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Lecture 1: Survey

I will lecture on the connection between Minimal Surfaces in Euclidean
Spaces and Complex Analysis.

• A brief history of minimal surfaces.

• Basics on minimal surfaces and holomorphic null curves.

• Isotopies of conformal minimal immersions.

• Desingularizing conformal minimal immersions in Rn (n ≥ 5).

• Proper conformal minimal immersions to R3 and embeddings to R5

• On the Calabi-Yau problem for minimal surfaces.

Based on joint work with

• Barbara Drinovec Drnovšek and Franc Forstnerič, University of
Ljubljana.

• Francisco J. López, University of Granada.



Minimal Surfaces in R3

1744 Euler The only area minimizing surfaces of rotation in R3 are planes
and catenoids.



Minimal Surfaces in R3

1760 Lagrange Let Ω ⊂ R2 be a smooth bounded domain and f : Ω→ R

be a smooth function. Then the graph

S = {(x , y , f (x , y)) : (x , y) ∈ Ω} ⊂ R3

is an area minimizing surface if and only if

(1 + f 2y )fxx − 2fx fy fxy + (1 + f 2x )fyy = 0;

equivalently,

div

(
∇f√

1 + |∇f |2

)
= 0. (1)

This is known as the equation of minimal graphs.



Minimal Surfaces in R3

1776 Meusnier A (smooth) surface S ⊂ R3 satisfies locally the above
equation iff its mean curvature function vanishes identically.

Definition (Minimal Surface)

A smoothly immersed surface M → R3 is said to be a minimal surface
if its mean curvature function H: M → R is identically zero: H = 0.

H =
κ1 + κ2

2

K = κ1κ2

where κ1, κ2 are the
principal curvatures.

H = 0 ⇒ K = κ1κ2 ≤ 0
(Gauss curvature).



Minimal Surfaces in R3

1776 Meusnier The helicoid is a minimal surface.

1842 Catalan The helicoid and the plane are the only ruled minimal
surfaces in R3 (unions of straight lines).



Local Theory: Plateau Problem

1873 Plateau Minimal surfaces can be physically obtained as soap films.

1932 Douglas, Radó Every continuous injective closed curve in Rn (n ≥ 3)
spans a minimal surface.



Examples by Riemann

1865 On the way to this solution, Riemann and others discovered new
examples of minimal surfaces using the Weierstrass Representation.

2015 Meeks, Pérez, Ros Riemann’s minimal examples, catenoids, helicoids,
and planes are the only properly embedded minimal planar domains in
R3.



Minimal graphs minimize area

Proposition

Let D be a smoothly bounded, compact domain in R2
(x ,y ), let f : D → R

be a smooth function, and let S := Graph(f ) be the graph of f .

If S is minimal and S̃ := Graph(f̃ ), where f̃ : D → R is a smooth

function such that f̃ |bD = f |bD (equivalently, bS̃ = bS), then the areas

A (S) ≤ A (S̃).

Furthermore, A (S̃) = A (S) if and only if f̃ = f .

The same holds for minimal graphs in Rn for all n ≥ 3. A graph
{(u, f (u)) : u ∈ Ω} ⊂ Rn (n ≥ 3) over a smoothly bounded compact
domain Ω ⊂ Rn−1 minimizes volume if and only if satisfies the minimal
surface equation (1).



Minimal graphs minimize area. Proof

Let N: D → S2 be the normal map of the minimal surface

S = {(x , y , f (x , y)) : (x , y) ∈ D}.

Consider the unitary vector field V : D ×R→ R3 given by

V (x , y , z) = N(x , y) =
1√

1 + |∇f |2
(−fx ,−fy , 1).

Computing,

divR3V =
∂

∂x

(
− fx√

1 + |∇f |2

)
+

∂

∂y

(
− fy√

1 + |∇f |2

)

= −divR2

(
∇f√

1 + |∇f |2

)
= 0.



