)
= 7 · lim sup

→∞
max

1≤ ≤

D(n, i , α)

m2�
∞; R · g(a1, . . . , a −1, i) · E3

� .

In (∗) for any n and any i with 1 ≤ i ≤ a we set

g(a1, . . . , a −1, i) := (T R)(T
− −1R) . . . (T

− 2R)(T 1R)

D(n, i , α) := [a , . . . , a1] + a +1 + [a +2, a +3, . . . ] if i = a

D(n, i , α) := [i , . . . , a1] + [a − i , a +1, . . . ] if 1 ≤ i < a .



The generators T :=

�
1 1

0 1

�

and S :=

�
0 −1

1 0

�

of SL(2, Z) are

the arcs of a graph, whose vertices are the element of the

SL(2, Z)-orbit of E3. For example we have T · A0 = A1 and

S · A1 = D2, where

A0

A1

D2

The global picture is. . .
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We follow methods from T. W. Cusick, M. E. Flahive: The

Markoff and Lagrange Spectra. Mathematics Surveys and

Monographs, 30, 1989.

Assume

L(E3, α) < 7 ·
[1, 1, 6] + 6 + [6, 1]

4
= 11, 688957 . . .

Then definitely a ≤ 5 and g(a1, . . . , a ) · E3 belongs to the

subgraph
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If

L(E3, α) < 7 ·
[1, 4, 2, 1, 5] + 5 + [1, 5, 1, 1, 5]

4
= 11, 655309 . . .

then the renormalization only uses the Gauss steps

C5

C6

E3

−4

+1

−3

−4
+2

where for example E3 3−
−→ C6 encodes the operation

C6 = T
−3

S · E3.

-Compare all these steps and see that the maximum is always

taken by the Farey step at the middle of C5 2+
−→ C5.



Thank you!


