# CR Geometry, Mappings into Spheres, and Sums-Of-Squares Lecture IV-V

Peter Ebenfelt

University of California, San Diego

October 1, 2015

### Outline - Lectures IV-V

1 Levi Nondegenerate Hypersurfaces in  $\mathbb{C}^{n+1}$ 

- 2 Chern-Moser Normal Form
- 3 E. Cartan's Approach to CR Geometry
- 4 Pseudohermitian Geometry





## Levi nondegenerate hypersurfaces in $\mathbb{C}^{n+1}$ .

Let  $M \subset \mathbb{C}^{n+1}$  be a real hypersurface, and  $p \in M$ . Definitions.

• *M* is Levi nondegenerate at *p* if the Levi form

$$\mathcal{L}^{\theta}_{p} \colon T^{1,0}_{p}M \times T^{1,0}_{p}M \to \mathbb{C}$$

at p is nondegenerate for some (and hence all) contact forms θ.
M is strictly pseudoconvex at p if L<sup>θ</sup><sub>p</sub> is (positive) definite.
Fix p ∈ M. Choose local coordinates (z, w) ∈ C<sup>n</sup> × C such that

$$p = (0,0), \quad T_0^{0,1}M = \{w = 0\}, \quad T_0M = \{\operatorname{Im} w = 0\}.$$

Express M in graph form:

 $\operatorname{Im} w = \phi(z, \bar{z}, \operatorname{Re} w), \quad \phi(0) = 0, \ d\phi(0) = 0; \ \phi \in C^{\kappa}.$ 

# The Levi form.

A computation (see Lecture I) shows that the Levi form  $\mathcal{L}_0^{\theta}$ , with  $\theta = i\partial \rho|_M$ , is represented by

$$\mathcal{L}_0(a,ar{a}) = \sum_{j,k=1}^n rac{\partial \phi}{\partial z_j ar{z}_k}(0) a_j ar{a}_k, \quad a \in T_0^{1,0} M \cong \mathbb{C}^n.$$

**Assume:** *M* is Levi nondegenerate at 0; i.e.,

$$\det(\phi_{z_j\bar{z}_k}(0))_{j,k=1}^n \neq 0.$$

A linear change  $(z,w)\mapsto (Az,\pm w)$ ,  $A\in GL(\mathbb{C}^n)$ , will make

$$(\phi_{z_j\bar{z}_k}(0))_{j,k=1}^n=I_\ell,$$

where  $I_{\ell}$  = diagonal matrix  $D(-1, \ldots, -1, +1, \ldots, +1)$ , with  $\ell$  "-1" and  $n - \ell$  "+1" for some  $0 \le \ell \le n/2$ .  $\ell$  is called signature of M.

A polynomial change  $(z, w) \mapsto (z, w - p(z))$ , with p(z) suitable quadratic polynomial, yields

$$\operatorname{Im} w = \phi(z, \overline{z}, \operatorname{Re} w) = \langle z, \overline{z} \rangle_{\ell} + O_{wt}(3), \qquad (1)$$

where

$$\langle z,\zeta\rangle_{\ell}:=-\sum_{j=1}^{\ell}z_{j}\zeta_{j}+\sum_{j=\ell+1}^{n}z_{j}\zeta_{j}$$

and we assign weights wt z = 1, wt w = 2. The quadric  $Q_{\ell}^n$  is the model

$$\mathsf{Im} w = \langle z, \bar{z} \rangle_{\ell}.$$

## Automorphisms of the model $Q_{\ell}^n$ .

The stability group  $\operatorname{Aut}_0(Q_\ell^n)$  consists of:

$$(z,w)\mapsto \left(rac{\lambda(z-aw)U}{1-2izl_\ell a^*-(r+ial_\ell a^*)w},rac{\sigma\lambda^2w}{1-2izl_\ell a^*-(r+ial_\ell a^*)w}
ight),$$