Minimal graphs minimize area. Proof

Assume S , S̃ ⊂ {z > 0}. Let W and W̃ be the regions in D ×R with

boundaries bW = S ∪ C ∪D and bW̃ = S̃ ∪ C ∪D, where
C ⊂ bD ×R. By the divergence theorem,

0 =
∫
W

div(V ) dxdydz =
∫
bW
〈V , νbW 〉dAbW

=
∫
D
〈V , νD〉dxdy +

∫
C
〈V , νC 〉dAC +

∫
S
〈V , νS 〉dAS

(ν• =outer normal, dA•=area element)

0 =
∫
W̃

div(V ) dxdydz =
∫
bW̃
〈V , ν

bW̃
〉dA

bW̃

=
∫
D
〈V , νD〉dxdy +

∫
C
〈V , νC 〉dAC +

∫
S̃
〈V , νS̃ 〉dAS̃ .

Hence, ∫
S
〈V , νS 〉dAS =

∫
S̃
〈V , νS̃ 〉dAS̃ . (2)



Minimal graphs minimize area. Proof

We have V = N = νS on S , and so∫
S
〈V , νS 〉dAS =

∫
S

dAS = A (S).

On the other hand, by Schwarz, |〈V , νS̃ 〉| ≤ ‖V ‖ · ‖νS̃‖ = 1, hence∫
S̃
〈V , νS̃ 〉dAS̃ ≤

∫
S̃

dAS̃ = A (S̃).

Therefore, A (S) ≤ A (S̃) in view of (2).

If A (S̃) = A (S), then |〈V , νS̃ 〉| = ‖V ‖ · ‖νS̃‖ = ‖V ‖ · ‖νS‖, hence

νS̃ = νS and so ∇f̃ = ∇f and f̃ − f is constant.

Since f̃ |bD = fbD , f̃ = f and S̃ = S .



Curvature of surfaces in Rn

Let D be a domain in R2
(u1,u2)

and X = (X1, . . . , Xn) : D → Rn be a C 2

embedding. Hence, S = X (D) ⊂ Rn is a parametrized surface in Rn.

Every smooth embedded curve in S is of the form

λ(t) = X (u1(t), u2(t)) ∈ S

where t 7→ (u1(t), u2(t)) is a smooth embedded curve in D.

Let s = s(t) denote the arc length on λ. The number

κ(T, N) :=
d2λ

ds2
·N =

2

∑
i ,j=1

(
Xuiuj ·N

) dui
ds

duj
ds

is the normal curvature of S at p = λ(t0) ∈ S in the tangent direction
T = λ′(s0) ∈ TpS with respect to the normal vector N ∈ NpS .



Curvature in terms of fundamental forms

In terms of t-derivatives we get

κ(T, N) =
∑2
i ,j=1

(
Xuiuj ·N

)
u̇i u̇j

∑2
i ,j=1 gi ,j u̇i u̇j

=
second fundamental form

first fundamental form
.

Fix a normal vector N ∈ NpS and vary the unit tangent vector T ∈ TpS .
The principal curvatures of S at p in direction N are the numbers

κ1(N) = maxTκ(T, N), κ2(N) = minTκ(T, N).

Their average

H(N) =
κ1(N) + κ2(N)

2
∈ R

is the mean curvature of S at p in the normal direction N ∈ NpS .



The mean curvature vector

Let G = (gi ,j ) and b(N) = (bi ,j (N)) be the matrix of the 1st and the
2nd fundamental form. The extremal values of κ(T, N) are roots of

det
(
b(N)− µG

)
= 0

(det G )µ2 −
(
g2,2b1,1(N) + g1,1b2,2(N)− 2g1,2b1,2(N)

)
µ + det b(N) = 0.

Note that bi ,j (N) = Xuiuj ·N. The Vieta formula gives

H(N) =
g2,2Xu1u1 + g1,1Xu2u2 − 2g1,2Xu1u2

2 det G
·N.

There is a unique normal vector H ∈ NpS such that

H(N) = H·N for all N ∈ NpS .

This H is the mean curvature vector of the surface S at p.



The mean curvature in isothermal coordinates

The formulas simplify drastically in isothermal coordinates:

(gi ,j ) = µI , µ = ||Xu1u1 ||2 = ||Xu2u2 ||2.

