CR Geometry, Mappings into Spheres, and Sums-Of-Squares Lecture IV-V

Peter Ebenfelt
University of California, San Diego

October 1, 2015

Outline - Lectures IV-V

(1) Levi Nondegenerate Hypersurfaces in \mathbb{C}^{n+1}
(2) Chern-Moser Normal Form
(3) E. Cartan's Approach to CR Geometry
4) Pseudohermitian Geometry
(5) References
(6) End

Levi nondegenerate hypersurfaces in \mathbb{C}^{n+1}.

Let $M \subset \mathbb{C}^{n+1}$ be a real hypersurface, and $p \in M$.

Definitions.

- M is Levi nondegenerate at p if the Levi form

$$
\mathcal{L}_{p}^{\theta}: T_{p}^{1,0} M \times T_{p}^{1,0} M \rightarrow \mathbb{C}
$$

at p is nondegenerate for some (and hence all) contact forms θ.

- M is strictly pseudoconvex at p if \mathcal{L}_{p}^{θ} is (positive) definite.

Fix $p \in M$. Choose local coordinates $(z, w) \in \mathbb{C}^{n} \times \mathbb{C}$ such that

$$
p=(0,0), \quad T_{0}^{0,1} M=\{w=0\}, \quad T_{0} M=\{\operatorname{Im} w=0\}
$$

Express M in graph form:

$$
\operatorname{Im} w=\phi(z, \bar{z}, \operatorname{Re} w), \quad \phi(0)=0, d \phi(0)=0 ; \phi \in C^{\kappa} .
$$

The Levi form.

A computation (see Lecture I) shows that the Levi form \mathcal{L}_{0}^{θ}, with $\theta=\left.i \partial \rho\right|_{M}$, is represented by

$$
\mathcal{L}_{0}(a, \bar{a})=\sum_{j, k=1}^{n} \frac{\partial \phi}{\partial z_{j} \bar{z}_{k}}(0)_{a_{j} \bar{a}_{k}}, \quad a \in T_{0}^{1,0} M \cong \mathbb{C}^{n} .
$$

Assume: M is Levi nondegenerate at 0 ; i.e.,

$$
\operatorname{det}\left(\phi_{z_{j} \bar{j}_{k}}(0)\right)_{j, k=1}^{n} \neq 0 .
$$

A linear change $(z, w) \mapsto(A z, \pm w), A \in G L\left(\mathbb{C}^{n}\right)$, will make

$$
\left(\phi_{z_{j} \bar{z}_{k}}(0)\right)_{j, k=1}^{n}=I_{\ell},
$$

where $I_{\ell}=$ diagonal matrix $D(-1, \ldots,-1,+1, \ldots,+1)$, with ℓ " -1 " and $n-\ell "+1$ " for some $0 \leq \ell \leq n / 2$. ℓ is called signature of M.

The quadric Q_{ℓ}^{n} and weights.

A polynomial change $(z, w) \mapsto(z, w-p(z))$, with $p(z)$ suitable quadratic polynomial, yields

$$
\begin{equation*}
\operatorname{Im} w=\phi(z, \bar{z}, \operatorname{Re} w)=\langle z, \bar{z}\rangle_{\ell}+O_{w t}(3) \tag{1}
\end{equation*}
$$

where

$$
\langle z, \zeta\rangle_{\ell}:=-\sum_{j=1}^{\ell} z_{j} \zeta_{j}+\sum_{j=\ell+1}^{n} z_{j} \zeta_{j}
$$

and we assign weights wt $z=1$, wt $w=2$. The quadric Q_{ℓ}^{n} is the model

$$
\operatorname{Im} w=\langle z, \bar{z}\rangle_{\ell} .
$$

Automorphisms of the model Q_{ℓ}^{n}.