where  $\lambda > 0$ ,  $a \in \mathbb{C}^n$ ,  $r \in \mathbb{R}$ ,  $\sigma = \pm 1$ , and

$$U^*I_\ell U = \sigma I_\ell.$$

#### Proposition 1

Any biholomorphism  $\Phi(z, w)$ , with  $\Phi(0) = 0$  and preserving the form (1) of M, factors uniquely as  $\Phi = H \circ \Phi_0$ , with  $\Phi_0 \in \operatorname{Aut}_0(Q_\ell^n)$  and

$$H(z,w) = (z + f(z,w), w + g(z,w)),$$

where

$$(f(0), df(0), g(0), dg(0), g_{z_j z_k}(0), \operatorname{Re} g_{w^2}(0)) = 0.$$
 (2)

Let  $F(z, \overline{z}, s)$  be a formal power series. F is said to be of type (k, l) if

$$F(rz, t\bar{z}, s) = r^k t^l F(z, \bar{z}, s),$$

and is then a polynomial in z and  $\overline{z}$ . Any  $F(z, \overline{z}, s)$  can be decomposed into type as

$$F(z,\bar{z},s)=\sum_{k,l\geq 0}F_{kl}(z,\bar{z},s),$$

where  $F_{kl}(z, \bar{z}, s)$  has type (k, l).  $F(z, \bar{z}, s)$  is Hermitian (real) if

$$F_{lk}(z,\overline{z},s)=\overline{F_{kl}(z,\overline{z},s)}.$$

#### The trace operator Tr.

If  $F_{kl}(z, \bar{z}, s)$  has type (k, l), then it has "tensor form"

$$F_{kl}(z,\bar{z},s)=a_{\alpha_1\ldots\alpha_k,\bar{\beta}_1\ldots\bar{\beta}_l}(s)z^{\alpha_1}\ldots z^{\alpha_k}\overline{z^{\beta_1}}\ldots\overline{z^{\beta_l}},$$

where  $z = (z^1, \ldots, z^n)$ ,  $\alpha_i, \beta_j = 1, \ldots, n$ . We shall write

$$\langle z, \bar{z} \rangle_{\ell} = h_{\alpha \bar{\beta}} z^{\alpha} z^{\beta}$$

The trace of  $F_{kl}(z, \bar{z}, s)$  is of type (k - 1, l - 1), defined by

$$\operatorname{Tr} F_{kl}(z, \overline{z}, s) = b_{\alpha_1 \dots \alpha_{k-1}, \overline{\beta}_1 \dots \overline{\beta}_{l-1}} z^{\alpha_1} \dots z^{\alpha_{k-1}} \overline{z^{\beta_1}} \dots \overline{z^{\beta_{l-1}}},$$

where

$$b_{\alpha_1\ldots\alpha_{k-1},\bar{\beta}_1\ldots\bar{\beta}_{l-1}} = h^{\gamma\bar{\mu}} a_{\alpha_1\ldots\alpha_{k-1}\gamma,\bar{\beta}_1\ldots\bar{\beta}_{l-1}\bar{\mu}}, \quad h^{\alpha\bar{\mu}} h_{\beta\bar{\mu}} = \delta^{\alpha}{}_{\beta}.$$

8 / 24

#### Theorem CM-1

Let M be given by (1). Then, there is a unique formal transformation of the form

$$(z,w)\mapsto (z+f(z,w),w+g(z,w)),$$

where f, g satisfy the normalization (2), such that M is given by

$$\operatorname{Im} w = \langle z, \overline{z} \rangle_{\ell} + N(z, \overline{z}, \operatorname{Re} w), \qquad (3)$$

where  $N(z, \overline{z}, s)$  is in Chern-Moser normal form:

$$N_{kl}(z, \bar{z}, s) = 0, \quad \min(k, l) \le 1;$$
  
 $\operatorname{Tr} N_{22}(z, \bar{z}, s) = (\operatorname{Tr})^2 N_{32}(z, \bar{z}, s) = (\operatorname{Tr})^3 N_{33}(z, \bar{z}, s) = 0.$ 
(4)

**Remark.** For a given M, the space  $\operatorname{Aut}_0(Q_{\ell}^n)$  acts on the space of CM normal forms by Proposition 1.

