Lorentzian Geometry I

Todd A. Drumm (Howard University, USA)

ICTP

22 August 2015
Trieste, Italy
Basic Definitions

- $E^{n,1}$ ($n \geq 2$) is the Lorentzian (flat) affine space with n spatial directions
 - The tangent space: $\mathbb{R}^{n,1}$
 - Choose a point $o \in E^{n,1}$ as the origin
 - Identification of E and its tangent space: $p \leftrightarrow v = p - o$
Basic Definitions

- $E^{n,1}$ ($n \geq 2$) is the Lorentzian (flat) affine space with n spatial directions
 - The tangent space: $\mathbb{R}^{n,1}$
 - Choose a point $o \in E^{n,1}$ as the origin
 - Identification of E and its tangent space: $p \leftrightarrow v = p - o$

- The tangent space $\mathbb{R}^{n,1}$
 - $v = [v_1, \ldots, v_n, v_{n+1}]^T$
 - The (standard, indefinite) inner product:
 \[v \cdot w = v_1w_1 + \ldots + v_nw_n - v_{n+1}w_{n+1} \]

- $O(n, 1)$ is the group of matrices which preserve the inner product
 - In particular, for any $v, w \in \mathbb{R}^{n,1}$ and any $A \in O(n, 1)$
 \[Av \cdot Aw = v \cdot w \]

- $SO(n, 1)$ is the subgroup whose members have determinant 1.
- $O^\circ(n, 1) = SO^\circ(n, 1)$ is the connected subgroup containing the identity
• $N = \{ v \in \mathbb{R}^{n,1} | v \cdot v = 0 \}$ is the light cone (or null cone) and vectors lying here are called lightlike
 - Inside cone: v such that $v \cdot v < 0$, are called timelike
 - Outside cone: v such that $v \cdot v > 0$, are called spacelike

• Time orientation
 - Choice of nappe, and timelike vectors upper nappe, is a choice of time orientation
 - Choose the upper nappe to be the future; vectors on or inside the upper nappe are future pointing
Models of Hyperbolic Spaces

• One sheet of hyperboloid
 • \(H^n \cong \{ v \in \mathbb{R}^{n,1} | v \cdot v = -1, \text{ and future pointing} \} \)
 • \(w \cdot w > 0 \) for \(w \) tangent to hyperbola.
 • Defined metric has constant curvature \(-1\).
 • Geodesics = \{Planes thru \(o\}\} \cap \{\text{hyperboloid}\}

• Projective model
 • \(v \sim w \) if \(v = kw \) for \(k \neq 0 \), written \((v) = (w)\)
 • \(H^n \cong \{ v \in \mathbb{R}^{n,1} | v \cdot v < 0 \} / \sim \)
 • Homogeneous coordinates
 \((v) = [v_1 : v_2 : \ldots : v_n] \)

• Klein model
 • Project onto \(v_n = 1 \) plane.
 • Geodesics are straight lines.
 • Not conformal.
Isometries

- Linear Isometries
 - $O(n, 1)$ has four connected components.
 - Isometries of H^n
- Affine isometries: $\mathcal{A} = (A, a) \in \text{Isom}(E)$
 - $A \in O(n, 1)$ and $a \in \mathbb{R}^{n, 1}$
 - $\mathcal{A}(x) = A(x) + a$

Proposition

For any affine isometry, $x \mapsto A(x) + a$, if A does not have 1 as an eigenvalue, then the map has a fixed point.

Proof.

If A does not have 1 as an eigenvalue, you can always solve $A(x) + a = x$, or $(A - I)(x) = -a$
Three dimensions

- More on products
 - \(v^\perp = \{ w | w \cdot v = 0 \} \)
 - If \(v \) is spacelike, \(v^\perp \) defines a geodesic.
 - If \(v \) is lightlike, \(v^\perp \) is tangent to lightcone at \(v \).
 - **(Lorentzian) cross product**
 - \(v \times w \) is (Lorentzian) orthogonal to \(v \) and \(w \).
 - Defined by \(v \cdot (w \times u) = \text{Det}(v, w, u) \).

- Upper half plane model of the hyperbolic plane
 - \(U = \{ z \in \mathbb{C} | \text{Im}(z) > 0 \} \) with boundary \(\mathbb{R} \cup \{ \infty \} \).
 - Geodesics are arcs of circles centered on \(\mathbb{R} \) or vertical rays.
 - \(\text{Isom}^+(\mathbb{H}^2) \cong \text{PSL}(2, \mathbb{R}) \)
\[A \in \text{SO}^0(2, 1) \]

- All \(A \) have 1 eigenvalue.
- Classification: Nonidentity \(A \) is said to be ...
 - \textit{elliptic} if it has complex eigenvalues.
 - The 2 complex eigenvectors are conjugate.
 - The fixed eigenvector \(A^0 \) is timelike.
 - Acts like rotation about fixed axis.
 - \textit{parabolic} if 1 is the only eigenvalue.
 - The fixed eigenvector \(A^0 \) is \textit{lightlike}.
 - On \(\mathbb{H}^2 \), fixed point on boundary and orbits are \textit{horocycles}.
 - \textit{hyperbolic} if it has 3 distinct real eigenvalues \(\lambda < 1 < \lambda^{-1} \)
 - Fixed eigenvector \(A^0 \) is spacelike.
 - The \textit{contracting} eigenvector \(A^- \) and \textit{expanding} eigenvector \(A^+ \) are lightlike.
 - \(A^0 \cdot A^\pm = 0 \)
- \(A(x) = A(x) + a \) is called \textit{elliptic} /\textit{parabolic}/ \textit{hyperbolic} if \(A \) is elliptic /parabolic/ hyperbolic.
Hyperbolic affine transformations