The stability group $\operatorname{Aut}_{0}\left(Q_{\ell}^{n}\right)$ consists of:

$$
(z, w) \mapsto\left(\frac{\lambda(z-a w) U}{1-2 i z I_{\ell} a^{*}-\left(r+i a l_{\ell} a^{*}\right) w}, \frac{\sigma \lambda^{2} w}{1-2 i z I_{\ell} a^{*}-\left(r+i a l_{\ell} a^{*}\right) w}\right),
$$

where $\lambda>0, a \in \mathbb{C}^{n}, r \in \mathbb{R}, \sigma= \pm 1$, and

$$
U^{*} I_{\ell} U=\sigma I_{\ell} .
$$

Proposition 1

Any biholomorphism $\Phi(z, w)$, with $\Phi(0)=0$ and preserving the form (1) of M, factors uniquely as $\Phi=H \circ \Phi_{0}$, with $\Phi_{0} \in \operatorname{Aut}_{0}\left(Q_{\ell}^{n}\right)$ and

$$
H(z, w)=(z+f(z, w), w+g(z, w))
$$

where

$$
\begin{equation*}
\left(f(0), d f(0), g(0), d g(0), g_{z_{j} z_{k}}(0), \operatorname{Re} g_{w^{2}}(0)\right)=0 \tag{2}
\end{equation*}
$$

Decomposition of power series by type.

Let $F(z, \bar{z}, s)$ be a formal power series. F is said to be of type (k, l) if

$$
F(r z, t \bar{z}, s)=r^{k} t^{\prime} F(z, \bar{z}, s)
$$

and is then a polynomial in z and \bar{z}. Any $F(z, \bar{z}, s)$ can be decomposed into type as

$$
F(z, \bar{z}, s)=\sum_{k, l \geq 0} F_{k l}(z, \bar{z}, s)
$$

where $F_{k l}(z, \bar{z}, s)$ has type $(k, I) . F(z, \bar{z}, s)$ is Hermitian (real) if

$$
F_{l k}(z, \bar{z}, s)=\overline{F_{k l}(z, \bar{z}, s)}
$$

The trace operator Tr .

If $F_{k l}(z, \bar{z}, s)$ has type (k, I), then it has "tensor form"

$$
F_{k l}(z, \bar{z}, s)=a_{\alpha_{1} \ldots \alpha_{k}, \bar{\beta}_{1} \ldots \bar{\beta}_{l}}(s) z^{\alpha_{1}} \ldots z^{\alpha_{k}} \overline{z^{\beta_{1}}} \ldots \overline{z^{\beta_{l}}}
$$

where $z=\left(z^{1}, \ldots, z^{n}\right), \quad \alpha_{i}, \beta_{j}=1, \ldots, n$. We shall write

$$
\langle z, \bar{z}\rangle_{\ell}=h_{\alpha \bar{\beta}} z^{\alpha} \overline{z^{\beta}} .
$$

The trace of $F_{k l}(z, \bar{z}, s)$ is of type $(k-1, I-1)$, defined by

$$
\operatorname{Tr} F_{k l}(z, \bar{z}, s)=b_{\alpha_{1} \ldots \alpha_{k-1}, \bar{\beta}_{1} \ldots \bar{\beta}_{l-1}} z^{\alpha_{1}} \ldots z^{\alpha_{k-1}} \overline{z^{\beta_{1}}} \ldots \overline{z^{\beta_{l-1}}}
$$

where

$$
b_{\alpha_{1} \ldots \alpha_{k-1}, \bar{\beta}_{1} \ldots \bar{\beta}_{I-1}}=h^{\gamma \bar{\mu}} a_{\alpha_{1} \ldots \alpha_{k-1} \gamma, \bar{\beta}_{1} \ldots \bar{\beta}_{I-1} \bar{\mu}}, \quad h^{\alpha \bar{\mu}} h_{\beta \bar{\mu}}=\delta_{\beta}^{\alpha}
$$

Chern-Moser normal form [3].

Theorem CM-1

Let M be given by (1). Then, there is a unique formal transformation of the form

$$
(z, w) \mapsto(z+f(z, w), w+g(z, w))
$$

where f, g satisfy the normalization (2), such that M is given by

$$
\begin{equation*}
\operatorname{Im} w=\langle z, \bar{z}\rangle_{\ell}+N(z, \bar{z}, \operatorname{Re} w) \tag{3}
\end{equation*}
$$

where $N(z, \bar{z}, s)$ is in Chern-Moser normal form:

$$
\begin{align*}
N_{k l}(z, \bar{z}, s) & =0, \quad \min (k, l) \leq 1 \\
\operatorname{Tr} N_{22}(z, \bar{z}, s) & =(\operatorname{Tr})^{2} N_{32}(z, \bar{z}, s)=(\operatorname{Tr})^{3} N_{33}(z, \bar{z}, s)=0 . \tag{4}
\end{align*}
$$

Remark. For a given M, the space $\operatorname{Aut}_{0}\left(Q_{\ell}^{n}\right)$ acts on the space of CM normal forms by Proposition 1.

