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Levi nondegenerate hypersurfaces in C"*1.

Let M C C"*! be a real hypersurface, and p € M.
Definitions.

@ M is Levi nondegenerate at p if the Levi form
6. 71,0 1,0
Ly TymMx T;mM — C

at p is nondegenerate for some (and hence all) contact forms 6.

@ M is strictly pseudoconvex at p if Lf, is (positive) definite.

Fix p € M. Choose local coordinates (z, w) € C" x C such that

p=1(0,0), T&'M={w=0}, ToM={Imw =0}
Express M in graph form:

Imw = ¢(z,z,Rew), ¢(0)=0, dp(0) =0; ¢ € C".
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The Levi form.

A computation (see Lecture 1) shows that the Levi form L£§, with
0 = idp|m, is represented by

n

Lo(a, 3) = a—qb_(o)ajék, ac T,°M=cC".

Assume: M is Levi nondegenerate at 0; i.e.,
det(¢z,(0))] k=1 # 0.
A linear change (z,w) — (Az,£w), A € GL(C"), will make
(¢22,(0))] k=1 = I,

where I, = diagonal matrix D(—1,...,—1,41,...,+1), with £ "-1" and
n—2{¢"+1" for some 0 < ¢ < n/2. {is called signature of M.
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The quadric Q; and weights.

A polynomial change (z, w) — (z,w — p(z)), with p(z) suitable quadratic
polynomial, yields

Imw = ¢(z,z,Rew) = (z,2Z); + Out(3), (1)

where

ZZJCJ + Z zjGj

j=t+1

and we assign weights wtz = 1, wtw = 2. The quadric @/ is the model

Imw = (z,Z),.
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Automorphisms of the model Q.

The stability group Auto(Qj) consists of:
ANz — aw)U o\w
(z,w) — . . , . . ,
1 —2izlpa* — (r + ialga*)w’ 1 — 2izlsa* — (r + ialpa*)w
where A >0, ae C", reR, o ==+1, and

U l,U = oly.

Any biholomorphism ®(z, w), with ®(0) = 0 and preserving the form (1)
of M, factors uniquely as ® = H o &g, with &y € Auto(Q/) and

H(z,w) = (z + f(z,w),w + g(z, w)),

where
(f(0)7 df(0)7 g(O), dg(O), gzjzk(0)7 Reng(O)) = 0. (2)

v
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Decomposition of power series by type.

Let F(z,Z,s) be a formal power series. F is said to be of type (k,/) if
F(rz,tz,s) = rkt/F(z,Z, s),

and is then a polynomial in z and Z. Any F(z,Z,s) can be decomposed
into type as

where Fy(z,z,s) has type (k, /). F(z,Z, s) is Hermitian (real) if

F/k(Z,Z,S) = Fk/(Z,f, S).
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The trace operator Tr.

If Fii(z,Z,s) has type (k, /), then it has "tensor form”
Fu(z,2,s) = a,, o, 5,..5(5)z .. Z% P 2B,
where z = (z1,...,2"), «;,Bj=1,...,n. We shall write
(z,Z)p = haBzo‘ziﬂ.
The trace of Fy(z,Zz,s) is of type (k — 1,/ — 1), defined by

TrFkI(z7275):b al...zak“ﬁ...zﬁ’—l,

ar..ap_1,B1.B-1%
where

b = hw_‘a haﬁhgﬁ = (5(15.

ag...ox_1,01--Bi-1 a1..ak—17,81..Bi-1p?
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Chern-Moser normal form [3].

Theorem CM-1

Let M be given by (1). Then, there is a unique formal transformation of
the form

(z,w) = (z+ f(z,w), w + g(z,w)),
where f, g satisfy the normalization (2), such that M is given by

Imw = (z,z); + N(z,Z,Re w), (3)

where N(z,Z,s) is in Chern-Moser normal form:

Ni(z,z,5) =0, min(k,[) <1,
Tr N22(Z,Z,S) = (TI’)2N32(Z,2,S) = (Tr)3N33(z,2, S) = 0.