- More on linear part
 - Choose A^\pm are future pointing and have Euclidean length 1.
 - Choose so that $A^0 \cdot (A^- \times A^+) > 0$ and $A^0 \cdot A^0 = 1$.
 - $(A^0)^\perp$ determines the axis of A on the hyperbolic plane.
- The Margulis invariant for a hyperbolic $A = (A, a)$
 - There exist a unique invariant line C_A parallel to A^0.
 - The Margulis invariant: for any $x \in C_A$
 \[
 \alpha(A) = (A(x) - x) \cdot A^0
 \]
 - Signed Lorentzian length of unique closed geo in $E^{2,1}/\langle A \rangle$.
 - $\alpha(A) = 0$ iff A has a fixed point.
 - Invariant given choice of $x \in E$.
 - Invariant under conjugation (α is a class function), and determines conjugation class for a fixed linear part.
 - $\alpha(A^n) = |n| \alpha(A)$
Proper actions

• For any discrete G action on a locally compact Hausdorff X, if G is proper then X/G is Hausdorff.
 • Alternatively, G is to act freely properly discontinuously on X.
 • (Bieberbach) For $X = \mathbb{R}^n$ and discrete $G \subset \text{Isom}(X)$, if G acts properly on X then G has a finite index subgroup $\cong \mathbb{Z}^m$ for $m \leq n$.

• Cocompact affine actions

Conjecture (Auslander)

For $X = \mathbb{R}^n$ and discrete $G \subset \text{Aff}(\mathbb{R}^n)$, if G acts properly and cocompactly on X then G is virtually solvable.

• No free groups of rank ≥ 2 in virtually solvable gps.
• True up to dimension 6.
• (Milnor) Is Auslander Conj. true if “cocompact” is removed? NO.
Margulis Opposite Sign Lemma

Lemma (Margulis’ Opposite Sign)

If $\alpha(A)$ and $\alpha(B)$ have opposite signs then $\langle A, B \rangle$ does not act properly on $E^{2,1}$.

• The signs for elements of proper actions must be the same.
• Opposite Sign Lemma true in $E^{n,n-1}$
 • When n is odd, $\alpha(A^{-1}) = -\alpha(A)$, so no groups with free groups (rank ≥ 2) act properly.
 • Can find counterexamples to “noncompact Auslander” in $E^{2,1}, E^{4,3}, ...$
Margulis space-times

- First examples

Theorem (Margulis)

There exist discrete free groups of \(\text{Aff}(\mathbb{E}^{2,1}) \) that act properly on \(\mathbb{E}^{2,1} \).

- Next examples
 - Free discrete groups in \(\langle A_1, A_2, ..., A_n \rangle \subset \text{Isom}(\mathbb{H}^2) \).
 - Domain bounded by \(2n \) nonintersecting geodesics \(\ell_n^\pm \) such that \(A_i(\ell^-_i) = \ell^+_i \).
Crooked Planes

• Problem: extend notion of lines in H^2 to $E^{2,1}$.

• A Crooked Plane
 • Stem is perpendicular to spacelike vector v through vertex p inside the lightcone at p.
 • Spine is the line through p and parallel to v
 • Wings are half planes tangent to light cones at boundaries of stem, called the hinges.

• A Crooked half-space is one of the two regions in $E^{2,1}$ bounded by a crooked plane.
The Spaces Isometries Three dimensions Proper Actions Margulis space-times

Crooked domains

Theorem (D)

Given discrete $\Gamma = \langle A_1, A_2, ..., A_n \rangle \subset \text{Isom}(\mathbb{E}^{2,1})$. If there exist $2n$ mutually disjoint crooked half spaces \mathcal{H}_n^\pm such that $A_i(\mathcal{H}_i^-) = \mathbb{E}^{2,1} \setminus \mathcal{H}_i^+$, then Γ is proper.

- Example of a “ping-pong” theorem.
- Finding proper actions
 - Start with a free discrete linear group.
 - Find disjoint halfspaces whose complement is domain for a linear part.
 - Separate half planes, giving rise to proper affine group.
Crooked domains

- Two pair of *disjoint* halfspaces at the origin.

- Separated
Results

Theorem (D)

Given every free discrete group $G \subset \text{SO}(2,1)$ there exists a proper subgroup $\Gamma \subset \text{Isom}(\mathbb{E}^{2,1})$ whose underlying linear group is G.

Theorem (Danciger- Guéritaud - Kassel)

For every discrete $\Gamma \subset \text{Isom}(\mathbb{E}^{2,1})$ acting properly on $\mathbb{E}^{2,1}$, there exists a crooked fundamental domain for the action.

References

- (with V. Charette) *Complete Lorentz 3-manifolds*, Cont. Math. 630, (2015), pp. 43 72