Peter Ebenfelt (UCSD)

## Real-analytic hypersurfaces and geometry.

#### Theorem CM-2

If M is  $C^{\omega}$ , then the unique transformation to normal form in Theorem CM-1 is convergent, i.e., a biholomorphism.

• The first set of equations in (4) corresponds to transforming a given framed, transverse curve  $(\gamma, e_{\alpha}): (-\epsilon, \epsilon) \to T^{1,0}M$  into

$$(\gamma(t), e_{\alpha}(t)) = ((0, t), \partial/\partial z^{\alpha}).$$

- The second set is a system of ODEs (of order 3) for the framed curve. The initial data consist of a direction for γ at 0, an orthonormal basis {e<sub>α</sub>} at 0 for T<sub>0</sub><sup>1,0</sup>M, and a real parameter fixing the parameterization; these initial conditions are parametrized by Aut<sub>0</sub>(Q<sub>ℓ</sub><sup>n</sup>).
- The curves γ that yield solutions to this system of ODEs are called chains. These are important geometric objects associated with M.

Peter Ebenfelt (UCSD) CR Geometry, Mappings into Spheres, and Su

# The CR curvature $S=(S_{lphaareta uar\mu}).$

The Levi form provides a first, very rough classification of Levi nondegenerate hypersurfaces  $M \subset \mathbb{C}^{n+1}$  via the signature  $\ell$ . The next interesting invariant is the CR curvature, defined as follows:

**Definition.** If *M* is given at  $p \in M$  in normal form (3) and (4), then the CR curvature of *M* at *p* is  $S_{\alpha\bar{\beta}\nu\bar{\mu}}$ , where  $N_{22}(z, \bar{z}, 0)$  is given in tensor form:

$$N_{22}(z,\bar{z},0) = S_{\alpha\bar{\beta}\nu\bar{\mu}} z^{\alpha} z^{\nu} \overline{z^{\beta} z^{\mu}}.$$
(5)

**Remarks.** Recall that Tr  $N_{22} = 0 \implies S_{\alpha\bar{\beta}\nu}{}^{\nu} := h^{\nu\bar{\mu}}S_{\alpha\bar{\beta}\nu\bar{\mu}} = 0$ . For n = 1 (i.e., in  $\mathbb{C}^2$ ), this means  $S_{\alpha\bar{\beta}\nu\bar{\mu}} = 0$ , so CR curvature is only interesting when  $n \ge 2$ . In  $\mathbb{C}^2$ , the interesting invariant is E. Cartan's "6th order tensor".

• For  $n \ge 2$ , M is locally "spherical" (equivalent to quadric)  $\iff S_{\alpha\bar{\beta}\nu\bar{\mu}} \equiv 0$ .

#### E. Cartan's approach

# CR coframes on a CR manifold (hypersurface type).

Let M be a 2n + 1-dimensional CR manifold;

• CR bundle  $T^{0,1}M$ , CR-dim M = n.

In an open subset  $U \subset M$ :

• Fix a contact form  $\theta$  on M;  $\iff \theta$  is real and

$$\theta^{\perp} = T^{1,0} M \oplus T^{0,1} M.$$

• Add linearly independent 1-forms  $\theta^1, \ldots, \theta^n$  such that

$$(\theta, \theta^1, \ldots \theta^n)^{\perp} = T^{0,1}M.$$

Set θ<sup>ᾱ</sup> = θ<sup>ᾱ</sup>; Convention: α, β,... = 1,..., n.
(θ, θ<sup>α</sup>, θ<sup>β̄</sup>) is coframe for M in U; (θ, θ<sup>α</sup>) is called a CR coframe.