Real-analytic hypersurfaces and geometry.

Theorem CM-2

If M is C^{ω}, then the unique transformation to normal form in Theorem CM-1 is convergent, i.e., a biholomorphism.

- The first set of equations in (4) corresponds to transforming a given framed, transverse curve $\left(\gamma, e_{\alpha}\right):(-\epsilon, \epsilon) \rightarrow T^{1,0} M$ into

$$
\left(\gamma(t), e_{\alpha}(t)\right)=\left((0, t), \partial / \partial z^{\alpha}\right)
$$

- The second set is a system of ODEs (of order 3) for the framed curve. The initial data consist of a direction for γ at 0 , an orthonormal basis $\left\{e_{\alpha}\right\}$ at 0 for $T_{0}^{1,0} M$, and a real parameter fixing the parameterization; these initial conditions are parametrized by $\operatorname{Aut}_{0}\left(Q_{\ell}^{n}\right)$.
- The curves γ that yield solutions to this system of ODEs are called chains. These are important geometric objects associated with M.

The CR curvature $S=\left(S_{\alpha \bar{\beta} \bar{\mu} \bar{\mu}}\right)$.

The Levi form provides a first, very rough classification of Levi nondegenerate hypersurfaces $M \subset \mathbb{C}^{n+1}$ via the signature ℓ. The next interesting invariant is the CR curvature, defined as follows:

Definition. If M is given at $p \in M$ in normal form (3) and (4), then the CR curvature of M at p is $S_{\alpha \bar{\beta} \nu \bar{\mu}}$, where $N_{22}(z, \bar{z}, 0)$ is given in tensor form:

$$
\begin{equation*}
N_{22}(z, \bar{z}, 0)=S_{\alpha \bar{\beta} \nu \bar{\mu}} z^{\alpha} z^{\nu} \overline{z^{\beta} z^{\mu}} \tag{5}
\end{equation*}
$$

Remarks. Recall that $\operatorname{Tr} N_{22}=0 \Longrightarrow S_{\alpha \bar{\beta} \nu}{ }^{\nu}:=h^{\nu \bar{\mu}} S_{\alpha \bar{\beta} \nu \bar{\mu}}=0$. For $n=1$ (i.e., in \mathbb{C}^{2}), this means $S_{\alpha \bar{\beta} \nu \bar{\mu}}=0$, so CR curvature is only interesting when $n \geq 2$. In \mathbb{C}^{2}, the interesting invariant is E . Cartan's " 6 th order tensor".

- For $n \geq 2, M$ is locally "spherical" (equivalent to quadric) \qquad $S_{\alpha \bar{\beta} \nu \bar{\mu}} \equiv 0$.

E. Cartan's approach

CR coframes on a CR manifold (hypersurface type).

Let M be a $2 n+1$-dimensional CR manifold;

- CR bundle $T^{0,1} M, C R-\operatorname{dim} M=n$.

In an open subset $U \subset M$:

- Fix a contact form θ on M; $\Longleftrightarrow \theta$ is real and

$$
\theta^{\perp}=T^{1,0} M \oplus T^{0,1} M
$$

- Add linearly independent 1 -forms $\theta^{1}, \ldots, \theta^{n}$ such that

$$
\left(\theta, \theta^{1}, \ldots \theta^{n}\right)^{\perp}=T^{0,1} M
$$

- Set $\theta^{\bar{\alpha}}=\overline{\theta^{\alpha}}$; Convention: $\alpha, \beta, \ldots=1, \ldots, n$.
- $\left(\theta, \theta^{\alpha}, \theta^{\bar{\beta}}\right)$ is coframe for M in $U ;\left(\theta, \theta^{\alpha}\right)$ is called a CR coframe.