H(N) =
(Xu1u1 + Xu2u2)

2µ
·N =

4X

2µ
·N.

Lemma

Assume that D is a domain in R2
(u1,u2)

and X : D → Rn is a conformal

immersion of class C 2 (i.e., u = (u1, u2) are isothermal for X ). Then the
Laplacian 4X = Xu1u1 + Xu2u2 is orthogonal to S = X (D) and satisfies

4X = 2µH

where H is the mean curvature vector and

µ = ||Xu1u1 ||2 = ||Xu2u2 ||2.



Proof of the lemma

It suffices to show that the vector

4X (u)

is orthogonal to the surface S at the point X (u) for every u ∈ D. If this
holds, it follows from the preceding formula that the normal vector

4X (u)

2µ
∈ NX (u)S

fits the definition of the mean curvature vector H, so it equals H.

Conformality of the immersion X can be written as follows:

Xu1 · Xu1 = Xu2 · Xu2 , Xu1 · Xu2 = 0.

Differentiating the first identity on u1 and the second one on u2 yields

Xu1u1 · Xu1 = Xu1u2 · Xu2 = −Xu2u2 · Xu1 ,

whence 4X · Xu1 = 0. Similarly we get 4X · Xu2 = 0 by differentiating
the first identity on u2 and the second one on u1.



Lagrange’s formula for the variation of area

The area of an immersed surface X : D → Rn with the 1st fundamental
form G = (gi ,j ) equals

A (X ) =
∫
D

√
det G · du1du2.

Let N : D → Rn be a normal vector field along X which vanishes in bD.
Consider the 1-parameter family of maps X t : D → Rn:

X t(u) = X (u) + t N(u), u ∈ D, t ∈ R.

A calculation gives the formula for the first variation of area:

δA (X )N =
d

dt

∣∣∣∣
t=0

A (X t) = −2
∫
D

H·N
√

det G · du1du2.

It follows that δA (X ) = 0⇐⇒ H = 0.



Conformal minimal surfaces are harmonic

In view of the formula 4X = 2µH which holds for a conformal
immersion X we get the following corollary.

Corollary

The following are equivalent for a smooth conformal immersion
X : D → Rn from a domain D ⊂ R2:

X is minimal (a stationary point of the area functional)

X has vanishing mean curvature vector: H = 0

X is harmonic: 4X = 0



Minimal surfaces versus area minimizing surfaces

We wish to emphasize the difference between

minimal surfaces: these are stationary (critical) points of the area
functional, and are only locally area minimizing; and

area-minimizing surfaces: these are surfaces which globally
minimize the area among all nearby surfaces with the same
boundary.

Minimal surfaces which are graphs are in fact (globally) area
minimizing.



Riemann surfaces

Definition
A Riemann surface M is a complex manifold of complex dimension one.

So, a Riemann surface M = (M, A ) is nothing but a smooth (real)
surface M together with an atlas A such that the change of charts are
biholomorphic functions.

Holomorphic functions M→ C and harmonic functions M→ R on a
Riemann surface M are well defined.



Riemann surfaces

Definition

A compact bordered Riemann surface M is a compact Riemann
surface with nonempty boundary bM 6= ∅ consisting of finitely many
pairwise disjoint smooth Jordan curves.
The interior M = M \ bM is said a bordered Riemann surface.

Open Riemann surfaces M (noncompact and with bM = ∅) are
classified:

• Hyperbolic: there are non-constant negative subharmonic functions
M→ R; equivalently, the Brownian motion on M is transient.

The unit complex disc D ⊂ C is hyperbolic. Every bordered Riemann
surface is hyperbolic.

• Parabolic: every negative subharmonic function M→ R, is constant;
equivalently, the Brownian motion on M is recurrent.

The complex plane C is parabolic. Every compact Riemann surface
with finitely many points removed is parabolic.



Riemann surfaces

A Riemann surface M = (M, T ) is the same thing as a smooth (real)
oriented surface M together with a conformal structure T ; i.e., a
conformal class of Riemannian metrics on M. (Two metrics g1, g2 on
M are conformal if g1 = λg2 for some smooth positive function λ on M.)

