
DEGENERATE COMPLEX MONGE-AMPÈRE EQUATIONS

Abstract. We introduce a new tool in plutipotential theory, the generalized

Monge-Ampère capacities and use these to study degenerate complex Monge-

Ampère equations whose right-hand side is smooth outside a divisor establish-
ing uniform estimates which generalize both Yau’s and Ko lodziej’s celebrated

estimates.

We will also discuss as such generalized capacities turn out to be the key
ingredient to show that the Kaehler-Ricci flow can be run from any arbitrary

positive closed current, and that it is immediately smooth in a Zariski open

subset of X.
All the results we will talk about are joint with C.H. Lu.

Let X be an n-dimensional compact Kähler manifold and fix ω an arbitrary Kähler
form. We denote by Ric(ω) the Ricci form of ω that is a closed positive (1, 1)-
form on X and it represents the first Chern class c1(X) of the underlying manifold.
Conversely, given η a closed differential form representing c1(X), Calabi asked in
[1] whether one can find a Kähler form ω such that

Ric(ω) = η.

He showed that if the answer is positive, then the solution is unique and he proposed
a continuity method to prove the existence. This problem, known as the Calabi
conjecture, remained open for two decades and it was finally solved by Yau in [16].
This result is now known as the Calabi-Yau theorem.

The Calabi conjecture reduces to solving a complex Monge-Ampère of type

(CY) (ω + ddcϕ)n = ehωn,

where h ∈ C∞(X,R). Note that h necessarily satisfies the normalizing condition∫
X

ehωn =

∫
X

ωn.

Theorem 0.1 (Yau78). The equation (CY) admits a unique (up to an additive
constant) solution ϕ ∈ C∞(X,R) such that ωϕ := ω + ddcϕ is a Kähler form.

Yau’s proof relies on the continuity method, a classical tool to solve non linear
PDE’s. The goal is to establish various a priori estimates: in particular it suf-
fices to prove C0 and C2-estimates. Indeed, thanks to Evans-Krylov theory we
can deduce an estimate of type C2,α and this suffices to apply Schauder’s theo-
rem and a bootstrap argument in order to conclude. The most difficult step are
the C0-estimates and Yau’s approach uses Moser’s iterative process. After the
celebrated paper of Yau [16], Ko lodziej [9] generalized the C0 a priori estimates
using pluripotential tools. His uniform estimate can indeed be applied to complex
Monge-Ampère equations of the type

(ω + ddcϕ)n = fdV

where 0 ≤ f ∈ Lp(dV ) for some p > 1. Under these weaker assumptions, he proves
that the solution ϕ is globally bounded on X. Ko lodziej’s proof uses pluripotential
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methods. In order to give an idea of his approach, let me introduce the Monge-
Ampère capacity of a Borel set E ⊂ X, defined as

Cap(E) := sup

{∫
E

(ω + ddcu)n | u ∈ PSH(X,ω) − 1 ≤ u ≤ 0

}
.

The Monge-Ampère capacity is zero for small set for the Monge-Ampère operator.
Precisely, Cap(E) = 0 if and only if E is pluripolar. The key point is then to prove
that the function

H(t) := Cap({ϕ < −t})1/n

satisfies

(0.1) sH(t+ s) ≤ AH(t)2 ∀ t > 0, ∀ s ∈ (0, 1).

Such an inequality allows indeed to deduce that there exists T∞ such that the ca-
pacity of the sublevel set (ϕ < −t) vanishes if t ≥ T∞ and therefore that there
exists C > 0 such that ϕ ≥ −C.

Consider now a complex Monge-Ampère equation of the type

(0.2) (ω + ddcϕ)n = fωn,

where f ∈ L1(X) is such that
∫
X
fωn =

∫
X
ωn. It is very natural for various geo-

metric reasons to look at the case when f is merely smooth and positive on the
complement of a divisor D, e.g. when studying Calabi’s conjecture on quasiprojec-
tive manifolds (see e.g. [12, 13]). Note that such degenerate equations naturally
appear when dealing with the problem of the existence of singular Kähler-Einstein
metrics on varieties with mild singularities.
We recall that the existence and the uniqueness of a weak solution (ϕ ∈ E(X,ω))
of the equation (0.2) were proved in the last years by Guedj and Zeriahi [7] and
Dinew [3], respectively. Thus the relevant question was about the regularity of the
solution ϕ.