Change of coframe and CTCM coframes.

Any other CR coframe $\left(\tilde{\theta}, \tilde{\theta}^{\alpha}\right)$ in $U \subset M$ must be of the form

$$
\binom{\tilde{\theta}}{\tilde{\theta}^{\alpha}}=\left(\begin{array}{cc}
u & 0 \\
u^{\alpha} & u_{\beta}^{\alpha}
\end{array}\right)\binom{\theta}{\theta^{\beta}}
$$

For a choice of CR coframe $\left(\theta, \theta^{\alpha}\right)$,

$$
\begin{equation*}
d \theta=i h_{\alpha \bar{\beta}} \theta^{\alpha} \wedge \theta^{\bar{\beta}}+\theta \wedge \phi_{0} \tag{6}
\end{equation*}
$$

where $h_{\alpha \bar{\beta}}$ is the Levi form $\mathcal{L}^{\theta}\left(L_{\alpha}, L_{\beta}\right)$ and ϕ_{0} a real 1-form, determined only up to $\phi_{0} \mapsto \phi_{0}+v \theta$.
Definition. A choice of $\left(\theta, \theta^{\alpha}, \theta^{\bar{\beta}}, \phi_{0}\right)$ (as above) is called a CTCM coframe.
CTCM $=$ Cartan-Tanaka-Chern-Moser, [1, 2, 4, 3].

First prolongation; the bundle of contact forms $E \rightarrow M$.

Let $E \rightarrow M$ be the \mathbb{R}_{+}bundle of contact forms such that the Levi form $h_{\alpha \bar{\beta}}$ has $\ell \leq n / 2$ negative eigenvalues. For a fixed such θ and $x \in M$,

$$
E_{x}=\left\{\omega=u \theta: u \in \mathbb{R}_{+}\right\}
$$

By (6), we have

$$
d \omega=i u h_{\alpha \bar{\beta}} \theta^{\alpha} \wedge \theta^{\bar{\beta}}+\omega \wedge\left(\frac{d u}{u}+\phi_{0}\right)
$$

which can be written

$$
\begin{equation*}
d \omega=i g_{\alpha \bar{\beta}} \omega^{\alpha} \wedge \omega^{\bar{\beta}}+\omega \wedge \phi, \tag{7}
\end{equation*}
$$

where $g_{\alpha \bar{\beta}}$ is a constant matrix and $\left(\omega, \omega^{\alpha}, \omega^{\bar{\beta}}, \phi\right)$ is a coframe on E.

The bundle of CTCM coframes $Y \rightarrow E \rightarrow M$.

The coframe $\left(\omega, \omega^{\alpha}, \omega^{\bar{\beta}}, \phi\right)$ on E is determined up to

$$
\left(\begin{array}{c}
\tilde{\omega} \tag{8}\\
\tilde{\omega}^{\alpha} \\
\tilde{\omega}^{\bar{\beta}} \\
\tilde{\phi}
\end{array}\right)=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
v^{\alpha} & v_{\nu}^{\alpha} & 0 & 0 \\
v^{\bar{\beta}} & 0 & v_{\bar{\mu}}{ }^{\beta} & 0 \\
s & i g_{\gamma \bar{\rho}} v_{\nu}{ }^{\gamma} v^{\bar{\rho}} & -i g_{\gamma \bar{\rho}} v_{\bar{\mu}}{ }^{\bar{\rho}} v^{\gamma} & 1
\end{array}\right)\left(\begin{array}{c}
\omega \\
\omega^{\nu} \\
\omega^{\bar{\mu}} \\
\phi
\end{array}\right),
$$

where $g_{\alpha \bar{\beta}}=g_{\nu \bar{\mu}} v_{\alpha}{ }^{\nu} v_{\bar{\beta}}{ }^{\bar{\mu}}$.

- Let $Y \rightarrow E$ be the bundle of all CTCM coframes, i.e., the bundle of all coframes of the form (8).
- $G=$ group of all matrices in (8) acts on $Y \rightarrow E$.

Reduction of $Y \rightarrow E \rightarrow M$ to a $\{e\}$-structure [3].