Angles on a Riemann surface M are well defined.

Definition

An immersion X : M = (M, T )→ Rn (n ≥ 3) is said to be conformal
if it preserves angles; equivalently, if the Riemannian metric X∗ds2

induced on M by the Euclidean metric ds2 in Rn via X lies in T .



Conformal minimal surfaces are harmonic

Let (M, g) be a Riemannian surface, let X : (M, g)→ Rn (n ≥ 3) be an
isometric immersion, and let H be the mean curvature vector of X .
Then

4X = 2H.

Corollary

The following are equivalent for a conformal immersion X : M→ Rn

(n ≥ 3):

• X is minimal (i.e., the mean curvature vector is identically zero).

• X is a stationary point of the area functional.

• X is a harmonic map (i.e., 4X = 0 on M).

In the sequel we shall always assume that X : M→ Rn is conformal and
hence

X is minimal ⇐⇒ δA (X) ⇐⇒ 4X = 0.



Weierstrass Representation (Osserman 1960s)
Let M be an open Rieman surface.
Let X = (X1, . . . , Xn) : M→ Rn be a conformal minimal immersion.
Let z be a conformal parameter on M and denote by

φj = ∂zXj , j = 1, . . . , n (holomorphic 1-forms in M).

• X∗ds2 =
n

∑
j=1

|φj |2 6= 0 (conformal metric).

• Φ = (φ1, . . . , φn) satisfies
n

∑
j=1

φ2
j = 0.

• Hence f =
Φ
ϑ

: M→ Cn assumes values in the Null Quadric:

A∗ = {ζ = (ζ1, . . . , ζn) ∈ Cn : ζ21 + · · ·+ ζ2n = 0} \ {0} ⊂ Cn,

(here ϑ is any holomorphic 1-form on M with no zeros).

• Φ has no real periods: <
∫

γ Φ = 0 for any closed curve γ ⊂M.

• X(p) = X(p0) +<
∫ p
p0

Φ = X(p0) +<
∫ p
p0

f ϑ. Conversely! (Period

Problem)
• Φ ≡ Weierstrass Representation of X.



Examples

• The plane: M = C, Φ = (1,−ı, 0)dz .

• The catenoid: M = C \ {0}, Φ =

(
1

2

( 1

z2
− 1
)

,
ı
2

( 1

z2
+ 1
)

,
1

z

)
dz .

• The helicoid: M = C, Φ =

(
ı
2

(
e−z − ez

)
, −1

2

(
e−z + ez

)
, ı
)

dz .



The Null Quadric is Oka

Let ϑ be a holomorphic 1-form on M with no zeros. There is a bijective
correspondence (up to translations){

X : M→ Rn CMI
}
←→

{
f : M→ A∗ holomorphic, f ϑ no real periods

}
X(p) = X(p0) +<

∫ p

p0
f ϑ, f =

Φ
ϑ

.

We construct CMIs M→ Rn by finding holomorphic maps
f : M→ A∗ ⊂ Cn for which f ϑ has no real periods:

<
∫

Γ
f ϑ for every closed curve Γ ⊂M.

The Null Quadric

A∗ = {ζ = (ζ1, . . . , ζn) ∈ Cn : ζ21 + · · ·+ ζ2n = 0} \ {0} (n ≥ 3)

controlling minimal surfaces in Rn is an Oka Manifold.



Weierstrass Representation in R3: the Gauss map

Let X = (X1, X2, X3) : M→ R3 be a conformal minimal immersion with
Weierstrass representation Φ = f ϑ, where
f = (φ1, φ2, φ3) : M→ A∗ ⊂ C3. Then either φ1 ≡ ıφ2 and X is flat, or

f =

(
1

2

(
1

g
− g

)
,

ı
2

(
1

g
+ g

)
, 1

)
φ3

where

g =
φ3

φ1 − ıφ2

is the stereographic projection of the Gauss map M→ S2 of X.

• g : M→ C is a meromorphic function, called the complex Gauss
map of X.

