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Lecture 2: Mergelyan approximation and applications

In this lecture we will

• discuss the Mergelyan approximation theorem for conformal minimal
immersions M→ Rn (n ≥ 3),

• discuss the general position theorem for minimal surfaces in Rn

(n ≥ 5),

and use them to construct proper minimal immersions M→ Rn,
embeddings if n ≥ 5.

Based on joint work with

• Franc Forstnerič, University of Ljubljana.

• Francisco J. López, University of Granada.

[A. Alarcón, F.J. López: Minimal surfaces in R3 properly projecting into
R2. J. Differential Geom. 2012]
[A. Alarcón, F. Forstnerič: Null curves and directed immersions of open
Riemann surfaces. Invent. Math. 2014]
[A. Alarcón, F. Forstnerič, F.J. López: Embedded minimal surfaces in Rn.
Preprint 2014]



Mergelyan Theorem

A compact subset K of an open Riemann surface M is said to be Runge
if M \K has no relatively compact connected components.

1951 Mergelyan If K ⊂M is a Runge compact subset then every

continuous function K → C, holomorphic on K̊ , may be approximated,
uniformly on K , by entire functions M→ C.



Mergelyan Theorem for conformal minimal immersions

Definition
A compact subset S of an open Riemann surface M is said admissible if

S = K ∪ Γ,

where K =
⋃
D j is a union of finitely many pairwise disjoint, compact,

smoothly bounded domains D j in M and Γ =
⋃

Γi is a union of finitely
many pairwise disjoint smooth arcs or closed curves that intersect K only
in their endpoints (or not at all), and such that their intersections with
the boundary bK are transverse.



Mergelyan Theorem for conformal minimal immersions

Definition
If S = K ∪ Γ ⊂M is admissible, a generalized conformal minimal
immersion of S into Rn (n ≥ 3) is a pair (X, f ϑ) where

• X : S→ Rn is a smooth immersion,

• f : S→ A∗ = {z = (z1, . . . , zn) ∈ Cn : ∑n
j=1 z

2
j = 0} \ {0} is

continuous, holomorphic on K ,

• ϑ is a holomorphic 1-form on M with no zeros, and

X(z) = X(z0) +<
∫ z

z0
f ϑ, z0, z ∈ S .

We denote by GCMI(S, Rn) the set of generalized conformal minimal
immersions of S ⊂M into Rn.

If S = K ∪ Γ and (X, f ϑ) ∈ GCMI(S, Rn) then X|K : K → Rn is a
conformal minimal immersion.



Mergelyan Theorem for conformal minimal immersions

Given A ⊂M and n ≥ 3 we denote by CMI(A, Rn) the set of conformal
minimal immersions A→ Rn.

Definition

An immersion X ∈ CMI(A, Rn) is said to be nondegenerate if
f (A) ⊂ A∗ is not contained in any linear complex hyperplane of Cn,
where f = ∂X/ϑ.

We denote by CMI∗(A, Rn) the set of nondegenerate conformal minimal
immersions A→ Rn.

Theorem
Assume that M is an open Riemann surface and that S = K ∪ Γ is a
compact Runge admissible set in M. Then every generalized conformal
minimal immersion (X, f ϑ) ∈ GCMI(S, Rn) (n ≥ 3) may be
approximated in the C 1(S) topology by nondegenerate conformal
minimal immersions Y ∈ CMI∗(M, Rn).



Approach in R3: The López-Ros transformation

In dimension n = 3, the Weierstrass data f ϑ of a conformal minimal
immersion X : M→ R3 are of the form

f =

(
1

2

(
1

g
− g

)
,

ı
2

(
1

g
+ g

)
, 1

)
φ3,

where g is meromorphic (the Complex Gauss map) and φ3 holomorphic.
If M is simply connected and g̃ = gh where h is holomorphic and has no
zeros on M, then

f̃ ϑ =

(
1

2

(
1

g̃
− g̃

)
,

ı
2

(
1

g̃
+ g̃

)
, 1

)
φ3ϑ,

integrates to a conformal minimal immersion X̃ : M→ R3 by the formula

X̃(p) = X(p0) +<
∫ p

p0
f̃ ϑ.

If M is not simply connected, one has to deal with the period problem of
the first two components; note that the third components X̃3 = X3.
X̃ is said to be obtained from X by a López-Ros deformation.



