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Biholomorphic equivalence of domains in Cm.

Classification of domains in the complex plane C rests the following corner
stone in complex analysis:

Riemann Mapping Theorem

Let Ω ⊂ C be a simply connected domain with Ω 6= C. Then, there exists
a biholomorphism f : Ω→ D, where D := {z ∈ C : |z | < 1} denotes the
unit disk.

This is no longer true in higher dimensions.

Theorem 0 (Poincaré)

There is no biholomorphic mapping f : D2 = D× D→ B2, where
D2 := {(z ,w) : |z | < 1, |w | < 1} is the unit bidisk in C2 and
B2 := {(z ,w) : |z |2 + |w |2 < 1} the unit ball.
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Poincaré’s proof of Theorem 0.

Suppose there exists a biholomorphism f : D2 → B2.

=⇒ ∃ isomorphism f c : Aut(B2)→ Aut(D2), f cφ = f −1 ◦ φ ◦ f .

Poincaré computed Aut(B2), and Aut(D2):

Aut(B2) ∼= SU(2, 1)/ ∼, Aut(D2) = (SU(1, 1)/ ∼)2.

In particular,

dimRAut(B2) = 8, dimRAut(D2) = 6,

which means they cannot be isomorphic.
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”CR” approach to Theorem 0.

Assume that there exists a biholomorphic (or just proper holomorphic)
mapping f : D2 → B2.

Show that the holomorphic mapping induces a ”partially holomorphic
mapping” (CR) of the boundaries f0 : ∂(D2)→ ∂B2.

Show that the boundaries have different ”invariants” preserved by f0;
in this case, ∂(D2) contains non-trivial complex curves, but ∂B2 does
not.

Conclude that no such mapping f can exists.
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”CR” Proof of Theorem 0.

Suppose there exists a proper holomorphic mapping f : D2 → B2;

f (z ,w) = (f 1(z ,w), f 2(z ,w)).

Pick w0 ∈ ∂D, i.e., |w0| = 1, and wn ∈ D with wn → w0. Set

An(z) = (A1
n(z),A2

n(z)) := (f 1(z ,wn), f 2(z ,wn)).

We note that Ai
n(z) are holomorphic in D, and |Ai

n| ≤ 1. By Montel’s
Theorem, we may assume (by going to a subsequence) that there are
holomorphic functions Ai

0(z) in D such that Ai
n → Ai

0.

Claim. ||A0(z)||2 := |A1
0(z)|2 + |A2

0(z)|2 = 1.

Proof. By properness! (z ,wn)→ ∂(D2). =⇒ ||An(z)||2 → 1.

=⇒ A0 : D→ ∂B2 is a holomorphic map (analytic disk).
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”CR” Proof of Theorem 0; continued.

Lemma (No analytic disks in ∂B2)

If A0 : D→ ∂B2 is holomorphic, then A0(z) is constant.

Proof. Use Aut(B2)! By replacing A0 with UA0, U ∈ SU(2), we may
assume that A0(0) = (1, 0).

||A0(z)||2 = 1 =⇒ |A1
0(z)| has maximum at z = 0.

Maximum Principle =⇒ A1
0(z) is constant, so A1

0(z) = 1.

||A0(z)||2 = 1 =⇒ |A2
0(z)| is identically 0.

We shall obtain a contradiction (proving Theorem 0) by showing

∂f

∂z
= 0 =⇒ f not proper.
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End of proof of Theorem 0; ∂f /∂z = 0.

Fix z = z0 ∈ D. Note that, for j = 1, 2,

∂f j

∂z
(z0,w) =

1

2πi

∫
|ζ|=r<1

f j(ζ,w)dζ

(ζ − z0)2

is bounded as a function of w ∈ D. Thus, there are nontangential limits
h = (h1, h2), with hj ∈ L∞(∂D), such that for a.e. w0 ∈ ∂D,

h(w0) = lim
w→w0

∂f

∂z
(z0,w).

For wn → w0 as before, we have ∂f /∂z(z0,wn) = A′n(z0)→ A′0(z0) = 0
since A0(z) is constant. It follows that the nontangential limit at w0

vanishes: h(w0) = 0. Since this holds for all w0 where the nontangential
limits exist (a.e.), a standard uniqueness result implies

∂f

∂z
(z0,w) = 0.
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Local biholomorphic equivalence of submanifolds.

Equivalence fails locally!

