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Outline of Lectures

General Theory.

@ Lecture I: Introduction, Motivation, Basic CR Geometry.

o Lecture ll: Abstract CR manifolds. Embedding problems.

o Lecture IlI: Baouendi-Treves Approximation. Extension of CR
functions on embedded CR manifolds.

Levi Nondegenerate CR Hypersurfaces and their Mappings.

@ Lecture IV: Normal forms. Bergman and Szego Kernels.

o Lecture V: Pseudohermitian Geometry, Nondegenerate CR geometry.
Geometry and Analysis of CR Mappings.

@ Lecture VI: Mappings into Flat Models, Sums-Of-Squares, and the
Gap Conjecture.
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Outline - Lecture |

@ No Riemann Mapping Theorem in higher dimensions
© A Riemann Mapping Theorem in higher dimensions
© CR structure of the boundary of a complex manifold

e References

O End
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Biholomorphic equivalence of domains in C™.

Classification of domains in the complex plane C rests the following corner
stone in complex analysis:

Riemann Mapping Theorem

Let Q C C be a simply connected domain with 2 # C. Then, there exists
a biholomorphism f: Q — D, where D := {z € C: |z| < 1} denotes the
unit disk.

This is no longer true in higher dimensions.

Theorem 0 (Poincaré)

There is no biholomorphic mapping f: D? =D x I — B,, where
D? = {(z,w): |z| <1, |w| < 1} is the unit bidisk in C? and
B, := {(z,w): |z|? + |w|?> < 1} the unit ball.
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Poincaré's proof of Theorem 0.

Suppose there exists a biholomorphism f: D% — Bs.
— Jisomorphism f¢: Aut(By) — Aut(D?), f¢p=rFlogpof.
Poincaré computed Aut(B,), and Aut(D?):
Aut(B,) = SU(2,1)/ ~, Aut(D?) = (SU(1,1)/ ~)*.
In particular,
dimg Aut(B) =8, dimg Aut(D?) = 6,

which means they cannot be isomorphic. O
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"CR" approach to Theorem O.

Assume that there exists a biholomorphic (or just proper holomorphic)
mapping f: D? — By.

@ Show that the holomorphic mapping induces a " partially holomorphic
mapping” (CR) of the boundaries fy: 9(D?) — IBy.
@ Show that the boundaries have different "invariants” preserved by fy;

in this case, 9(D?) contains non-trivial complex curves, but B, does
not.

@ Conclude that no such mapping f can exists.
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"CR" Proof of Theorem 0.

Suppose there exists a proper holomorphic mapping f: D? — Bo;
f(z,w) = (fY(z, w), F(z,w)).
Pick wo € 9D, i.e., [wp| =1, and w, € D with w, — wp. Set
An(2) = (A(2), AY(2)) := (FH(z, wn), F2(2, w)).

We note that A’ (z) are holomorphic in D, and |Al| < 1. By Montel's
Theorem, we may assume (by going to a subsequence) that there are
holomorphic functions Ay(z) in D such that A}, — Ap.

Claim. |Ao(2)]? := |AL(2)? + |A2(2)]? = 1.
Proof. By properness! (z,w,) — 9(D?). = |A.(2)|*> — 1. )

= Ao: D — 0B; is a holomorphic map (analytic disk).
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"CR"” Proof of Theorem 0; continued.

Lemma (No analytic disks in 0B,)

If Ag: D — OB> is holomorphic, then Ag(z) is constant.

Proof. Use Aut(B;)! By replacing Ay with UAg, U € SU(2), we may
assume that Ag(0) = (1,0).

o |Ao(2)|> =1 = |A}(2)| has maximum at z = 0.

e Maximum Principle = A}(z) is constant, so A}(z) = 1.

o [Ao(z)|> =1 = |A3(2)| is identically 0.

We shall obtain a contradiction (proving Theorem 0) by showing

of

— =0 = f not proper.
0z
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End of proof of Theorem 0; 0f /0z = 0.