Theorem CM-2

There exists a uniquely determined coframe

$$
\begin{equation*}
\left(\omega, \omega^{\alpha}, \omega^{\bar{\beta}}, \phi, \phi^{\alpha}, \phi^{\bar{\beta}}, \phi_{\gamma}{ }^{\alpha}, \phi_{\bar{\mu}}{ }^{\bar{\beta}}, \psi\right) \tag{9}
\end{equation*}
$$

on Y that satisfy structure equations (including (7)). The coframe can be assembled into a Cartan connection on $Y \rightarrow E \rightarrow M$.

- One of the structure equations has the form

$$
\begin{equation*}
d \phi_{\gamma}{ }^{\alpha}=\phi_{\gamma}{ }^{\nu} \wedge \phi_{\nu}{ }^{\alpha}+S_{\gamma}{ }^{\alpha}{ }_{\nu \bar{\mu}} \omega^{\nu} \wedge \omega^{\bar{\mu}}+\ldots . \tag{10}
\end{equation*}
$$

- Given a CTCM coframe $\left(\theta, \theta^{\alpha}, \theta^{\bar{\beta}}, \phi\right)(\Longrightarrow$ section of $Y)$, the forms (9) can be pulled back to M, and $S_{\alpha \bar{\beta} \nu \bar{\mu}}=g_{\gamma \bar{\beta}} S_{\gamma}{ }^{\alpha}{ }_{\nu \bar{\mu}}$ yields the CR curvature tensor on M previously defined.

Locally "spherical" CR structures.

Remark. Bianchi identities can be used to show that if

$$
S_{\alpha \bar{\beta} \nu \bar{\mu}} \equiv 0, \quad \text { on } \pi^{-1}(U) \subset Y
$$

for some $U \subset M$, then the coframe (9) on $\pi: Y \rightarrow M$ (locally over U) coincides with (satisfies the same structure equations as) that of the hyperquadric $\pi: Y_{0} \rightarrow Q_{\ell}^{n}$. According to E . Cartan's solution to his "equivalence problem", it follows that there is a diffeomorphism $Y \cong Y_{0}$ (locally). This pushes down to a $C R$ equivalence $U \cong U^{\prime} \subset Q_{\ell}^{n}$.

- Thus, $S_{\alpha \bar{\beta} \nu \bar{\mu}} \equiv 0$ characterizes the hyperquadric locally.
S. Webster and N. Tanaka's approach. Pseudohermitian geometry.

Pseudohermitian geometry and admissible frames

Fix a contact form θ on M. $\left(M, \mathcal{V}=T^{0,1} M, \theta\right)$ is called a pseudohermitian manifold. Let $\left(\theta, \theta^{\alpha}\right)$ be a CR coframe. By a change

$$
\theta^{\alpha} \mapsto \theta^{\alpha}+u^{\alpha} \theta
$$

it follows from (6) that we can achieve

$$
\begin{equation*}
d \theta=i h_{\alpha \bar{\beta}} \theta^{\alpha} \wedge \theta^{\bar{\beta}} . \tag{11}
\end{equation*}
$$

A CR coframe $\left(\theta, \theta^{\alpha}\right)$ satisfying (11) is called admissible. The forms θ^{α} are determined up to changes

$$
\theta^{\alpha} \mapsto u_{\nu}{ }^{\alpha} \theta^{\nu}, \quad h_{\alpha \bar{\beta}}=h_{\nu \bar{\mu}} u_{\alpha}{ }^{\nu} u_{\bar{\beta}}{ }^{\bar{\mu}} .
$$

The pseudohermitian connection $[6,5]$.