# Change of coframe and CTCM coframes.

Any other CR coframe  $( ilde{ heta}, ilde{ heta}^lpha)$  in  $U\subset M$  must be of the form

$$egin{pmatrix} \widetilde{ heta}\ \widetilde{ heta}^lpha \end{pmatrix} = egin{pmatrix} u & 0\ u^lpha & u_eta^lpha \end{pmatrix} egin{pmatrix} heta\ heta^eta \end{pmatrix} egin{pmatrix} heta\ heta^eta \end{pmatrix} \end{pmatrix}.$$

For a choice of CR coframe  $(\theta, \theta^{\alpha})$ ,

$$d\theta = ih_{\alpha\bar{\beta}}\theta^{\alpha} \wedge \theta^{\bar{\beta}} + \theta \wedge \phi_{0}, \tag{6}$$

where  $h_{\alpha\beta}$  is the Levi form  $\mathcal{L}^{\theta}(L_{\alpha}, L_{\beta})$  and  $\phi_0$  a real 1-form, determined only up to  $\phi_0 \mapsto \phi_0 + v\theta$ .

**Definition.** A choice of  $(\theta, \theta^{\alpha}, \theta^{\overline{\beta}}, \phi_0)$  (as above) is called a CTCM coframe.

CTCM = Cartan-Tanaka-Chern-Moser, [1, 2, 4, 3].

## First prolongation; the bundle of contact forms $E \rightarrow M$ .

Let  $E \to M$  be the  $\mathbb{R}_+$  bundle of contact forms such that the Levi form  $h_{\alpha\bar{\beta}}$  has  $\ell \leq n/2$  negative eigenvalues. For a fixed such  $\theta$  and  $x \in M$ ,

$$E_{x} = \{ \omega = u\theta \colon u \in \mathbb{R}_{+} \}.$$

By (6), we have

$$d\omega = iuh_{\alpha\bar{\beta}}\theta^{\alpha} \wedge \theta^{\bar{\beta}} + \omega \wedge \left(\frac{du}{u} + \phi_0\right),$$

which can be written

$$d\omega = ig_{\alpha\bar{\beta}}\omega^{\alpha} \wedge \omega^{\bar{\beta}} + \omega \wedge \phi, \qquad (7)$$

where  $g_{\alpha\bar{\beta}}$  is a constant matrix and  $(\omega, \omega^{\alpha}, \omega^{\bar{\beta}}, \phi)$  is a coframe on E.

The coframe  $(\omega, \omega^{lpha}, \omega^{areta}, \phi)$  on E is determined up to

$$\begin{pmatrix} \tilde{\omega} \\ \tilde{\omega}^{\alpha} \\ \tilde{\omega}^{\bar{\beta}} \\ \tilde{\phi} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ v^{\alpha} & v_{\nu}^{\alpha} & 0 & 0 \\ v^{\bar{\beta}} & 0 & v_{\bar{\mu}}^{\bar{\beta}} & 0 \\ s & ig_{\gamma\bar{\rho}}v_{\nu}^{\gamma}v^{\bar{\rho}} & -ig_{\gamma\bar{\rho}}v_{\bar{\mu}}^{\bar{\rho}}v^{\gamma} & 1 \end{pmatrix} \begin{pmatrix} \omega \\ \omega^{\nu} \\ \omega^{\bar{\mu}} \\ \phi \end{pmatrix},$$
(8)

where  $g_{\alpha\bar{\beta}} = g_{\nu\bar{\mu}} v_{\alpha}^{\ \nu} v_{\bar{\beta}}^{\ \bar{\mu}}$ .

- Let Y → E be the bundle of all CTCM coframes, i.e., the bundle of all coframes of the form (8).
- $G = \text{group of all matrices in (8) acts on } Y \rightarrow E$ .