Fix z = zg € D. Note that, for j =1, 2,

Of 1 / (¢, w)d¢
I

|=r<1 (C - 20)2

is bounded as a function of w € . Thus, there are nontangential limits
h = (h', h?), with W € L°°(0D), such that for a.e. wy € D,

oz o w) =52

. of
h(wp) = WI|_)mWO E(ZO’ w).
For w, — wy as before, we have 0f /0z(zy, wy) = Al(z0) — Ap(z0) =0
since Ag(z) is constant. It follows that the nontangential limit at wy
vanishes: h(wp) = 0. Since this holds for all wy where the nontangential
limits exist (a.e.), a standard uniqueness result implies
of

5(20, w) = 0.
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Local biholomorphic equivalence of submanifolds.

Equivalence fails locally!

Proposition

Let U C C? be an open neighborhood of (zp, wp) € C? with |z| < 1 and
lwo| = 1. If f: U — C2 is a holomorphic mapping such that
f(OD? N U) C OBy, then f = f(w).

Definition
Let My, M, € C™ be real submanifolds with p; € My, po € M. If there
exist an open neighborhood U C C” of p; and a biholomorphic mapping
f: U— f(U) C C"such that f(p1) = p2 and f(My N U) = Mo N f(U),
then (My, p1) and (My, p2) are said to be biholomorphically equivalent
(BHE).

(M1, p1) =BHE (M2, p2).

v

Remark: Different notions of equivalence! Analytic vs. smooth vs. formal.
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Remarks on BHE.

o All real-analytic curves in C are locally BHE. (v, p) =guEe (R, 0).

@ Real hypersurfaces in C, m > 2, are in general not locally BHE.
(8D, p1) #gHE (B2, p2).

@ For m > 2, a real hypersurface M C C™ is in general not BHE to
itself at two different points. (M, p1) #gne (M, p2) if p1 # po.

e But 0B, is. (0Bm, p1) ZgHe (0Bm, p2), for all p1, p» € OB,,. Such
manifolds are called homogeneous.

Definition

A real-analytic hypersurface M C C™ is locally spherical at p; € M if
(M, p1) ZHe (0B, p2). (For smooth M use smooth CR equivalence.)

Peter Ebenfelt (UCSD) CR Geometry, Mappings into Spheres, and Su September 28, 2015 11 /24



A Riemann Mapping Theorem in higher dimensions.

Theorem (S.-S. Chern — S. Ji, '96 [2])

Let Q € C™ be a bounded, simply connected domain. If 0S2 is locally
spherical, then there exists a biholomorphic mapping f: Q — B,,.

Remarks:

o If 99 is not real-analytic, but smooth, then "locally spherical” at
p € 00 can be dejined as the existence of p € U C C" and a smooth
mapping f: UNQ — C" such that f: UNQ — F(UNQ) is
biholomorphic and (02N U) C IB,.

@ In the real-analytic case, it in fact suffices that OS2 is locally spherical
at some point p € 0€2. The local biholomorphism then extends as a
global biholomorphism f: Q — B,,.

e X. Huang and S. Ji [4] have proved a Riemann Mapping Theorem for
a more general class of domains, where again the assumption is that
the boundaries are locally equivalent.

Peter Ebenfelt (UCSD) CR Geometry, Mappings into Spheres, and Su September 28, 2015 12 / 24



Recall [1]: Complex structure on a vector space.

A complex structure on R?™ is a linear map J = Jp: TpRz’" — TP]RZ’"
such that J2 = —/. J extends by linearity to CT,R?™ := C ® T,R?" and
splits it into an i = y/—1 and —i eigenspace,

2m _ 71,01p2 0,112
CT,R?™ = THOR?™ @ TOIR?™

with TSJRZ" = T,}’ORZ’". The standard complex structure in coordinates
(X1, Y15+ -+ Xm, ¥Ym) is given by

J(9/0x)) = 9/dy;,  J(9/dy;) = =/ 0x;,
and T,}’O]RQ’" is spanned by 0/0z1,...,0/0zp,

o (o 9
0z~ 2\0x; Ox;)°

The standard linear structure yields C™ with complex coordinates

z=(z1,...,2zm), Z =Xxj+1iy.
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CR structure of a real hypersurface in a complex manifold.

