The Lagrange Spectrum of some square-tiled surface

(joint with P. Hubert, S. Lelièvre, C. Ulcigrai)

Luca Marchese

LAGA, Université Paris 13

ICTP, Trieste, 7 August 2015

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Classical Lagrange Spectrum

-Continued fraction expansion: $\alpha = [a_1, a_2, ...] := \frac{1}{a_1 + \frac{1}{a_2 + ...}}$ -Define $L : \mathbf{R} \setminus \mathbf{Q} \to \mathbf{R}_+$ by $L(\alpha) := \limsup_{n \to \infty} \frac{1}{||\alpha - ||}$ -**Def/Prop** α is *badly approximable* iff $L(\alpha) < +\infty$ iff $\exists L > 0$ such that $\forall \epsilon > 0$ and all but finitely many p, q:

$$\left|\alpha - \frac{p}{q}\right| > \frac{1}{L + \epsilon} \cdot \frac{1}{q^2}$$

In particular $L(\alpha)$ is the biggest L satisfying the condition.

-The set of such α is a totally disconnected, thick subset of ${\bf R}$ with measure zero.

-The classical Lagrange Spectrum is the set $\mathcal{L} \subset \textbf{R}_+$ defined by

 $\mathcal{L} := \{ \mathcal{L}(\alpha); \alpha \text{ badly approximable} \}$

Translation Surfaces

-Vectors ζ_1, \ldots, ζ in \mathbb{R}^2 defining a polygon $P \subset \mathbb{R}^2$ with 2d sides, corresponding to two rearrangements of the ζ 's.

-*Translation surface*: $X = P/\partial P$, where any two sides in ∂P are identified iff they correspond to the same ζ .

-Genus g flat surface, with conical points p_1, \ldots, p , the conical angle at any p being $2(K + 1)\pi$ for any $i = 1, \ldots, r$. Constraint: $2g - 2 = k_1 + \cdots + k$. Normalization Area(X) = 1.

-Saddle connection: geodesic segment γ in X connecting two conical points with no other p in its interior. Let $Hol(\gamma)$ be its planar development. Point set Hol(X) whose elements are $Hol(\gamma)$ for γ saddle connection.

-*Moduli space:* the orbifold $\mathcal{H}(k_1, \ldots, k)$ of all X whose conical points have prescribed angle. Local coordinates are the vectors $\zeta_1, \ldots, \zeta_{-}$.

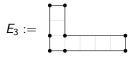
-Mahler criterion: $\mathcal{K} \subset \mathcal{H}(k_1, \dots, k)$ has compact closure iff $\exists c > 0$ such that for any $X \in \mathcal{K}$ we have

$$\operatorname{Sys}(X) := \min\{|v|, v \in \operatorname{Hol}(X)\} > c$$

Examples of translation surfaces

-Standard torus $X_1 := \mathbf{R}^2/\mathbf{Z}^2$. Hol $(X_1) = \{(p, q); \operatorname{gcd}(p, q) = 1\}$. -Generic flat torus $X_2 := \mathbf{R}^2/G \cdot \mathbf{Z}^2$, where $G \in \operatorname{SL}(2, \mathbf{Z})$. Hol $(X_2) = G \cdot \operatorname{Hol}(X_1)$.

-Square tiled surface. Set $\zeta = (1,0)$, $\zeta = (0,-2)$, $\zeta = (4,0)$ and $\zeta = (0,-1)$. Let $E_3 = P/\partial P$, where sides in P appear in the two orderings (A, B, C, D) and (B, D, A, C).



There exists a covering $\pi: E_3 \to X_1$ compatible with the two flat structures.

-Generic surface in $\mathcal{H}(2)$: $X_4 = P'/\partial P'$, where the identifications in P' are as in P and the sides ζ' of P' are generic perturbations of the sides ζ of P.

Action of $SL(2, \mathbf{R})$

-For $X \in \mathcal{H}(k_1, \ldots, k)$ take polygon $P \subset \mathbb{R}^2$ with $X = P/\partial P$. -For $G \in SL(2, \mathbb{R})$ define $G \cdot X := GP/\partial GP$. It does not depend on P but just on X and G. Set

$$g := \begin{pmatrix} e & 0 \\ 0 & e^- \end{pmatrix} ; r_{\theta} := \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$

-Stabilizer. For any X set $Stab(X) := \{ G \in SL(2, \mathbf{R}); G \cdot X = X \}.$

- We have $\operatorname{Stab}(X_1) = \operatorname{Stab}(X_2) = \operatorname{SL}(2, \mathbb{Z}).$
- $Stab(E_3)$ is a finite index subgroup of $SL(2, \mathbb{Z})$.
- $\operatorname{Stab}(X_4)$ for generic $X_4 \in \mathcal{H}(2)$.