Approach in R3: The López-Ros transformation

To prove the Mergelyan Theorem for CMIs into R3 we argue as follows:

Let S = K ∪ Γ be a compact Runge admissible set in M and let
(X, f ϑ) ∈ GCMI(S, R3) be a generalized conformal minimal immersion.

Then f is of the form

f =

(
1

2

(
1

g
− g

)
,

ı
2

(
1

g
+ g

)
, 1

)
φ3,

where g and φ3 are smooth on S (except for the poles of g which we
may assume that lie on K ), g is meromorphic on K , and φ3 is
holomorphic on K . By the classical Mergelyan Theorem we may
approximate g and φ3, uniformly on K , by a meromorphic function g̃ and
a holomorphic function φ̃3 on M such that

f̃ ϑ =

(
1

2

(
1

g̃
− g̃

)
,

ı
2

(
1

g̃
+ g̃

)
, 1

)
φ̃3ϑ

is holomorphic and has no real periods on M. Integrating f̃ ϑ and taking
real part solves the theorem.



Approach in R3: The López-Ros transformation

The above approach also works in the nonorientable framework (one has
to take care of the symmetries

φ3 ◦ I = φ3, g ◦ I = − 1

g
,

where I : M→M is an antiholomorphic involution without fixed points
and ϑ satisfies I∗ϑ = ϑ)...

[A. Alarcón, F.J. López: Approximation theory for non-orientable minimal
surfaces and applications. Geom. Topol. (2015)]

2014 López ... and also for minimal surface of finite total curvature (one
has to look for algebraic g , φ3, and ϑ)...

... but it does not work for n ≥ 4.



Stein Manifolds

A complex manifold S is said to be a Stein manifold if:

• holomorphic functions on S separate points:

x , x ′ ∈ S , x 6= x ′ ⇔ f (x) 6= f (x ′) for some f ∈ O(S).

• S is holomorphically convex: For every compact set K ⊂ S , its
O(S)-convex hull

K̂O(S) := {x ∈ S : |f (x)| ≤ sup
K
|f | ∀f ∈ O(S)} ⊂ S

is also compact.

Equivalently, for every discrete sequence {aj}j∈N ⊂ S there exists a
holomorphic function f on S such that {|f (aj )|}j∈N → ∞.

Every open Riemann surface is Stein.



What should be the dual notion to a Stein manifold?

By definition, a Stein manifold S admits many holomorphic functions
f : S → C.

Replace C by a complex manifold Z and ask the following:

For which complex manifolds Z do there exist many holomorphic
maps S → Z from any Stein manifold S?



Oka manifolds

What is a good way to interpret many maps?

Weierstrass Theorem. On a discrete subset of a domain Ω ⊂ C we may
prescribe the values of a holomorphic function Ω→ C.

Runge Theorem. If K ⊂ C is a compact set such that C \K is
connected, then every holomorphic function K → C may be
approximated uniformly on K by entire functions C→ C.

Cartan Extension Theorem. If T is a closed complex subvariety of a Stein
manifold S , then every holomorphic function T → C extends to a
holomorphic function S → C.

Oka-Weil Approximation Theorem. Let K = K̃O(S) be a compact
holomorphically convex subset of a Stein manifold S . Here

K̂O(S) := {p ∈ S : |f (p)| ≤ sup
K
|f | ∀f ∈ O(S)}.

Then every holomorphic function K → C can be approximated uniformly
on K by holomorphic functions S → C.



Oka manifolds

Definition
A complex manifold Z is said to be an Oka manifold if every
holomorphic map from a neighborhood of a compact convex set K ⊂ CN

to Z may be approximated, uniformly on K , by entire maps CN → Z .

Basic Oka Property with Approximation: Z is Oka if and only if maps
K → Z , where K is a holomorphically convex compact subset of a Stein
manifold S , enjoy the Runge property.

1989 Gromov Elliptic complex manifolds are Oka.

A complex manifold Z is elliptic if it admits a dominating spray; i.e.,
a family of holomorphic maps fx : Cn → Z , depending holomorphically
on x ∈ Z , such that fx (0) = x and dfx (0) : Cn → TxZ is surjective
for every x ∈ Z .

Example If Z admits C-complete holomorphic vector fields V1, . . . ,Vn

which span TxZ at every point x ∈ Z , then the composition of their
flows is a dominating spray on Z :

fx (t1, . . . , tn) = φ1
t1 ◦ φ2

t2 ◦ · · · ◦ φn
tn (x), t1, . . . , tn ∈ C.