In [4] and [5] Chinh H. Lu and I study such a problem. In this wilder set-
ting classical PDE’s methods break down, and we found another approach using
pluripotential theory. The first very general result that we were able to prove is the
following:

Theorem 0.2 (Di Nezza - Lu 2014). Assume that f . e−φ, for some quasi-
plurisubharmonic (qpsh for short) function φ. Let ϕ ∈ E(X,ω) be the solution of
(0.2) normalized such that supX ϕ = 0. Then, for any a > 0 small enough (i.e. a
is such that aφ ∈ PSH(X,ω/2)) there exists A > 0 depending only on

∫
X
e2ϕ/aωn

such that

(0.3) ϕ ≥ aφ−A.

Here, we want to stress that
∫
X
e2ϕ/aωn is finite thanks to Skoda’s theorem since

any qpsh function belonging to the class E has zero Lelong number at each point.
The proof of the above theorem deeply relies on pluripotential methods: we follow
Ko lodziej’s approach with various novelties. We should emphasise that in our case
the solution is not bounded and therefore a natural idea is to bound the solution
from below by a “model” quasi-plurisubharmonic function that can be also very
singular. This is the reason why we introduce a new tool in pluripotential theory,
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the generalized Monge-Ampère capacities, defined as

Capψ(E) := sup

{∫
E

(ω + ddcu)n | u ∈ PSH(X,ω) ψ − 1 ≤ u ≤ ψ
}
, ∀E ⊂ X,

where ψ is a ω/2-psh function.
The idea to prove the generalized C0-estimate in (0.3) is then to show a generalized
version of inequality 0.1 with H(t) := Capψ({ϕ < ψ − t})1/n and ψ = aφ. This
implies that the generalized capacity of sublevel sets (ϕ < ψ − t) vanishes when
t > 0 is large enough. The lower bound in Theorem 0.2 is the key step that allows
us to prove the following regularity result:

Theorem 0.3 (Di Nezza - Lu 2014). Assume that 0 < f ∈ C∞(X \ D) where
D is a closed subset of X. Moreover, assume that f can be written of the form

f = eψ
+−ψ−

, where ψ± are qpsh funtions on X and ψ− ∈ L∞loc(X \ D). Let
ϕ ∈ E(X,ω) be the solution of (0.2) normalized such that supX ϕ = 0. Then ϕ is
smooth outside D.

The idea of the proof goes as follows:
Step 1. We use Demailly’s regularization theorem to obtain quasi-decreasing se-

quences of smooth qpsh functions ψ±ε converging to ψ±. Then we let ϕε ∈ C∞(X)
be the normalized (supX ϕε = 0) solution of the Monge-Ampère equation

(ω + ddcϕε)
n = cεe

ψ+
ε−ψ

−
ε

where cε is a normalization constant. Observe that here we use Yau’s theorem!
Step 2. The goal is to establish C0 and C2 a priori estimates for the sequence of

smooth ω-psh functions (ϕε).
Step 3. (C0-estimates) We use Theorem 0.2 with φ = ψ− to obtain generalized

C0-estimates.
Step 4. (C2-estimates) Thanks to step 3 (the crucial step!) we are able to prove
laplacian estimates of type

∆ωϕε ≤ Ce−ψ
−
.

The generalized Monge-Ampère capacities are not just technical tools but, as
showed above, they are the key ingredient when dealing with Monge-Ampère equa-
tions with degenerate right-hand side. Another application of such tools is to study
the smoothing properties of the Kähler-Ricci flow running from a degenerate initial
data. Let me briefly introduce the setting and the problem.
Let α0 ∈ H1,1(X,R) be a Kähler class. Fix ω0 ∈ α0 a Kähler form. We say that
a family of Kähler metrics ωt := ω(t) solves the Kähler-Ricci flow (KRF for short)
starting from ω0 if

(KRF)
∂ωt
∂t

= −Ric(ωt)

and ω(0) = ω0.
The Kähler-Ricci flow became one of the major tools in Kähler geometry through
the work of many authors starting from Cao [2] who proved that the Kähler-Ricci
flow on a compact Kähler manifold with c1(X) ≤ 0 converges to the unique Kähler-
Einstein metric endowed by the manifold.
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The existence and uniqueness of the Kähler-Ricci flow starting from any Kähler
form is due to Cao [2], Tsuji [15] and Tian-Zhang [14]:

Theorem 0.4. Let ω0 ∈ α0 be a Kähler form. Then there exists a unique family
of Kähler metrics (ω(t))t∈[0,Tmax) satisfying (KRF ) and ω(0) = ω0 where

Tmax := sup{t > 0 |α0 − tc1(X) > 0}
is the maximal time of existence of the flow.