Theorem ΨH

Given an admissible CR coframe $\left(\theta, \theta^{\alpha}\right)$, there are uniquely determined connection forms $\omega_{\nu}{ }^{\beta}$, torsion forms $\tau^{\alpha}=A^{\alpha}{ }_{\bar{\mu}} \theta^{\bar{\mu}}$ such that

$$
\begin{align*}
d \theta & =i h_{\alpha \bar{\beta}} \theta^{\alpha} \wedge \theta^{\bar{\beta}} \\
d \theta^{\alpha} & =\theta^{\nu} \wedge \omega_{\nu}^{\alpha}+\theta \wedge \tau^{\alpha} \tag{12}\\
d h_{\alpha \bar{\beta}} & =\omega_{\alpha \bar{\beta}}+\omega_{\bar{\beta} \alpha} .
\end{align*}
$$

The connection forms satisfy

$$
\begin{equation*}
d \omega_{\alpha}{ }^{\beta}=\omega_{\alpha}{ }^{\nu} \wedge \omega_{\nu}{ }^{\beta}+R_{\alpha}{ }^{\beta}{ }_{\nu \bar{\mu}} \theta^{\nu} \wedge \theta^{\bar{\mu}}+\ldots . \tag{13}
\end{equation*}
$$

(+ similar equation for the torsion forms.)

Remarks.

- $R_{\alpha \bar{\beta} \nu \bar{\mu}}$ is called the Tanaka-Webster curvature. Pseudohermitian (but not a CR) invariant.
- M is torsion free (i.e. $\left.\tau^{\alpha}=0\right) \Longleftrightarrow$ the Reeb vector field is an infinitesimal CR automorphism.
- On a CR manifold M, there is a pseudohermitian structure that is torsion free \Longleftrightarrow there is a transverse infinitesimal CR automorphism; such M are called "rigid" or "regular".
- The CR structure on M is in some sense the "conformal class" of pseudohermitian structures on M.

Tanaka-Webster curvature vs. CR curvature

Fix a pseudohermitian structure θ, and let $\left(\theta, \theta^{\alpha}\right)$ be an admissible coframe. Then $\left(\theta, \theta^{\alpha}, \theta^{\bar{\beta}}, \phi=0\right)$ is a CTCM coframe. We pull down the CR curvature $S_{\alpha \bar{\beta} \nu \bar{\mu}}$ using this CTCM coframe.

Proposition

The CR curvature is the traceless part (Weyl tensor) of the Tanaka-Webster curvature; i.e.,

$$
\begin{aligned}
S_{\alpha \bar{\beta} \mu \bar{\nu}}=R_{\alpha \bar{\beta} \mu \bar{\nu}}-\frac{R_{\alpha \bar{\beta}} h_{\mu \bar{\nu}}+R_{\mu \bar{\beta}} h_{\alpha \bar{\nu}}+R_{\alpha \bar{\nu}} h_{\mu \bar{\beta}}+R_{\mu \bar{\nu}} h_{\alpha \bar{\beta}}}{n+2} \\
+\frac{R\left(h_{\alpha \bar{\beta}} h_{\mu \bar{\nu}}+h_{\alpha \bar{\nu}} h_{\mu \bar{\beta}}\right)}{(n+1)(n+2)}
\end{aligned}
$$

where

$$
R_{\alpha \bar{\beta}}:=R_{\mu}{ }^{\mu}{ }_{\alpha \bar{\beta}} \text { and } R:=R_{\mu}{ }^{\mu}
$$

are respectively the pseudohermitian Ricci and scalar curvatures of (M, θ).

C. Fefferman's approach. Just kidding!

 The EndÉlie Cartan.
Sur la géométrie pseudo-conforme des hypersurfaces de l'espace de deux variables complexes II.
Ann. Scuola Norm. Sup. Pisa Cl. Sci. (2), 1(4):333-354, 1932.
㬐 Élie Cartan.
Sur la géométrie pseudo-conforme des hypersurfaces de l'espace de deux variables complexes.
Ann. Mat. Pura Appl., 11(1):17-90, 1933.
㞘 S. S. Chern and J. K. Moser.
Real hypersurfaces in complex manifolds.
Acta Math., 133:219-271, 1974.
Noboru Tanaka.
On pseudo-conformal geometry of hypersurfaces of the space of n complex variables.
J. Math. Soc. Japan, 14:397-429, 1962.

Noboru Tanaka.
A differential geometric study on strongly pseudo-convex manifolds.

Lectures in Mathematics, Department of Mathematics, Kyoto University, No. 9. Kinokuniya Book-Store Co., Ltd., Tokyo, 1975.
R S. M. Webster.
Pseudo-Hermitian structures on a real hypersurface. J. Differential Geom., 13(1):25-41, 1978.