The Null Quadric is Oka

Theorem

The Null quadric A∗ = {z = (z1, . . . , zn) ∈ Cn : ∑n
j=1 z

2
j = 0} \ 0 ⊂ Cn

is an elliptic manifold, and hence an Oka manifold.

Indeed, the holomorphic vector fields on Cn,

Vj ,k (z) = zj
∂

∂zk
− zk

∂

∂zj
, 1 ≤ j , k ≤ n,

are linear and hence C-complete, their flows preserve A∗, and they span
the tangent space of A∗ at every point. Thus A∗ is elliptic, and hence an
Oka manifold by Gromov’s theorem.



Dominating holomorphic sprays of maps

Let M = M̊∪ bM be a compact bordered Riemann surface, and let Z be
a complex manifold.
We denote by A r (M,Z ) the space of C r maps M→ Z which are
holomorphic in M̊.

Definition

• A holomorphic spray of maps of class A r (M,Z ) is a family of maps
ft ∈ A r (M,Z ) depending holomorphically on a parameter t in a ball
0 ∈ B ⊂ CN . The map f0 is the core of the spray.

• A spray ft is dominating if ∂t |t=0ft(x) : CN → Tf0(x)Z is surjective
for every x ∈M.

2007 Drinovec-Drnovšek, Forstnerič If M is a bordered Riemann surface and
Z is any complex manifold, then every map f0 ∈ A r (M,Z ) (r ∈ Z+)
is the core map of a dominating holomorphic spray ft ∈ A r (M,Z )
(t ∈ B ⊂ CN , N large).



The period map

Let M = M̊∪ bM be a compact bordered Riemann surface. Fix a
nowhere vanishing holomorphic 1-form ϑ on M.

Pick a basis {γj}lj=1 of the 1st homology group H1(M; Z). Let

P = (P1, . . . ,Pl ) : A 0(M, Cn)→ (Cn)l

be the period map. The j-th component, applied to f ∈ A 0(M, Cn), is

Pj (f ) =
∫

γj

f ϑ =
∫ 1

0
f (γj (s))ϑ(γj (s), γ̇j (s)) ds ∈ Cn.

By Stokes’ theorem, the period map does not change under homotopic
deformations of the loops γj : [0, 1]→M.

The 1-form f ϑ has no real periods if its periods are imaginary:

<
(
Pj (f )

)
= <

∫
γj

f ϑ = 0, j = 1, . . . , l .

The 1-form f ϑ is exact if its periods vanish:

Pj (f ) =
∫

γj

f ϑ = 0, j = 1, . . . , l .



Period dominating holomorphic sprays

Lemma
Let M, ϑ, and γ1, . . . , γl be as above, and let n ∈N, n ≥ 3, and
r ∈ Z0.

Assume that f0 : M→ A∗ ⊂ Cn is a map of class A r (M,A∗) which is
nondegenerate, in the sense that f (M) ⊂ A∗ is not contained in any
linear complex hyperplane of Cn.

Then there exists a dominating and period dominating spray
ft : M→ A∗ of class A r (M) (t ∈ B ⊂ CN ,N large):

∂

∂t

∣∣∣∣
t=0
P(ft) : CN → (Cn)l is surjective.

Furthermore, every degenerate map f0 ∈ A r (M,A∗) may be
approximated arbitrarily closely by nondegenerate maps in A r (M,A∗).



Construction of period dominating holomorphic sprays

We may assume that M b M̃ is a smoothly bounded domain in an open
Riemann surface M̃. Let Cj = γj ([0, 1]) ⊂M (j = 1, . . . , l) be a basis of
H1(M; Z) such that C = ∪jCj ⊂M is Runge.

• The graph G = {(x , f0(x)) : x ∈M} has an open Stein neighborhood

Ω ⊂ M̃×A∗.

• Choose holomorphic vector fields V1, . . . ,Vm on Ω which are
tangential to A∗ and span the tangent space at each point.

• Consider the spray ft given by

ft(x) = φ1
h1(x)t1

◦ · · · ◦ φN
hN (x)tN

(x), t = (t1, . . . , tN ),

where each φj is the flow of one of the vector fields Vk (possibly with
repetitions) and hj are holomorphic functions on M.

• We have
∂

∂tj

∣∣∣∣
t=0

ft(x) = hj (x)Vj (f0(x)).