Remark. For a given M, the space Auto(Q;') acts on the space of CM
normal forms by Proposition 1.
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Real-analytic hypersurfaces and geometry.

If M is C%, then the unique transformation to normal form in Theorem
CM-1 is convergent, i.e., a biholomorphism.

@ The first set of equations in (4) corresponds to transforming a given
framed, transverse curve (v, e,): (—¢,€) — THOM into

(7(t); ea(t)) = ((0, t),8/0z%).

@ The second set is a system of ODEs (of order 3) for the framed curve.
The initial data consist of a direction for v at 0, an orthonormal basis
{en} at 0 for Tol’ol\/l, and a real parameter fixing the parameterization;
these initial conditions are parametrized by Auto(Q}).

@ The curves ~y that yield solutions to this system of ODEs are called
chains. These are important geometric objects associated with M.
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The CR curvature S = (S,3,7)-

The Levi form provides a first, very rough classification of Levi
nondegenerate hypersurfaces M C C"*! via the signature /. The next
interesting invariant is the CR curvature, defined as follows:

Definition. If M is given at p € M in normal form (3) and (4), then the
CR curvature of M at pis S5, where Ny (z,Z,0) is given in tensor
form:

N22(Z, 2, 0) = Saﬁl/u

z%2"zPz1. (5)
Remarks. Recall that Tr Ny =0 = S_5,” := h""'S, apvp =0- Forn=1
(i.e., in (C2) this means S aBvi = =0, so CR curvature is only interesting
when n > 2. In C2, the interesting invariant is E. Cartan’s "6th order
tensor” .

@ For n > 2, M is locally "spherical” (equivalent to quadric) <=
SOzBVﬂ =0.
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E. Cartan's approach
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CR coframes on a CR manifold (hypersurface type).

Let M be a 2n + 1-dimensional CR manifold;
e CR bundle T%*M, CR-dim M = n.

In an open subset U C M:

@ Fix a contact form 8 on M; <= @ is real and

0 =T""'Mao T M.

e Add linearly independent 1-forms @', ..., 8" such that

0,60, ...0M = 7% Mm.

@ Set #% = #2; Convention: a,3,...=1,...,n.
o (0,0%,0°) is coframe for M in U; (6,60%) is called a CR coframe.
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Change of coframe and CTCM coframes.

Any other CR coframe (#,6%) in U C M must be of the form

g\ (u O 0
go) — \wu® wug® ) \6%)"
For a choice of CR coframe (¢, 60%),
d§ = ih,56% A 6% + 6 A o, (6)

where h, 5 is the Levi form L%(Ly, Lg) and ¢g a real 1-form, determined
only up to ¢g — ¢g + vO.

Definition. A choice of (9,«9“,95,%) (as above) is called a CTCM
coframe.

CTCM = Cartan-Tanaka-Chern-Moser, [1, 2, 4, 3].
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First prolongation; the bundle of contact forms E — M.

Let E — M be the R, bundle of contact forms such that the Levi form
h,5 has £ < n/2 negative eigenvalues. For a fixed such 6 and x € M,

Ex={w=ub:uecR}.

By (6), we have
. o n 0B du
dw = iuh,50% N 0° + w A 74-(250 ,

which can be written

dw = ig,zw™ A W FwA g, (7)

where 8,7 IS a constant matrix and (w,w"‘,wﬁ,qb) is a coframe on E.
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The bundle of CTCM coframes Y — E — M.

The coframe (w,wa,wB,qﬁ) on E is determined up to

w 1 0 0 0 w
&)0_‘ B v‘i‘ v, ¢ O_ 0 w? (8)
il I B 0 vi? ol [wi |’

o s gy IvP —igypvaPvT 1 10)

where g5 = gl,ﬁva”vﬁ-ﬁ.