# Reduction of $Y \rightarrow E \rightarrow M$ to a $\{e\}$ -structure [3].

#### Theorem CM-2

There exists a uniquely determined coframe

$$[\omega, \omega^{\alpha}, \omega^{\bar{\beta}}, \phi, \phi^{\alpha}, \phi^{\bar{\beta}}, \phi_{\gamma}{}^{\alpha}, \phi_{\bar{\mu}}{}^{\bar{\beta}}, \psi)$$
(9)

on Y that satisfy **structure equations** (including (7)). The coframe can be assembled into a Cartan connection on  $Y \rightarrow E \rightarrow M$ .

• One of the structure equations has the form

$$d\phi_{\gamma}{}^{\alpha} = \phi_{\gamma}{}^{\nu} \wedge \phi_{\nu}{}^{\alpha} + S_{\gamma}{}^{\alpha}{}_{\nu\bar{\mu}}\omega^{\nu} \wedge \omega^{\bar{\mu}} + \dots$$
(10)

Given a CTCM coframe (θ, θ<sup>α</sup>, θ<sup>β</sup>, φ) ( ⇒ section of Y), the forms (9) can be pulled back to M, and S<sub>αβνμ</sub> = g<sub>γβ</sub>S<sub>γ</sub><sup>α</sup><sub>νμ</sub> yields the CR curvature tensor on M previously defined.

Remark. Bianchi identities can be used to show that if

$$S_{\alpha\bar{\beta}\nu\bar{\mu}}\equiv 0, \text{ on } \pi^{-1}(U)\subset Y$$

for some  $U \subset M$ , then the coframe (9) on  $\pi \colon Y \to M$  (locally over U) coincides with (satisfies the same structure equations as) that of the hyperquadric  $\pi \colon Y_0 \to Q_\ell^n$ . According to E. Cartan's solution to his "equivalence problem", it follows that there is a diffeomorphism  $Y \cong Y_0$  (locally). This pushes down to a CR equivalence  $U \cong U' \subset Q_\ell^n$ .

• Thus,  $S_{\alpha\bar{\beta}\nu\bar{\mu}}\equiv 0$  characterizes the hyperquadric locally.

S. Webster and N. Tanaka's approach. Pseudohermitian geometry.

19 / 24

**Fix** a contact form  $\theta$  on M.  $(M, \mathcal{V} = T^{0,1}M, \theta)$  is called a pseudohermitian manifold. Let  $(\theta, \theta^{\alpha})$  be a CR coframe. By a change

$$\theta^{\alpha} \mapsto \theta^{\alpha} + u^{\alpha}\theta,$$

it follows from (6) that we can achieve

$$d\theta = ih_{\alpha\bar{\beta}}\theta^{\alpha} \wedge \theta^{\bar{\beta}}.$$
 (11)

A CR coframe  $(\theta, \theta^{\alpha})$  satisfying (11) is called admissible. The forms  $\theta^{\alpha}$  are determined up to changes

$$\theta^{lpha}\mapsto u_{
u}{}^{lpha}\theta^{
u},\quad h_{lphaar{eta}}=h_{
uar{\mu}}u_{lpha}{}^{
u}u_{ar{eta}}{}^{ar{\mu}}.$$

#### Theorem ΨH

Given an admissible CR coframe  $(\theta, \theta^{\alpha})$ , there are uniquely determined connection forms  $\omega_{\nu}{}^{\beta}$ , torsion forms  $\tau^{\alpha} = A^{\alpha}{}_{\bar{\mu}}\theta^{\bar{\mu}}$  such that

$$d\theta = ih_{\alpha\bar{\beta}}\theta^{\alpha} \wedge \theta^{\beta}$$

$$d\theta^{\alpha} = \theta^{\nu} \wedge \omega_{\nu}{}^{\alpha} + \theta \wedge \tau^{\alpha}$$

$$dh_{\alpha\bar{\beta}} = \omega_{\alpha\bar{\beta}} + \omega_{\bar{\beta}\alpha}.$$
(12)

The connection forms satisfy

$$d\omega_{\alpha}{}^{\beta} = \omega_{\alpha}{}^{\nu} \wedge \omega_{\nu}{}^{\beta} + R_{\alpha}{}^{\beta}{}_{\nu\bar{\mu}}\theta^{\nu} \wedge \theta^{\bar{\mu}} + \dots$$
(13)

(+ similar equation for the torsion forms.)