Proposition

Let U ⊂ C2 be an open neighborhood of (z0,w0) ∈ C2 with |z0| < 1 and
|w0| = 1. If f : U → C2 is a holomorphic mapping such that
f (∂D2 ∩ U) ⊂ ∂B2, then f = f (w).

Definition

Let M1,M2 ⊂ Cm be real submanifolds with p1 ∈ M1, p2 ∈ M2. If there
exist an open neighborhood U ⊂ Cn of p1 and a biholomorphic mapping
f : U → f (U) ⊂ Cn such that f (p1) = p2 and f (M1 ∩ U) = M2 ∩ f (U),
then (M1, p1) and (M2, p2) are said to be biholomorphically equivalent
(BHE).

(M1, p1) ∼=BHE (M2, p2).

Remark: Different notions of equivalence! Analytic vs. smooth vs. formal.
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Remarks on BHE.

All real-analytic curves in C are locally BHE. (γ, p) ∼=BHE (R, 0).

Real hypersurfaces in Cm, m ≥ 2, are in general not locally BHE.
(∂D2, p1) 6∼=BHE (∂B2, p2).

For m ≥ 2, a real hypersurface M ⊂ Cm is in general not BHE to
itself at two different points. (M, p1) 6∼=BHE (M, p2) if p1 6= p2.

But ∂Bm is. (∂Bm, p1) ∼=BHE (∂Bm, p2), for all p1, p2 ∈ ∂Bm. Such
manifolds are called homogeneous.

Definition

A real-analytic hypersurface M ⊂ Cm is locally spherical at p1 ∈ M if
(M, p1) ∼=BHE (∂Bm, p2). (For smooth M use smooth CR equivalence.)
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A Riemann Mapping Theorem in higher dimensions.

Theorem (S.-S. Chern – S. Ji, ’96 [2])

Let Ω ⊂ Cm be a bounded, simply connected domain. If ∂Ω is locally
spherical, then there exists a biholomorphic mapping f : Ω→ Bm.

Remarks:

If ∂Ω is not real-analytic, but smooth, then ”locally spherical” at
p ∈ ∂Ω can be defined as the existence of p ∈ U ⊂ Cn and a smooth
mapping f : U ∩ Ω→ Cn such that f : U ∩ Ω→ f (U ∩ Ω) is
biholomorphic and f (∂Ω ∩ U) ⊂ ∂Bn.

In the real-analytic case, it in fact suffices that ∂Ω is locally spherical
at some point p ∈ ∂Ω. The local biholomorphism then extends as a
global biholomorphism f : Ω→ Bm.

X. Huang and S. Ji [4] have proved a Riemann Mapping Theorem for
a more general class of domains, where again the assumption is that
the boundaries are locally equivalent.
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Recall [1]: Complex structure on a vector space.

A complex structure on R2m is a linear map J = Jp : TpR2m → TpR2m

such that J2 = −I . J extends by linearity to CTpR2m := C⊗ TpR2m and
splits it into an i =

√
−1 and −i eigenspace,

CTpR2m = T 1,0
p R2m ⊕ T 0,1

p R2m

with T 0,1
p R2m = T 1,0

p R2m. The standard complex structure in coordinates
(x1, y1, . . . , xm, ym) is given by

J(∂/∂xj) = ∂/∂yj , J(∂/∂yj) = −∂/∂xj ,

and T 1,0
p R2m is spanned by ∂/∂z1, . . . , ∂/∂zm,

∂

∂zj
:=

1

2

(
∂

∂xj
− i

∂

∂xj

)
.

The standard linear structure yields Cm with complex coordinates

z = (z1, . . . , zm), zj = xj + iyj .
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CR structure of a real hypersurface in a complex manifold.

Let Ω ⊂ Cm be a domain with complex coordinate z = (z1, . . . , zm). Let
M ⊂ Ω be a real hypersurface; i.e., defined locally near every p ∈ M by

M ∩ Vp := {z ∈ Vp : ρ(z , z̄) = 0},

where p ∈ Vp ⊂ Ω, ρ ∈ Cκ(Vp,R), dρ|M 6= 0. For us, κ is either ∞
(”smooth”) or ω (”real-analytic”).

Definition. The CR tangent space to M at p ∈ M is given by

T 0,1
p M := CTpM ∩ T 0,1

p Ω; T 1,0
p M := T 0,1

p M.

L =
m∑
j=1

aj
∂

∂zj
∈ T 1,0

p M ⇐⇒
m∑
j=1

∂ρ

∂zj
(p, p̄)aj = 0.
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CR manifolds of hypersurface type.