@ Let Y — E be the bundle of all CTCM coframes, i.e., the bundle of
all coframes of the form (8).

e G = group of all matrices in (8) actson Y — E.
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Reduction of Y — E — M to a {e}-structure [3].

Theorem CM-2

There exists a uniquely determined coframe

(w7wa’w5a¢’ ¢a’¢57¢7a’¢ﬁ57w) (9)

on Y that satisfy structure equations (including (7)). The coframe can
be assembled into a Cartan connection on Y — E — M.

@ One of the structure equations has the form

do,* = ¢, A g™ + S, pw” Awl 4. (10)

@ Given a CTCM coframe (9,0‘1,05, ¢) (= section of Y), the forms

(9) can be pulled back to M, and afvi = 8,35+ v yields the CR
curvature tensor on M previously defined.
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Locally "spherical” CR structures.

Remark. Bianchi identities can be used to show that if

S,

ofvp =0, on N U)cY

for some U C M, then the coframe (9) on 7: Y — M (locally over U)
coincides with (satisfies the same structure equations as) that of the
hyperquadric 7: Yo — Q. According to E. Cartan’s solution to his
"equivalence problem”, it follows that there is a diffeomorphism Y = Y
(locally). This pushes down to a CR equivalence U = U’" C Q}.

@ Thus, 5,5,; = 0 characterizes the hyperquadric locally.

Peter Ebenfelt (UCSD) CR Geometry, Mappings into Spheres, and Su October 1, 2015 18 / 24



S. Webster and N. Tanaka's approach. Pseudohermitian geometry.
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Pseudohermitian geometry and admissible frames

Fix a contact form 6 on M. (M,V = T%1 M, 0) is called a
pseudohermitian manifold. Let (6,0“) be a CR coframe. By a change

0% s 0% + U0,
it follows from (6) that we can achieve
df = ih,50* N\ 6°. (11)

A CR coframe (0, 0%) satisfying (11) is called admissible. The forms 0%
are determined up to changes

0% — w0, h,z= hyﬁua”uB’_‘.
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The pseudohermitian connection [6, 5.

Theorem WH

Given an admissible CR coframe (6, 6%), there are uniquely determined
connection forms w,?, torsion forms 7 = A%z0" such that

df = ih,56° A 6°
do® = 0" Aw,* + 0 AT (12)
dhaB = waﬁ =+ wBa.

The connection forms satisfy

dwO/B = WQV /\ wVIB + ROCBV/TLQV /\ 9/1 + AR (13)

(+ similar equation for the torsion forms.)

Peter Ebenfelt (UCSD) CR Geometry, Mappings into Spheres, and Su October 1, 2015



® R,j5, is called the Tanaka-Webster curvature. Pseudohermitian (but

not a CR) invariant.

e M is torsion free (i.e. 7 =0) <= the Reeb vector field is an
infinitesimal CR automorphism.

@ On a CR manifold M, there is a pseudohermitian structure that is
torsion free <= there is a transverse infinitesimal CR
automorphism; such M are called "rigid” or "regular”.

@ The CR structure on M is in some sense the "conformal class” of
pseudohermitian structures on M.
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Tanaka-Webster curvature vs. CR curvature

Fix a pseudohermitian structure 6, and let (¢,0%) be an admissible
coframe. Then (8,6%,6% ¢ = 0) is a CTCM coframe. We pull down the

CR curvature oBvp USINg this CTCM coframe.

Proposition

The CR curvature is the traceless part (Weyl tensor) of the
Tanaka-Webster curvature; i.e.,

o L Raghwj aF Ruéhaf/ aF Ra,jhug aF Rﬂﬁhaﬁ_
S s = R 5.5
apfuv afuv n4+2

R(hth,u; + ho”_’hMB)
(n+1)(n+2) ~

where
R B = Rﬂ’ua/@ and R = Ru“

(6%

are respectively the pseudohermitian Ricci and scalar curvatures of (M, 0).
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C. Fefferman’s approach. Just kidding!
The End
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