Choose the values of hj in a suitable way on C = ∪jCj and apply
Mergelyan’s approximation theorem to ensure that ft is dominating
and period dominating.



Banach manifold structure

Theorem
Let M be a compact bordered Riemann surface and r ∈ Z+. The set

{f ∈ A r (M,A∗) : f nondegenerate, <(P(f )) = 0},

where A∗ ∈ Cn, is a real analytic Banach manifold.

Indeed, the set A r (M,Z ) is a complex Banach manifold for any r ∈ Z+

and any complex manifold Z .

The existence of period dominating sprays shows that the equation

<(P(f )) = 0 (f ∈ A r (M,A∗))

is of maximal rank if f is nondegenerate.

Corollary

Let M be a compact bordered Riemann surface and n ≥ 3, r ∈N.
The space CMIr∗(M, Rn) of nondegenerate conformal minimal
immersions is a real analytic Banach manifold with the natural C r (M)
norm.



Mergelyan Theorem for conformal minimal immersions

Theorem
Assume that M is an open Riemann surface and that S = K ∪ Γ is a
compact Runge admissible set in M.

Then every generalized conformal minimal immersion
(X, f ϑ) ∈ GCMI(S, Rn) (n ≥ 3) may be approximated in the C 1(S)
topology by nondegenerate conformal minimal immersions
Y ∈ CMI∗(M, Rn).

Furthermore, the approximating immersion Y may be chosen so that
FluxY = p where p : H1(M, Z)→ Rn is any group homomorphism
satisfying p(C ) = =

∫
C f ϑ for all closed curve C ⊂ S.



Mergelyan Theorem for CMIs - Proof

Choose an exhaustion S b M1 b M2 b · · · b ∪∞
j=1Mj = M such that

every Mj is a smooth Runge domain in M and Mj+1 is obtained from
Mj in one of the following ways:

(a) Noncritical case: Mj is a strong deformation retract of Mj+1.

(b) Critical case, index 0: A new connected component.

(c) Critical case, index 1: Mj+1 = Mj ∪ (1-handle).

Call M0 = S and f0 = f . We inductively construct a sequence of
nondegenerate holomorphic maps fj : Mj → A∗ such that∫

C
fjϑ = ıp(C ) for all closed loop C ⊂Mj .

and fj+1|Mj
approximates fj as close as desired.

Integrating the limit map h := limj→∞fj will solve the problem:

Y(p) = X(p0) +<
∫ p

p0
hϑ, p0 ∈ S, p ∈M.



Mergelyan Theorem - Proof - Basis of the induction

Assume that S = M0 = K ∪ Γ is connected and a strong deformation
retract of M1. Recall that f is holomorphic on an open neighborhood
U ⊂M of K and is smooth on Γ. Assume also, by the above Lemma,
that f0 = f is nondegenerate.

• Up to a shrinking of U around K we may find a period dominating
spray of smooth maps hw : U ∪ Γ→ A∗ which are holomorphic on U
and depend holomorphically on a parameter w in a ball B ⊂ CN , with
h0 = f0.

• By Mergelyan approximation, we get a new holomorphic spray of maps
h̃w : V ⊃ S→ A∗ which approximates the initial spray hw uniformly
on M0, and uniformly with respect to the parameter w .

• Since A∗ is an Oka manifold, M× B is a Stein manifold, and S = M0

is Runge in M and a deformation retract of M1, we may approximate
the spray h̃w uniformly on S (and uniformly with respect to the
parameter w) by a holomorphic spray of maps gw : M1 → A∗ for w in
a slightly smaller ball B ′ ⊂ B.

• If both approximations made above are close enough then there exists
w0 ∈ B ′ close to the origin such that the map f1 := gw0 : M1 → A∗

satisfies the required conditions, by the period dominating condition.



Mergelyan Theorem - Proof - Inductive step

Noncritical case: Since Mj is a strong deformation retract of Mj+1 the
proof of the basis of the induction applies.

Critical case, Index 0: We reduce the proof to to noncritical case by
defining fj+1 in the new component as any holomorphic map into A∗.

Critical case, Index 1: Now Mj+1 retracts onto the union of Mj and a
smooth arc Ej ∼= [0, 1] ⊂Mj+1 whose endpoints aj , bj belong to Mj and
which is otherwise disjoint from Mj , and Mj ∪ Ej is Runge in Mj+1.
Further, we may assume that Mj ∪ Ej is admissible.