Let Q@ C C™ be a domain with complex coordinate z = (z1, ..., zy). Let
M C Q be a real hypersurface; i.e., defined locally near every p € M by

MOV, :={ze V,: p(z,z) =0},

where p € V, C Q, p € C*(V,,R), dp|m # 0. For us, & is either co
("smooth”) or w ("real-analytic").

Definition. The CR tangent space to M at p € M is given by

01pg . 0,1(y. 10p0 . 70,1
TIJ I\/l._(CTpI\/Iﬂ Tp Q: Tp M= Tp M.

Peter Ebenfelt (UCSD) CR Geometry, Mappings into Spheres, and Su September 28, 2015



CR manifolds of hypersurface type.

° T,g)’ll\/l is a complex hyperplane in the m-dimensional complex vector
space Tg’lﬂ. Thus, dim¢ Tg’lM =m—1forall pe M.
eSetn=m—-1, MCQcC"? dimgM=2(n+1)—-1=2n+1.
° T,?’ll\/l form a rank n sub-bundle T%1M of the complexified tangent
bundle CTM (of rank 2n + 1). Sections of T%!M are called CR
vector fields.
The following properties of T%1M are fundamental:
(P1) T,°MN 7'M = {0};
(P2) [T%IM, TOIM] c TOIM; ie., if X, Y are CR vector fields, then the
commutator [X, Y] is a CR vector field.
Note: (P1) — -,-,\1/;0 <) TB’IM is a complex hyperplane in CT,M. =
CToM=T,°M @ T9'"M @ C(X,), if X, € CT,M\ To° @ To' M.
Definition. M is a CR manifold (of hypersurface type) with CR bundle
TO1M; CRdim M :=dimc To'M = n.
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The first invariant of a CR manifold; the Levi form.

o Since T1YOM @ T%'M is a Hermitian sub-bundle of corank 1 in
CTM, it can be defined by a real 1-form 6. Such 0§ is called a
"contact form”. Any other is of form 6 = af, a # 0 real function.

@ On Q, the differential d = 9 + 0, where

n+1

ou : _Zﬁzj

e By definition, To°M = {X, € TA°C"1: (9p, X,) = 0}. Since
0—d,0—8p~|—3pon M,

0 := idplm = —idplm = idplm

is real and annihilates THOM @ TO1M. Thus, § = iOp|y is a contact
form on M.
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The Levi form.

Definition: The Levi form £ = L’f; of M at p is the Hermitian form
i _
L(Xp, Yy) = 5(9, X, YDlp, Xp,Yp€ THOM.

where X, Y are local sections of T1M (anti-CR vector fields) extending
Xp, Yp.

o Independent of extensions (well-defined) by Cartan's identity:
(w,[Z,V]) = =2(dw, ZA\ V) + Z{w, V) — V{(w, Z).

— L(Xp, Yp) = —i(d0, X, A Yy).
o If § = af, then £,€ = a(p)ﬁf, by

df = adf + da A 0.
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In local coordinates: M C Q c C"+1,

Choose local coordinates (z, w) € C" x C in £, vanishing at p € M:

Imw = 6(z,Z,Rew),  6(2,0,5) = 6(0,¢,5) = O (I(z,5)1*¥).

Note: d¢p(0) =0 = CToM = C(9/0z|o,0/0Zj|0, Re(0/0w|o)).
As a local frame for TLOM:
0 2ip; 0

L= —
/ azj+ 1—igsOw’

Jj=1...,n

With p = Im w — ¢, we may choose
. 1. R
0 =idp|lm = 5(1 — igps)dw|p — /ng)zjdzjw.
j=1
We may choose (z,s) € C" x R as local chart on M:

(z,w) = (z,w =s+i¢(z,Z,5)).
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CR functions and mappings.