T 0,1
p M is a complex hyperplane in the m-dimensional complex vector

space T 0,1
p Ω. Thus, dimC T 0,1

p M = m − 1 for all p ∈ M.

Set n = m − 1; M ⊂ Ω ⊂ Cn+1, dimRM = 2(n + 1)− 1 = 2n + 1.

T 0,1
p M form a rank n sub-bundle T 0,1M of the complexified tangent

bundle CTM (of rank 2n + 1). Sections of T 0,1M are called CR
vector fields.

The following properties of T 0,1M are fundamental:

(P1) T 1,0
p M ∩ T 0,1

p M = {0};
(P2) [T 0,1M,T 0,1M] ⊂ T 0,1M; i.e., if X ,Y are CR vector fields, then the
commutator [X ,Y ] is a CR vector field.

Note: (P1) =⇒ T 1,0
M ⊕ T 0,1

p M is a complex hyperplane in CTpM. =⇒
CTpM = T 1,0

p M ⊕ T 0,1
p M ⊕ C〈Xp〉, if Xp ∈ CTpM \ T 1,0

M ⊕ T 0,1
p M.

Definition. M is a CR manifold (of hypersurface type) with CR bundle
T 0,1M; CR dimM := dimC T 0,1

p M = n.
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The first invariant of a CR manifold; the Levi form.

Since T 1,0M ⊕ T 0,1M is a Hermitian sub-bundle of corank 1 in
CTM, it can be defined by a real 1-form θ. Such θ is called a
”contact form”. Any other is of form θ̃ = aθ, a 6= 0 real function.

On Ω, the differential d = ∂ + ∂̄, where

∂u :=
n+1∑
j=1

∂u

∂zj
dzj .

By definition, T 1,0
p M = {Xp ∈ T 1,0

p Cn+1 : 〈∂ρ,Xp〉 = 0}. Since
0 = dρ = ∂ρ+ ∂̄ρ on M,

θ := i∂ρ|M = −i ∂̄ρ|M = i∂ρ|M

is real and annihilates T 1,0M ⊕ T 0,1M. Thus, θ = i∂ρ|M is a contact
form on M.
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The Levi form.

Definition: The Levi form L = Lθp of M at p is the Hermitian form

L(Xp,Yp) :=
i

2
〈θ, [X , Ȳ ]〉|p, Xp,Yp ∈ T 1,0

p M.

where X ,Y are local sections of T 1,0M (anti-CR vector fields) extending
Xp,Yp.

Independent of extensions (well-defined) by Cartan’s identity:

〈ω, [Z ,V ]〉 = −2〈dω,Z ∧ V 〉+ Z 〈ω,V 〉 − V 〈ω,Z 〉.

=⇒ L(Xp,Yp) = −i〈dθ,Xp ∧ Yp〉.
If θ̃ = aθ, then Lθ̃p = a(p)Lθp by

d θ̃ = adθ + da ∧ θ.
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In local coordinates: M ⊂ Ω ⊂ Cn+1.

Choose local coordinates (z ,w) ∈ Cn × C in Ω, vanishing at p ∈ M:

Imw = φ(z , z̄ ,Rew), φ(z , 0, s) = φ(0, ζ, s) = O
(
||(z , s)||2K

)
.

Note: dφ(0) = 0 =⇒ CT0M = C〈∂/∂zj |0, ∂/∂z̄j |0,Re(∂/∂w |0)〉.
As a local frame for T 1,0M:

Lj :=
∂

∂zj
+

2iφzj
1− iφs

∂

∂w
, j = 1, . . . , n.

With ρ = Imw − φ, we may choose

θ = i∂ρ|M =
1

2
(1− iφs)dw |M − i

n∑
j=1

φzjdzj |M .

We may choose (z , s) ∈ Cn × R as local chart on M:

(z ,w) 7→ (z ,w = s + iφ(z , z̄ , s)).
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CR functions and mappings.

Definition: A function h on M is CR if L̄h = 0 for all CR vector fields L̄.

As a mapping h : M → C,

h is CR ⇐⇒ h∗(T
0,1M) ⊂ T 0,1C.

ζ = h(z , z̄ , s) =⇒ h∗
(
L̄
)

= (L̄h)
∂

∂ζ
+ (L̄h̄)

∂

∂ζ̄
.

Definition: A mapping f : M → M ′ is CR if f∗(T
0,1M) ⊂ T 0,1M ′.

If M ′ ⊂ Ω′ ⊂ Cm′
, then:

f = (f1, . . . , fm′) : M → M ′ is CR ⇐⇒ each fj is a CR function.