• X∗ds2 =
n

∑
j=1

|φj |2 =
1

4

(
|g |+ 1

|g |

)2

|φ3|2|ϑ|2. Hence, the zeros and

poles of g are zeros of φ3 with the same order.

• (g , φ3θ) ≡ Weierstrass Representation of X. Conversely! (Period
Problem)



Nonorientable minimal surfaces

Nonorientable surfaces present themselves quite naturally in the very
origin of Minimal Surface Theory.



Nonorientable minimal surfaces

Assume that M carries an antiholomorphic involution I : M→M without
fixed points. If X : M→ Rn is a conformal minimal immersion such that

X ◦ I = X, (3)

then X(M) ⊂ Rn is a nonorientable minimal surface.

If Φ = f ϑ are the Weierstrass data of X and I∗ϑ = ϑ, then (3) is
equivalent to

f ◦ I = f .

If n = 3, f = (φ1, φ2, φ3), and g =
φ3

φ1 − ıφ2
, then (3) is equivalent to

φ3 ◦ I = φ3, g ◦ I = − 1

g
.



Holomorphic null curves in Cn

Definition
Let M be a Riemann surface. A holomorphic immersion

F = (F1, F2, . . . , Fn) : M→ Cn

is a null curve if the derivative F′ = (F′1, F′2, . . . , F′n) with respect to any
local holomorphic coordinate ζ = x + ıy on M satisfies

(F′1)
2 + (F′2)

2 + . . . + (F′n)
2 = 0,

The nullity condition is equivalent to

F′(ζ) ∈ A∗ = {z = (z1, . . . , zn) ∈ Cn :
n

∑
j=1

z2j = 0},

where A∗ is the null quadric in Cn.



Holomorphic null curves in Cn

Let ϑ be a holomorphic 1-form on M with no zeros. There is a bijective
correspondence (up to translations){
F : M→ Cn null curves

}
←→

{
f : M→ A∗ holomorphic, f ϑ exact

}
F(p) = F(p0) +

∫ p

p0
f ϑ, f =

Φ
ϑ

.

We construct null curves M→ Cn by finding holomorphic maps
f : M→ A∗ ⊂ Cn for which f ϑ is an exact 1-form:∫

Γ
f ϑ for every closed curve Γ ⊂M.



Connection between null curves and minimal surfaces

If F = X + ıY : M→ Cn is a holomorphic null curve, then

X = <F : M→ Rn, Y = =F : M→ Rn

are conformal harmonic (hence minimal) immersions into Rn.

Conversely, a conformal minimal immersion X : D→ Rn of the disc
D = {z ∈ C : |z | < 1} is the real part of a holomorphic null curve
F : D→ Cn. (This fails on multiply connected Riemann surfaces.)

If F = X + ıY : M→ Cn is a null curve then

F∗ds2Cn = 2X∗ds2Rn = 2Y∗ds2Rn .



The calculation

Let F = X + ıY = (F1, . . . , Fn) : M→ Cn be a holomorphic null curve
and ζ = x + ıy a local holomorphic coordinate on M. Then

0 =
n

∑
j=1

(Fj
ζ)

2 =
n

∑
j=1

(Fj
x )

2 =
n

∑
j=1

(
Xj
x + ıYj

x

)2
=

n

∑
j=1

(
(Xj

x )
2 − (Yj

x )
2
)
+ 2ı

n

∑
j=1

Xj
xYj

x .

Since Yx = −Xy by the Cauchy-Riemann equations,

0 = |Xx |2 − |Xy |2 − 2ı Xx ·Xy ⇐⇒ |Xx | = |Xy |, Xx ·Xy = 0.

It follows that X is conformal harmonic and

F∗ds2Cn = |Fx |2(dx2+ dy2) = 2|Xx |2(dx2+ dy2) = 2X∗ds2Rn = 2Y∗ds2Rn .



Example: catenoid and helicoid

The catenoid and the helicoid are conjugate minimal surfaces; i.e.,
the real and the imaginary part of the same null curve

F(ζ) = (cos ζ, sin ζ,−ıζ), ζ = x + ıy ∈ C.