Definition: A function h on M is CR if Lh = 0 for all CR vector fields L.
As a mapping h: M — C,
his CR <= h(T%M)c T%IC.

- -0 —
(=h(z,2,s) = h. (L) =( )3C+( )(%
Definition: A mapping f: M — M’ is CR if f,(T%1M) c T M.
If M' c Q' c C™, then:
f=(f,...,fw): M— M is CR <= each fj is a CR function.

Basic Example: The restriction (or boundary value) of a holomorphic

function/mapping to M is CR. The converse will be addressed in Lecture
.
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Invariance of Levi form under CR mapping f: M — M'.

Pick contact forms 8, 8 on M, M’'. Definition of CR = f*#’' = af). For
X,, Y, € Ta'M,

(LYoo (- X £Yp) = S0 16X TV]) = —i{d0l, £.X A TV
= _i<f*d0,7XP AVP) = —i<d(30),Xp N VP>
= ﬁff(Xp, Yp) = a(P)Eg(va Yp)-

In a local frame Ly,..., L, and contact form @, T,}’OM ~Cn,
‘CG(Xay) :XE_)/*, X = (le"'vxn)a.y = (ylv"'a.yn) € (Cna

where E = Eg is the Hermitian n x n matrix with matrix elements
Ei = i/2(0,[L;, Lg]). If f. = B, n x n’ matrix, then Levi form invariance:

aFE = BE'B*.
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Levi nondegenerate CR manifolds.

Definitions. 1) M is Levi nondegenerate at p if the Levi form L, is
nondegenerate: Y, — L,(+, Yp) € (THOM)* is injective; <= det E, # 0.
2) M is strictly pseudoconvex at p is L, is positive definite (for some 6).

The "opposite” of Levi nondegenerate is Levi flat. M is Levi flat if the
Levi form £, =0 for all p € M.

Proposition

M is Levi flat <= M is foliated by complex manifolds ¥; with
dimY; = CRdim M = n.

Proof. £, =0 = Re(T'°M @ T%M) involutive. Frobenius Theorem
= M foliated by ¥; with TX; = Re(T*°M @ T%1M).
Newlander-Nirenberg Theorem = X; are complex manifolds. Converse
is easy. See [1] for FT and NNT; will also appear in Lecture II. O

Remark. 9B, is strictly pseudoconvex, and OD? is Levi flat (at smooth
points).
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Levi form in terms of a defining function p.

o THOM c TROC 1 = ¢ and x € TAOM if

@ Choose 6 = idp|um.

LO9X,Y)=i(do, X NY) = (8dp, X N Y)

o Thus, L7 ~ (n+1) x (n+ 1) matrix F = (02p/0z,0Z), restricted to
n-dimensional subspace T,;’o/\/l c Ccrtt,
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Fefferman’s complex Monge-Ampére Operator.

Consider the complex Monge-Ampére type operator in C"*1:

J(u) == (=1)" det < . “{) .

uz Uzz

Proposition
Let M C Q C C™! be defined by p = 0. Then, M is Levi nondegenerate
atpe M = J(p)|p #0.

Proof. Let p € M, and F denote (n+ 2) x (n+ 2) matrix such that

J(p) = (—1)"*t1det F. Pick X = (c,x) € C x C™1L. Then,

XF =0 <= xp, =0 and cps + xp,s = 0. Note that there is c € C such
that cpz + xpzz =0 <= xp,zy* = 0 for all pzy* = 0. O
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Fefferman’s defining equations.

Theorem (Fefferman, '76 [3])

Let M C Q C C™1 be strictly pseudoconvex, defined by p = 0. Then,
there is a unique, mod O(p"*3), defining function r for M such that
J(r) =1+ O(p™*?).

Remark: Such r is called a Fefferman defining function for M. Useful for
studying invariants of strictly pseudoconvex domains, notably their
Bergman kernels.
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