• If aj , bj belong to different components of Mj then no new nontrivial
loop appears in the 1st homology group and we proceed as in the basis
of the induction.

• If aj , bj belong to the same component of Mj then Ej closes to a loop
γ ⊂Mj ∪ Ej ⊂Mj+1. Since fj is nondegenerate, the convex hull of
the algebraic variety A∗ equals Cn, and

∫
γ fjϑ = ıp(γ), we may extend

fj to a smooth map f̂j : Mj ∪ Ej → A∗ such that∫
γ
f̂jϑ = ıp(γ).

We then proceed as in the basis of the induction.



General Position Theorem

Self-intersections of surfaces in R3 and R4 are stable under deformations.

Theorem
Let M be an open Riemann surface.

Every conformal minimal immersion X : M→ Rn (n ≥ 5) can be
approximated uniformly on compacts in M by conformal minimal
embeddings Y : M→ Rn.

Furthermore Y may be chosen such that FluxY = FluxX.



General Position Theorem - Proof

It suffices to consider the case when M is a compact bordered Riemann
surface. Consider the difference map

δX : M×M→ Rn, δX(p, q) = X(p)−X(q).

Clearly X is an embedding if and only if

(δX)−1(0) = DM = {(p, p) : p ∈M} ⊂M×M.

Since X is an immersion, it is locally injective, and there is an open
neighborhood U ⊂M×M of the diagonal DM such that δX does not
assume the value 0 ∈ Rn in U \DM.

To prove the theorem, it suffices to find arbitrarily close to X another
conformal minimal immersion Y : M→ Rn whose difference map δY,
restricted to M×M \ U, is transverse to the origin 0 ∈ Rn.

Since dimR M×M = 4 < n, this will imply that δY does not assume the
value 0 ∈ Rn in M×M \ U, so Y(p) 6= Y(q) if (p, q) ∈M×M \ U. It
also does not assume the value 0 ∈ Rn on U \DM if Y is close enough
to X. Hence Y is an embedding.

Such a map Y is obtained by a transversality argument.



General Position Theorem - Proof

We begin by finding a holomorphic spray of maps F : B ×M→ Rn,
where B ⊂ RN is a ball centered at 0 ∈ RN , N large, such that

• F(0, ·) = X.

• F(x , ·) : M→ Rn is a conformal minimal immersion for all x ∈ B.

• The difference map

δF : B ×M×M→ Rn, δF(x , p, q) = F(x , p)− F(x , q)

is a submersive family on M×M \ U, meaning that

dx |x=0δF(x , p, q) : RN → Rn

is surjective for every (p, q) ∈M×M \ U.

The standard transversality argument due to Abraham shows that for a
generic choice of x ∈ B ′ b B, the difference map δF(x , ·, ·) is transverse
to {0} ⊂ Rn on M×M \ U, and so it omits the value 0 ∈ Rn by
dimensions reasons.
Choose Y := F(x , ·) for a suitable x ∈ RN close to 0.



Proper minimal surfaces with given conformal structure

Theorem
Let M be an open Riemann surface and n ≥ 3.

There is a conformal minimal immersion
X = (X1, X2, . . . , Xn) : M→ Rn such that (X1, X2) : M→ R2 is a
proper map.

Furthermore, if n ≥ 5 then X may be chosen to be an embedding.

Corollary

Every open Riemann surface is the underlying conformal structure of a
minimal surface in R3 properly projecting into R2.

1985 Schoen-Yau’s Conjecture Every minimal surface in R3 properly
projecting into R2 is parabolic.

1980s Sullivan’s Conjecture Every proper minimal surface in R3 of finite
topology is parabolic. (Disproved by Morales in 2003, his
counterexample was a conformal disc.)



Proper minimal surfaces with given conformal structure

Corollary

Every open Riemann surface properly embeds in R5 as a conformal
minimal surface.

False in R3. There are even topological restrictions.

Open in R4. There are no topological restrictions.



Proper embeddings of manifolds

General problem: When is an abstract manifold of a certain kind
embeddable as a submanifold of a Euclidean space?

• Withney: every smooth n-manifold embeds smoothly in R2n+1.

• Nash, Gromov: isometric immersions and embeddings of Riemannian
manifolds in RN

• Greene and Wu: every Riemannian manifold of dimension n admits a
harmonic embedding in R2n+1.

• Remmert, Bishop, Narasimhan: every n-dimensional Stein manifold
embeds properly holomorphically in C2n+1. In particular, every open
Riemann surface embeds properly in C3.