Consider the family of conformal minimal immersions (t ∈ R):

Xt(ζ) = <
(
e ıtF(ζ)

)
= cos t

cos x · cosh y
sin x · cosh y

y

+ sin t

 sin x · sinh y
− cos x · sinh y

x


At t = 0 we have a catenoid and at t = ±π/2 a helicoid.

Two minimal surfaces are said to be associated to each other if they are
obtained as projection of the same null curve.



The flux of a conformal minimal immersion

The flux map of a conformal minimal immersion X : M→ Rn is the
group homomorphism

FluxX : H1(M; Z)→ Rn

given on any closed curve C in M by

FluxX(C ) =
∫
C
=Φ =

∫
C

dcX

where Φ = ∂zX are the Weierstrass data of X and

dcX = ı(∂X− ∂X)

is the conjugate differential. (Note that dcX is closed precisely when X
is harmonic: ddcX = 0.)

A conformal minimal immersion X : M→ Rn is the real part of a
holomorphic null curve M→ Cn if and only if FluxX = 0.



Global Theory

Let X : M→ Rn (n ≥ 3) be a conformal minimal immersion.

Definition

X (or X(M)) is said to be complete if the induced metric

X∗ds2 =
n

∑
j=1

|φj |2 is a complete Riemannian metric on M; equivalently if

the Euclidean lentgh of X(γ) ⊂ Rn is infinite for any divergent curve
γ ⊂M.

Definition

X (or X(M)) is said to be proper if X(γ) ⊂ Rn diverges for any
divergent curve γ ⊂M.

Properness trivially implies completeness.



Global Theory



Finite Total Curvature

X : M→ R3 is said to be of finite total curvature if∫
M
|K | = −

∫
M

K < +∞,

where K ≤ 0 denotes the Gauss curvature function of X.

1963 Osserman A conformal complete minimal immersion X : M→ R3 is
of FTC if and only if

• M ∼= M \ E , where M is a compact Riemann surface and E ⊂M is
finite; that is, of finite topology and parabolic conformal type.

• The Weierstrass data φj = ∂zXj (and so g) extend meromorphically

to M.

The wealth of examples, discovered since about 1980, rely on this
theorem.
Very well studied theory: General existence results, classification
theorems, asymptotic behavior, behavior of the Gauss map,...

1983 Jorge-Meeks Every complete minimal surface in R3 of FTC is proper
in R3.



Completeness, Properness, and Conformal Structure

By the Maximum Principle for harmonic maps, there is no compact
minimal surface in R3.
All the complete minimal surfaces in R3 discovered up to the third
quarter of the 19th century are proper and (except a few periodic ones)
of parabolic conformal type.

1963 Calabi’s Conjecture Every complete minimal surface in R3 is
unbounded. (Disproved by Nadirashvili in 1996.)

1980s Sullivan’s Conjecture Every proper minimal surface in R3 of finite
topology is parabolic. (Disproved by Morales in 2003.)

1985 Schoen-Yau’s Conjecture Every minimal surface in R3 properly
projecting into R2 is parabolic. (Disproved by AA-López in 2012.)



Completeness, Properness, and Conformal Structure

Question

How to construct complete/proper minimal surfaces in R3 with
hyperbolic conformal type?
Even more, with given conformal structure?



Mergelyan Theorem for conformal minimal immersions

Theorem
Let M be an open Riemann surface and let K ⊂M be a Runge compact
subset (consisting of finitely many pairwise disjoint, compact, smoothly
bounded domains and smooth arcs).
Every smooth immersion K → Rn (n ≥ 3) being a conformal minimal

immersion in K̊ can be uniformly approximated on K by conformal
minimal immersions M→ Rn.

[A. Alarcón, F.J. López: Minimal surfaces in R3 properly projecting into
R2. J. Differential Geom. 2012]
[A. Alarcón, F. Forstnerič, F.J. López: Embedded minimal surfaces in Rn.
Preprint 2014]



General position of minimal surfaces

Self-intersections of surfaces in R3 and R4 are stable under
deformations.