In relation to the “analytic analogue” of the Minimal Model Program, recently
proposed by Song and Tian, one need to start the KRF from a “degenerate” initial
data rather than a Kähler form.
Observe that Tmax does not depend on the initial data but only on its cohomology
class α0, so at least it makes sense asking whether one can start the flow from any
positive closed (1, 1)-current T0 ∈ α0.

In this direction Song and Tian [11] proved that if T0 ∈ α0 is a positive (1, 1)-
current with continuous potential, then there exists a unique family of Kähler me-
trics (ω(t))t∈(0,Tmax) satisfying (KRF ) and such that ω(t) converges to ω0 uniformly
as t goes to zero.

Recently, Guedj and Zeriahi [8] proved that if T0 ∈ α is a positive current with
zero Lelong numbers at any point, ν(T0, x) = 0 ∀x ∈ X, then there exists a family
of Kähler metrics (ω(t))t∈(0,Tmax) satisfying (KRF ) and such that ω(t) converges

to T0 in the weak sense of currents as t goes to zero.
Observe that the above result insures that starting from any positive current with
zero Lelong numbers, the KRF immediately smooths out.

Then, a natural question is: what does it happen when T0 has positive Lelong
numbers?
The result that we were able to prove with Lu [6] is the following:

Theorem 0.5 (Di Nezza - Lu 2015). Let T0 ∈ α0 be any positive (1, 1)-current such
that c(T0) > 1

2Tmax
. Then there exists a unique family of positive (1, 1)-currents,

(ω(t))t∈(0,Tmax) such that ω(t) is smooth on the Zariski open subset X \Dk(t) and

here it solves (KRF ) in the classical sense.
Moreover, ω(t) converges to T0 in the weak sense of currents as t goes to zero.

Here c(T0) denotes the critical exponent of integrability of T0.
For any t ∈ (0, Tmax), the subset Dk(t) in the statement of the Theorem is described
as the Lelong superlevel set of T0:

Dk(t) := {x ∈ X | ν(T0, x) > k(t)}
where the constant k(t) depends only on t and it is decreasing to 0 as t goes to 0.
Note that for any s > 0, Ds is an analytic subset of X [10].

It is well known that (KRF) can be reduced to solve a scalar parabolic complex
Monge-Ampère equation of type

(CMAE) (θt + ddcϕt)
n = eϕ̇tωn

where θt = ω − tRic(ω) is assumed to be Kähler for all t ∈ [0, Tmax). Precisely, ϕt
solves (CMAE) if and only if ωt := θt + ddcϕt solves (KRF). Thus, at the level of
potentials, our Theorem 0.5 states as follow:
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Theorem 0.6 (Di Nezza - Lu 2015). Let ϕ0 be any ω-psh function such that
c(ϕ0) > 1/2Tmax. Then there exists a solution ϕt of (CMAE) that is smooth on
X \Dk(t). Moreover, ϕt converges to ϕ0 in the L1-topology as t goes to zero.

As for Theorem 0.3, the proof relies on a priori estimates. More precisely, the
strategy will be to pick (ϕ0,j) a smooth sequence of strictly ω-psh functions de-
creasing to ϕ0 as j → +∞ and to consider (ϕt,j) the unique smooth flow running
from ϕ0,j (observe that here we use Theorem 0.4!). The goal is to establish uni-
form estimates that will allow us to pass to the limit but we should always take
into account the singular behavior of the initial data ϕ0. Once again, the most
difficult step is to deal with the C0-estimate. The theory of generalized capacities
play a key role in establishing the following C0-estimate for the complex parabolic
Monge-Ampère equation (CMAE):

Theorem 0.7 (Di Nezza - Lu 2015). Fix ε > 0 and T < Tmax. Then there exists
a uniform constant C > 0 such that for t ∈ [ε, T ] the following holds

ϕt ≥
(

1− t

2T

)
ψ − C.
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