• Eliashberg and Gromov, Schurmann: Every Stein manifold of
dimension n > 1 embeds in C[3n/2]+1 and this is sharp.

Open Problem: Does every open Riemann surface properly
holomorphically embeds in C2? And in R4 as a conformal minimal
surface? And by harmonic functions?



Proper minimal surfaces - Proof

We choose an exhaustion M1 b M2 b · · · b ∪∞
j=1Mj = M, such that

every Mj is a smooth Runge domain in M, an initial conformal minimal
immersion M1 → Rn, and apply the following lemma in a recursive way.

Lemma
Let U b V be smoothly bounded compact Runge domains in M. Let
X = (X1, X2, . . . , Xn) : U → Rn (n ≥ 3) be a conformal minimal
immersion such that

max{|X1(p)|, |X2(p)|} > η for some η > 0 and all p ∈ bU.

Then there is a conformal minimal immersion
Y = (Y1, Y2, . . . , Yn) : V → Rn such that:

(I) Y is as close as desired to X in the C 1(U) topology.

(II) max{|Y1(p)|, |Y2(p)|} > η for all p ∈ V \ Ů.

(III) max{|Y1(p)|, |Y2(p)|} > η + 1 for all p ∈ bV .

The limit map M→ Rn solves the theorem. If n ≥ 5 we use the general
position theorem to get embeddings.



Proper minimal surfaces - Proof of the lemma

We will prove the lemma only for the noncritical case (i.e., U is a
deformation retract of V ); the critical case reduces to the noncritical one
by a simple application of the Mergelyan theorem.

Note that V \ Ů = ∪ii=1Ai where the Ai ’s are pairwise disjoint compact
annuli,

bAi = αi ∪ βi where αi ⊂ bU, βi ⊂ bV .

There exist j ∈N, subsets I1 and I2 of I := {1, . . . , i} ×Zj and compact
connected subarcs {αi ,j : (i , j) ∈ I} satisfying the following conditions:

(a1) ∪jj=1αi ,j = αi for i = 1, . . . , i.

(a2) αi ,j and αi ,j+1 only meet in a common endpoint pi ,j .

(a3) I1 ∪ I2 = I and I1 ∩ I2 = ∅.

(a4) |Xk (p)| > η for all p ∈ αi ,j and all (i , j) ∈ Ik , k = 1, 2.

From (a4) one also has that

(a5) if (i , j) ∈ Ih and (i , j + 1) ∈ Il , h 6= l , then |Xk (pi ,j )| > η for
k ∈ {1, 2}.



Proper minimal surfaces - Proof of the lemma

For every (i , j) ∈ I we choose a smooth embedded arc γi ,j ⊂ Ai with
the following properties:

• γi ,j is attached to U at the endpoint pi ,j .

• γi ,j intersects the arc αi transversely at pi ,j .

• γi ,j ∩ αi = {pi ,j}.

• The other endpoint qi ,j of the arc

γi ,j lies in βi ,j , γi ,j intersects βi

transversely at that point,

and γi ,j ∩ βi = {qi ,j}.

• The arcs γi ,j , (i , j) ∈ I ,

are pairwise disjoint.



Proper minimal surfaces - Proof of the lemma

Extend X to a generalized conformal minimal immersion (X, f ϑ) on the
admissible set

S := U ∪
(
∪(i ,j)∈I γi ,j∪) b M

in such a way that:

(b1) |Xk (p)| > η

for all p ∈ γi ,j−1 ∪ γi ,j ,

(i , j) ∈ Ik , k = 1, 2.

(b2) |Xk (p)| > η + 1

for all p ∈ {qi ,j−1, qi ,j},
(i , j) ∈ Ik , k = 1, 2.

This is possible thanks
to property (a4) above.



Proper minimal surfaces - Proof of the lemma

The Mergelyan theorem for CMIs gives a conformal minimal immersion
F = (F1, F2, . . . , Fn) : V → Rn satisfying the lemma on S:

(c1) F is as close as desired to X in the C 1(U) topology.

(c2) |Fk (p)| > η

for all p ∈ γi ,j−1 ∪ αi ∪ γi ,j ,

(i , j) ∈ Ik , k = 1, 2.

(c3) |Fk (p)| > η + 1

for all p ∈ {qi ,j−1, qi ,j},
(i , j) ∈ Ik , k = 1, 2.