Theorem

Let n ∈N, n ≥ 5, and let M = M̊∪ bM be a compact bordered
Riemann surface.
Every conformal minimal immersion X : M→ Rn can be uniformly
approximated in the C 0(M)-topology by conformal minimal embeddings
Y : M→ Rn.

Corollary

Let n ∈N, n ≥ 5, and let M be an open Riemann surface.
Every conformal minimal immersion X : M→ Rn can be uniformly
approximated in compact subsets of M by conformal minimal
embeddings Y : M→ Rn.

[A. Alarcón, F. Forstnerič, F.J. López: Embedded minimal surfaces in Rn.
Preprint 2014]



Schoen-Yau’s conjecture and the embedding theorem

Theorem
Let n ∈N, n ≥ 3, and let M be an open Riemann surface. There is a
conformal minimal immersion (Y1, Y2, . . . , Yn) : M→ Rn, embedding if
n ≥ 5, such that (Y1, Y2) : M→ R2 is a proper map.

[A. Alarcón, F.J. López: Minimal surfaces in R3 properly projecting into
R2. J. Differential Geom. 2012]
[A. Alarcón, F. Forstnerič, F.J. López: Embedded minimal surfaces in Rn.
Preprint 2014]



Schoen-Yau’s conjecture

Corollary

Every open Riemann surface is the underlying conformal structure of a
minimal surface in R3 properly projecting into R2.

1980s Sullivan’s Conjecture Every proper minimal surface in R3 of finite
topology is parabolic. (Disproved by Morales in 2003.)

1985 Schoen-Yau’s Conjecture Every minimal surface in R3 properly
projecting into R2 is parabolic.



The embedding theorem

1950s Bishop, Narasimhan, Remmert Every open Riemann surface
properly embeds in C3 as a complex curve, hence in R6 as a conformal
minimal surface.

1975 Greene-Wu Every open Riemann surface properly embeds in R5 by
harmonic functions.

Corollary

Every open Riemann surface is the underlying conformal structure of a
properly embedded minimal surface in R5.

False in R3.

Open in R4. (Examples with arbitrary orientable topology are known.
Related to the Bell-Narasimhan conjecture.)



Null curves

We may prescribed the flux of the examples in all the previous results.

These results were inspired by similar ones for null holomorphic curves
and, more generally, directed holomorphic immersions of open Riemann
surfaces into Cn when the directing variety is Oka were proved in

[A. Alarcón, F. Forstnerič: Null curves and directed immersions of open
Riemann surfaces. Invent. Math. (2014)]

In the holomorphic case, the general position is embedded in C3.



h-Runge approximation for conformal minimal immersions

Theorem
Let n ≥ 3. Let M be an open Riemann surface and let K ⊂M be a
Runge compact subset (consisting of finitely many pairwise disjoint,
compact, smoothly bounded domains and smooth arcs). Let
Xt : K → Rn (t ∈ [0, 1]) be a smooth homotopy of smooth immerions

such that Xt is a conformal minimal immersion in K̊ for all t and X0 is a
conformal nonflat minimal immersion on M.
Then the homotopy Xt can be uniformly approximated on K by a smooth
homotopy of conformal minimal immersions Yt : M→ Rn such that

• Y0 = X0.

• FluxYt
= FluxXt

on H1(K , Z).

• FluxY1
can be prescribed on H1(M, Z) \H1(K , Z).

[A. Alarcón, F. Forstnerič: Every conformal minimal surface in R3 is
isotopic to the real part of a holomorphic null curve. J. Reine Angew.
Math. (Crelle), in press]



Homotopies

Theorem
Let M be an open Riemann surface and n ≥ 3.

• For every conformal minimal immersion X0 : M→ Rn there exists a
smooth homotopy Xt : M→ Rn (t ∈ [0, 1]) of conformal minimal
immersions such that Xt is the real part of a null curve M→ Cn.

• If X0 is nonflat and p : H1(M; Z)→ Rn is a group homomorphism
then there exists a smooth homotopy Xt : M→ Rn (t ∈ [0, 1]) of
conformal minimal immersions such that

X1 is complete and FluxX1
= p.