-*Nice submanifolds* (Eskin-Mirzakhani and Es.-Mir.-Mohammadi). Any $SL(2, \mathbf{R})$ -orbit closure \mathcal{M} is an affine submanifold of the moduli space carrying a nice $SL(2, \mathbf{R})$ -ergodic and g -ergodic probability measure. Geometric interpretation and generalization Consider $X_2 = \mathbf{R}^2/(\zeta \ \mathbf{Z} \oplus \zeta \ \mathbf{Z})$ and set $\alpha := \frac{|\operatorname{Re}(\zeta)|}{|\operatorname{Re}(\zeta + \zeta)|}$.

$$L(\alpha)^{\binom{1}{2}} \limsup_{|\mathrm{Im}(\cdot)| \to \infty} \frac{1}{|\mathrm{Re}(v)| \cdot |\mathrm{Im}(v)|} \text{ where } v \in \mathrm{Hol}(X_2)$$

$$\stackrel{\binom{1}{2}}{\underset{\to +\infty}{\sup}} \frac{2}{\mathrm{Sys}^2(g \cdot X_2)}$$

$$\stackrel{\binom{1}{2}}{\underset{\to +\infty}{\lim}} \sup_{x \to \infty} [a_{-1}, a_{-2}, \dots, a_1] + a_{-1} + [a_{+1}, a_{+2}, \dots]$$

-Equality (B) holds for any translation surface X. Generalize the classical function $\alpha \mapsto L(\alpha)$ by

$$\mathcal{L}(X) := \limsup_{|\mathrm{Im}(\cdot)| \to \infty} \frac{1}{|\mathrm{Re}(v)| \cdot |\mathrm{Im}(v)|} = \limsup_{\to +\infty} \frac{2}{\mathrm{Sys}^2(g \cdot X)}.$$

-The Lagrange Spectrum of a nice manifold $\mathcal M$ is the set

$$\mathcal{L}(\mathcal{M}) := \{L(X); X \in \mathcal{M}\} \subset \mathbf{R}_+$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

-Equality (A) can be generalized in terms of *interval exchange transformations*.

- -Formula (C) generalizes to different formulas with renormalization
 - 1. Hubert-M.-Ulcigrai: $\mathcal{L}(\mathcal{M})$ is closed for any \mathcal{M} , moreover closed Teichmuller geodesics in \mathcal{M} provide a dense subset of values. Tool: *Rauzy-Veech* induction.
 - 2. Artigiani-M.-Ulcigrai: If $\exists X \in \mathcal{M}$ such that $\operatorname{Stab}(X)$ is a lattice in $\operatorname{SL}(2, \mathbb{R})$ then $\mathcal{L}(\mathcal{M})$ has Hall's ray. Tool: $\operatorname{Stab}(X)$ acting by homographies.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Today's statement

-Consider the finite words a := 1, 4, 2, 4 and b := 1, 3. Let $\tilde{\sigma} : \Xi \to \Xi$ be the shift on $\Xi := \{a, b\}^{\mathbb{Z}}$. -Consider the subset $\Xi_0 \subset \Xi$ of those $\bar{\xi} = (\xi_{-}) \in \mathbb{Z}$ such that

> $\xi_0 = a$ ξ for infinitely many $n \in \mathbf{Z}_+$

then let $\sigma : \Xi \to \Xi$ be the first return of $\tilde{\sigma}$ to Ξ_0 . -Define a function $L^{\sigma} : \Xi \to \mathbf{R}_+$ by

$$\begin{split} L^{\sigma}(\bar{\xi}) &:= \limsup_{\to +\infty} [\sigma \ (\bar{\xi})]_{(-)} + [\sigma \ (\bar{\xi})]_{(+)} \text{ where} \\ [\bar{\xi}]_{(-)} &:= [1, 4, \xi_{-1}, \xi_{-2}, \dots] \text{ and} \\ [\bar{\xi}]_{(+)} &:= [1, 4, \xi_1, \xi_2, \dots]. \end{split}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

$$\begin{aligned} \phi_1 &:= 7 + 14 \cdot \overline{[3,1]} = 10,696277\dots \\ \phi_2 &:= 14 \cdot [1,4,\overline{1,3}] = 11,582576\dots \\ \phi_\infty &:= 14 \cdot [1,4,\overline{1,4,2,4}] = 11,593101\dots \end{aligned}$$

An open interval (x, y) is a *gap* in a Lagrange spectrum $\mathcal{L}(\mathcal{M})$ if $(x, y) \cap \mathcal{L}(\mathcal{M}) = \emptyset$ and $x, y \in \mathcal{L}(\mathcal{M})$.