(a4) and (b1) allow (c2).
(b2) allows (c3).
(c2) and (c3) give

(c4) if (i , j) ∈ Ih and (i , j + 1) ∈ Il ,

h 6= l , then for k ∈ {1, 2} we have

|Fk (p)| > η for all p ∈ γi ,j , and |Fk (qi ,j )| > η + 1.



Proper minimal surfaces - Proof of the lemma

Let βi ,j be the Jordan arc in βi which connects the points qi ,j−1 and qi ,j
and does not intersect the set {qi ,h : h ∈ Zj \ {j − 1, j}}.
For every (i , j) ∈ I we denote by Di ,j the closed disc in Ai bounded

bythe arcs γi ,j−1, αi ,j , γi ,j , and βi ,j . Then Ai = ∪jj=1Di ,j for every i .

By the continuity of F, (c2), and (c3), there is for every k ∈ {1, 2} and
every (i , j) ∈ Ik a closed disc Ki ,j ⊂ Di ,j \ (γi ,j−1 ∪ αi ,j ∪ γi ,j ) such that:

(d1) Ki ,j ∩ βi ,j is a compact

connected Jordan arc.

(d2) |Fk (p)| > η

for all p ∈ Di ,j \Ki ,j .

(d3) |Fk (p)| > η + 1

for all p ∈ βi ,j \Ki ,j .

Clearly we have

V \ Ů = ∪(i ,j)∈I (Ki ,j ∪Di ,j \Ki ,j ),

bV = ∪(i ,j)∈I ((βi ,j ∩Ki ,j ) ∪ βi ,j \Ki ,j ).



Proper minimal surfaces - Proof of the lemma

Assume that I1 6= ∅; otherwise I2 = I 6= ∅ and reason symmetrically.

We now deform F into a conformal minimal immersion G : V → Rn

satisfying the lemma on the set U ∪
(
∪(i ,j)∈I1 Di ,j

)
. So we perturb F

largely in ∪(i ,j)∈I1Ki ,j with a suitable control elsewhere.

Consider the admissible compact set

S1 :=
(
U ∪

(
∪(i ,j)∈I2 Di ,j

))
∪
(
∪(i ,j)∈I1 Ki ,j

)
⊂ V .

Note that the compact sets

U ∪
(
∪(i ,j)∈I2 Di ,j

)
and

∪(i ,j)∈I1Ki ,j

are disjoint.



Proper minimal surfaces - Proof of the lemma

Choose y2 > 0 such that

|y2 + F2(p)| > η + 1 for all p ∈ ∪(i ,j)∈I1Ki ,j ,

and define G̃ = (G̃1, G̃2, . . . , G̃n) : S1 → Rn by:

(e1) G̃(p) = F(p) for all p ∈ U ∪
(
∪(i ,j)∈I2 Di ,j

)
.

(e2) G̃(p) = (0, y2, . . . , 0) + F(p) for all p ∈ ∪(i ,j)∈I1Ki ,j .

By using a special version of the Mergelyan theorem for CMIs, which
enables one to preserve one component function whenever it extends
harmonically, we obtain a conformal minimal immersion
G = (G1, G2, . . . , Gn) : V → Rn such that:

G1 = F1.

(f1) G is as close to G̃ as desired in the C 1(S1) topology.

(f2) |Gk (p)| > η for all p ∈ Di ,j \Ki ,j , (i , j) ∈ Ik , k = 1, 2.

(f3) |Gk (p)| > η + 1 for all p ∈ βi ,j \Ki ,j , (i , j) ∈ Ik , k = 1, 2.

(f4) |G2(p)| > η + 1 for all p ∈ Ki ,j and all (i , j) ∈ I1 = I \ I2.



Proper minimal surfaces - Proof of the lemma
If I2 = ∅ then

V = U ∪
(
∪(i ,j)∈I1 Ki ,j

)
∪
(
∪(i ,j)∈I1 Di ,j \Ki ,j

)
,

bV =
(
∪(i ,j)∈I1 βi ,j ∩Ki ,j

)
∪
(
∪(i ,j)∈I1 βi ,j \Ki ,j

)
,

and the Lemma already holds with Y = G.

Assume that I2 6= ∅. A deformation procedure which is symmetric to the
one in the previous step (now the deformation is large in ∪(i ,j)∈I2Ki ,j and
controlled elsewhere) gives a conformal minimal immersion Y : V → Rn

satisfying the conclusion of the lemma.
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