Basic Example: The restriction (or boundary value) of a holomorphic
function/mapping to M is CR. The converse will be addressed in Lecture
III.
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Invariance of Levi form under CR mapping f : M → M ′.

Pick contact forms θ, θ′ on M, M ′. Definition of CR =⇒ f ∗θ′ = aθ. For
Xp,Yp ∈ T 1,0

p M,

(L′)θ′f (p)(f∗Xp, f∗Yp) =
i

2
〈θ′, [f∗X , f∗Yp]〉 = −i〈dθ′, f∗Xp ∧ f∗Yp〉

= −i〈f ∗dθ′,Xp ∧ Yp〉 = −i〈d(aθ),Xp ∧ Yp〉
= Laθp (Xp,Yp) = a(p)Lθp(Xp,Yp).

In a local frame L1, . . . , Ln and contact form θ, T 1,0
p M ∼= Cn,

Lθ(x , y) = xEy∗, x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Cn,

where E = E θp is the Hermitian n × n matrix with matrix elements

Ejk = i/2〈θ, [Lj , L̄k ]〉. If f∗ ∼= B, n × n′ matrix, then Levi form invariance:

aE = BE ′B∗.
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Levi nondegenerate CR manifolds.

Definitions. 1) M is Levi nondegenerate at p if the Levi form Lp is
nondegenerate: Yp 7→ Lp(·,Yp) ∈ (T 1,0M)∗ is injective; ⇐⇒ detEp 6= 0.
2) M is strictly pseudoconvex at p is Lp is positive definite (for some θ).

The ”opposite” of Levi nondegenerate is Levi flat. M is Levi flat if the
Levi form Lp = 0 for all p ∈ M.

Proposition

M is Levi flat ⇐⇒ M is foliated by complex manifolds Σt with
dim Σt = CR dimM = n.

Proof. Lp = 0 =⇒ Re(T 1,0M ⊕ T 0,1M) involutive. Frobenius Theorem
=⇒ M foliated by Σt with TΣt = Re(T 1,0M ⊕ T 0,1M).
Newlander-Nirenberg Theorem =⇒ Σt are complex manifolds. Converse
is easy. See [1] for FT and NNT; will also appear in Lecture II.

Remark. ∂B2 is strictly pseudoconvex, and ∂D2 is Levi flat (at smooth
points).
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Levi form in terms of a defining function ρ.

T 1,0
p M ⊂ T 1,0

p Cn+1 ∼= Cn+1 and x ∈ T 1,0
p M if

n+1∑
j=1

∂ρ

∂zj
(p)xj = 0.

Choose θ = i∂ρ|M .

Lθ(X ,Y ) = i〈dθ,X ∧ Y 〉 = 〈∂∂̄ρ,X ∧ Y 〉

=
∑
j ,k

∂2ρ

∂zj z̄k
(p)xj x̄k .

Thus, Lθ ∼ (n + 1)× (n + 1) matrix F = (∂2ρ/∂zk∂z̄k), restricted to
n-dimensional subspace T 1,0

p M ⊂ Cn+1.
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Fefferman’s complex Monge-Ampére Operator.

Consider the complex Monge-Ampére type operator in Cn+1:

J(u) := (−1)n+1 det

(
u uz̄
uz uzz̄

)
.

Proposition

Let M ⊂ Ω ⊂ Cn+1 be defined by ρ = 0. Then, M is Levi nondegenerate
at p ∈ M ⇐⇒ J(ρ)|p 6= 0.

Proof. Let p ∈ M, and F denote (n + 2)× (n + 2) matrix such that
J(ρ) = (−1)n+1 detF . Pick x̃ = (c , x) ∈ C× Cn+1. Then,
x̃F = 0 ⇐⇒ xρz = 0 and cρz̄ + xρzz̄ = 0. Note that there is c ∈ C such
that cρz̄ + xρzz̄ = 0 ⇐⇒ xρzz̄y

∗ = 0 for all ρz̄y
∗ = 0.
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Fefferman’s defining equations.

Theorem (Fefferman, ’76 [3])

Let M ⊂ Ω ⊂ Cn+1 be strictly pseudoconvex, defined by ρ = 0. Then,
there is a unique, mod O(ρn+3), defining function r for M such that
J(r) = 1 + O(ρn+2).

Remark: Such r is called a Fefferman defining function for M. Useful for
studying invariants of strictly pseudoconvex domains, notably their
Bergman kernels.
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