Theorem[Lelièvre-Hubert-M.-Ulcigrai] Consider the closed orbit $\mathcal{M} := SL(2, \mathbf{R}) \cdot E_3.$

 $-\phi_1$ is the minimum of $\mathcal{L}(\mathcal{M})$, moreover (ϕ_1, ϕ_2) is a gap in $\mathcal{L}(\mathcal{M})$. $-[\phi_2, \phi_\infty] \cap \mathcal{L}(\mathcal{M})$ is the set **K** of values of $L^{\sigma} : \Xi_0 \to \mathbf{R}_+$.

Corollary Above its isolated minimum, the Lagrange spectrum $\mathcal{L}(\mathcal{M})$ has a rich structure.

Question: is **K** a Cantor set? Do we have a constant c > 0 such that for any $\phi > \phi_2$ we have $HD((\phi_2, \phi)) > c$?

Elements of the proof

-Parametrize $\mathcal{L}(\mathcal{M})$ by $\alpha \mapsto \mathcal{L}(\mathcal{E}_3, \alpha) := \mathcal{L}(r_{\arctan \alpha})$

-Any rational slope p/q induce a cylinder decomposition of E_3 . Set

$$m(p/q,X) := \min \operatorname{Deg}(t \mapsto \pi \circ \gamma(t))$$

(minimum taken over all saddle connection $t \mapsto \gamma(t)$ in direction p/q on the square tiled surface X).

$$L(E_3, \alpha) = 7 \cdot \limsup_{\substack{, \to +\infty}} \frac{1}{q \cdot |q\alpha - p|} \cdot \frac{1}{m^2(p/q)}$$

$$\stackrel{(*)}{=} 7 \cdot \limsup_{\rightarrow \infty} \max_{1 \le \le} \frac{D(n, i, \alpha)}{m^2(\infty; R \cdot g(a_1, \dots, a_{-1}, i) \cdot E_3)}.$$

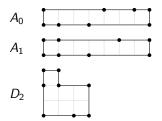
In (*) for any n and any i with $1 \le i \le a$ we set

$$g(a_1, \ldots, a_{-1}, i) := (T R)(T^{--1}R) \dots (T^{-2}R)(T^{-1}R)$$

$$D(n, i, \alpha) := [a_{-1}, \ldots, a_1] + a_{+1} + [a_{+2}, a_{+3}, \ldots] \text{ if } i = a$$

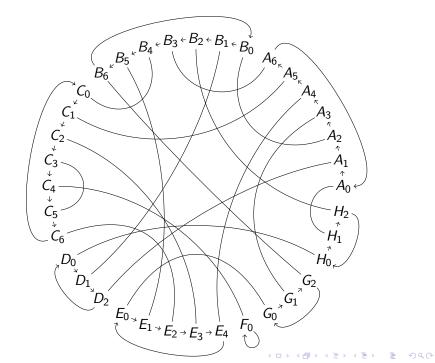
$$D(n, i, \alpha) := [i, \ldots, a_1] + [a_{--1}, a_{+1}, \ldots] \text{ if } 1 \le i < a$$

The generators $T := \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ and $S := \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ of $SL(2, \mathbb{Z})$ are the arcs of a graph, whose vertices are the element of the $SL(2, \mathbb{Z})$ -orbit of E_3 . For example we have $T \cdot A_0 = A_1$ and $S \cdot A_1 = D_2$, where



(日) (四) (日) (日) (日)

The global picture is. . .

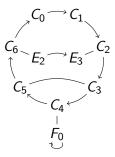


We follow methods from T. W. Cusick, M. E. Flahive: *The Markoff and Lagrange Spectra*. Mathematics Surveys and Monographs, 30, 1989.

Assume

$$L(E_3, \alpha) < 7 \cdot \frac{[1, \overline{1, 6}] + 6 + [\overline{6, 1}]}{4} = 11,688957...$$

Then definitely $a \leq 5$ and $g(a_1, \ldots, a) \cdot E_3$ belongs to the subgraph



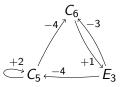
イロト 不得 トイヨト イヨト

3

lf

$$L(E_3,\alpha) < 7 \cdot \frac{[1,4,2,\overline{1,5}] + 5 + [1,5,1,\overline{1,5}]}{4} = 11,655309...$$

then the renormalization only uses the Gauss steps



where for example $E_3 \xrightarrow{3-} C_6$ encodes the operation $C_6 = T^{-3}S \cdot E_3$.

-Compare all these steps and see that the maximum is always taken by the Farey step at the middle of $C_5 \xrightarrow{2+} C_5$.

Thank you!