- $R_{\alpha\bar{\beta}\nu\bar{\mu}}$  is called the Tanaka-Webster curvature. Pseudohermitian (but not a CR) invariant.
- *M* is torsion free (i.e.  $\tau^{\alpha} = 0$ )  $\iff$  the Reeb vector field is an infinitesimal CR automorphism.
- On a CR manifold *M*, there is a pseudohermitian structure that is torsion free ⇐⇒ there is a transverse infinitesimal CR automorphism; such *M* are called "rigid" or "regular".
- The CR structure on *M* is in some sense the "conformal class" of pseudohermitian structures on *M*.

22 / 24

### Tanaka-Webster curvature vs. CR curvature

Fix a pseudohermitian structure  $\theta$ , and let  $(\theta, \theta^{\alpha})$  be an admissible coframe. Then  $(\theta, \theta^{\alpha}, \theta^{\overline{\beta}}, \phi = 0)$  is a CTCM coframe. We pull down the CR curvature  $S_{\alpha\overline{\beta}\nu\overline{\mu}}$  using this CTCM coframe.

#### Proposition

The CR curvature is the traceless part (Weyl tensor) of the Tanaka-Webster curvature; i.e.,

$$\begin{split} S_{\alpha\bar{\beta}\mu\bar{\nu}} &= R_{\alpha\bar{\beta}\mu\bar{\nu}} - \frac{R_{\alpha\bar{\beta}}h_{\mu\bar{\nu}} + R_{\mu\bar{\beta}}h_{\alpha\bar{\nu}} + R_{\alpha\bar{\nu}}h_{\mu\bar{\beta}} + R_{\mu\bar{\nu}}h_{\alpha\bar{\beta}}}{n+2} \\ &+ \frac{R(h_{\alpha\bar{\beta}}h_{\mu\bar{\nu}} + h_{\alpha\bar{\nu}}h_{\mu\bar{\beta}})}{(n+1)(n+2)}, \end{split}$$

where

$$R_{lphaareta}:=R_{\mu}{}^{\mu}{}_{lphaareta}$$
 and  $R:=R_{\mu}{}^{\mu}$ 

are respectively the *pseudohermitian Ricci* and *scalar curvatures* of  $(M, \theta)$ .

# C. Fefferman's approach. Just kidding! The End

24 / 24



Sur la géométrie pseudo-conforme des hypersurfaces de l'espace de deux variables complexes II.

Ann. Scuola Norm. Sup. Pisa Cl. Sci. (2), 1(4):333–354, 1932.

### 📔 Élie Cartan.

Sur la géométrie pseudo-conforme des hypersurfaces de l'espace de deux variables complexes.

Ann. Mat. Pura Appl., 11(1):17–90, 1933.

S. S. Chern and J. K. Moser.

Real hypersurfaces in complex manifolds. *Acta Math.*, 133:219–271, 1974.

### Noboru Tanaka.

On pseudo-conformal geometry of hypersurfaces of the space of n complex variables.

J. Math. Soc. Japan, 14:397-429, 1962.



#### Noboru Tanaka.

A differential geometric study on strongly pseudo-convex manifolds.

Peter Ebenfelt (UCSD)

Lectures in Mathematics, Department of Mathematics, Kyoto University, No. 9. Kinokuniya Book-Store Co., Ltd., Tokyo, 1975.

#### S. M. Webster.

Pseudo-Hermitian structures on a real hypersurface.

J. Differential Geom., 13(1):25-41, 1978.

24 / 24