• If X0 is complete then we can choose Xt (as above) to be complete
for every t ∈ [0, 1].

[A. Alarcón, F. Forstnerič: Every conformal minimal surface in R3 is
isotopic to the real part of a holomorphic null curve. J. Reine Angew.
Math. (Crelle), in press]



Riemann-Hilbert method for conformal minimal immersions

Theorem

Let M be a compact bordered Riemann surface and let X : M→ Rn

(n ≥ 3) be a conformal minimal immersion (the central surface).
Let I be a compact subarc of bM which is not a connected component of
bM. Choose a small annular neighborhood A ⊂M of the component C
of bM containing I and a smooth retraction ρ : A→ C .
Let u, v ∈ Rn be a couple of unitary orthogonal vectors (the direction
vectors), let µ : C → R+ be a continuous function supported on I (the
size function), and consider the continuous map

κ : bM×D→ Rn

κ(x , ξ) =

{
X(p); p ∈ bM \ I
X(p) + µ(p)

(
<ξu +=ξv

)
, p ∈ I .



Riemann-Hilbert method for conformal minimal immersions

Theorem (Continued)

Then for any number ε > 0 there exist an arbitrarily small open
neighborhood Ω of I in A and a conformal minimal immersion
Y : M→ Rn satisfying the following properties:

• Y is ε-close to X in the C1 topology on M \Ω.

• dist(Y(p),κ(p, bD)) < ε for all p ∈ bM.

• dist(Y(p),κ(ρ(p), D)) < ε for all p ∈ Ω.

[A. Alarcón, F Forstnerič: The Calabi-Yau problem, null curves, and
Bryant surfaces. Math. Ann., in press]
[A. Alarcón, B. Drinovec, F. Forstnerič, F.J. López: Every bordered
Riemann surface is a complete conformal minimal surface bounded by
Jordan curves. Proc. London Math. Soc., in press]
[A. Alarcón, B. Drinovec, F. Forstnerič, F.J. López: Minimal surfaces in
minimally convex domains. In preparation]

We do not change the conformal structure on M.

The boundary discs can be arbitrary planar discs (non-necessarily round)
in parallel planes, and in case n = 3 they can be arbitrary minimal discs
(non-necessarily planar).

Together with the Mergelyan Theorem, this is useful to construct proper
minimal surfaces in mean-convex domains of R3.



Calabi-Yau Problem

1963 Calabi’s Conjecture Every complete minimal surface in R3 is
unbounded. (Disproved by Nadirashvili in 1996.)

2000 Yau What is the geometry of complete bounded minimal surfaces?

2006 Mart́ın-Morales There are complete proper minimal surfaces in any
convex domain of R3.

What about domains other than convex ones?

2012 Ferrer-Mart́ın-Meeks There are complete bounded minimal surfaces
in R3 with arbitrary topology.

What about the conformal structure?



Calabi-Yau Problem

Theorem

Let n ∈N, n ≥ 3, and let D be a convex domain in Rn. Let M be a
bordered Riemann surface and let X : M→ Rn be a conformal minimal
immersion with X(M) ⊂ D.
X may be approximated uniformly in compacta in M by complete proper
conformal minimal immersions (embeddings if n ≥ 5) M→ D.

Theorem
Every compact bordered Riemann surface M is the underlying conformal
structure of complete minimal surface in R3 bounded by Jordan curves.

[A. Alarcón, F Forstnerič: The Calabi-Yau problem, null curves, and
Bryant surfaces. Math. Ann., in press]
[A. Alarcón, B. Drinovec, F. Forstnerič, F.J. López: Every bordered
Riemann surface is a complete conformal minimal surface bounded by
Jordan curves. Preprint 2015]



Calabi-Yau Problem

Theorem

Let D be a mean-convex domain in R3.
Every bordered Riemann surface M carries a complete proper conformal
minimal immersion M→ D.

[A. Alarcón, B. Drinovec, F. Forstnerič, F.J. López: Minimal surfaces in
minimally convex domains. In preparation]

These results contribute to the conformal and asymptotic Calabi-Yau
problems.
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