
CR Geometry, Mappings into Spheres, and
Sums-Of-Squares

Lecture II

Peter Ebenfelt

University of California, San Diego

September 29, 2015

Peter Ebenfelt (UCSD) CR Geometry, Mappings into Spheres, and Sums-Of-Squares Lecture IISeptember 29, 2015 1 / 17



Outline - Lecture II

1 Formally Integrable and Integrable Structures

2 CR Structures

3 CR Mappings and Levi Forms

4 Integrability vs. Non-integrability

5 References

6 End

Peter Ebenfelt (UCSD) CR Geometry, Mappings into Spheres, and Sums-Of-Squares Lecture IISeptember 29, 2015 2 / 17



Formally integrable structures.

Let M = Mm be a manifold of dimension m and class Cκ; κ =∞, ω.

Definition. A formally integrable structure of rank n on M is a subbundle
V ⊂ CTM (of rank n) such that:

[X ,Y ] ∈ Γ(U,V), ∀X ,Y ∈ Γ(U,V), U ⊂ M. (1)

Remarks. 1) We use the notation [V,V] ⊂ V to abbreviate (1).
2) Any rank n subbundle V ⊂ CTM is defined locally by m − n linearly
independent 1-forms ω1, . . . , ωm−n; By Cartan’s identity, V is formally
integrable ⇐⇒ dωj all vanish on Λ2V.

Definition. A formally integrable structure V of rank n on M = Mm is
(locally) integrable if every p ∈ M has a neighborhood U and
Z 1, . . .Zm−n ∈ Cκ(U,C) such that ωj = dZ j , , i.e., for j = 1, . . . ,m − n,

XZ j = 〈dZ j ,X 〉 = 0, ∀X ∈ Γ(U,V); dZ 1 ∧ . . . ∧ dZm−n 6= 0.

Z = (Z 1, . . . ,Zm−n) is called a system of solutions (or first integrals).
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The Frobenius Theorems. See e.g. Treves [8] for proofs.

Real Frobenius Theorem

Let M = Mm be a real Cκ manifold with rank n subbundle E ⊂ TM such
that [E ,E ] ⊂ E . Then, every p ∈ M has a neighborhood U and
F 1, . . . ,Fm−n ∈ Cκ(U,R) such that E⊥ is spanned by dF 1, . . . , dFm−n.

Holomorphic Frobenius Theorem

Let Ω = Ωm be a complex manifold with rank n holomorphic subbundle
V ⊂ T 1,0Ω such that [V,V] ⊂ V. Then, every p ∈ Ω has a neighborhood
U and Z 1, . . . ,Zm−n ∈ O(U) such that V⊥ is spanned by
dF 1, . . . , dFm−n.

Remarks: 1) Frobenius + IFT =⇒ ∃ local charts x = (u, v) such that
M is foliated by submanifolds Σq := {(u, v) : v = q} and E coincides with
TΣq. Similarly for holomorphic Frobenius.
2) Neither Frobenius nor IFT applies to formally integrable structures in
general!
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Real-analytic formally integrable structures.

Theorem

A real-analytic formally integrable structure (M,V) is locally integrable.

Proof. Let x = (x1, . . . , xm) ∈ Rm be a local chart near p ∼= 0 in
M ∼= U ⊂ Rm, and L1, . . . , Ln a local basis for sections of V ⊂ CTRm:

Lj =
m∑

k=1

ajk(x)
∂

∂xk
, ajk ∈ Cω.

Complexify! Consider x = (x1, . . . , xm) ∈ Cm as complex coordinates, the
ajk(x) become holomorphic, and Lj holomorphic (1, 0) vector fields,
spanning a holomorphic complexified subbundle VC ⊂ T 1,0Cm. Frobenius
integrability [VC,VC] ⊂ VC follows from [V,V] ⊂ V in Rm. By
holomorphic Frobenius, there are holomorphic Z 1, . . .Zn such that VC is
given by dZ j = 0. The functions Z j(x), for x real, provide the desired
system of solutions Z = (Z 1, . . . ,Zm−n) in U ⊂ Rm.
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Representation of locally integrable structures.

Let Z = (Z 1, . . . ,Zm−n) be a system of solutions in U ⊂ M = Mm of a
rank n, integrable structure V ⊂ CTM. Consider Z : U → Cm−n. Recall
chain rule:

Z∗(Xp) =
m−n∑
k=1

(
〈dZ k ,Xp〉

∂

∂Z k
+ 〈dZ̄ k ,Xp〉

∂

∂Z̄ k

)
, Xp ∈ CTpM.

=⇒ kerZ∗ = V ∩ V. The Rank Theorem (”IFT Plus”) =⇒

Proposition

If K := V ∩ V is a subbundle of rank k , then Z (U) ⊂ Cm−n is an
immersed real submanifold of dimension m − k . The map Z : U → Z (U)
is a submersion such that Z∗V ⊂ T 0,1Cm−n, whose fibers Z−1(q) ⊂ U are
submanifolds of dimension k with TZ−1(q) = V ∩ V.
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CR structures.

Definitions. 1) A formally integrable structure V on M is CR if

V ∩ V = {0}.

2) A mapping f : (M,V)→ (M ′,V ′) is CR if f∗(V) ⊂ V ′. A CR function is
a CR mapping f : (M,V)→ (C,T 0,1C) ⇐⇒ L̄f = 0 for all CR vector
fields L̄.

If dimM = m, rankV = n, then m = 2n + d for some d ≥ 0;

CR dimM=n; CR codimM = d .

A locally integrable CR manifold (M,V) can be locally embedded in
Cn+d by the CR mappings Z : (U,V)→ (Cn+d ,T 0,1Cn+d), U ⊂ M.

A real-analytic CR manifold is locally integrable, and hence locally
embeddable in Cn+d .
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CR functions and mappings for embedded CR manifolds.

Assume that (M,V) is embedded as a real submanifold in Ω ⊂ Cm; i.e.,

M ⊂ Cm, V = CTM ∩ T 0,1Ω.

If M ′ ⊂ Ω′ ⊂ Cm′
, then:

f = (f1, . . . , fm′) : M → M ′ is CR ⇐⇒ each fj is a CR function.

Basic Example: The restriction (or boundary value) of a holomorphic
function/mapping to M is CR. The converse will be addressed in Lecture
III.
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Almost complex structures and complex manifolds.

An almost complex structure on M = M2d is a rank n = d subbundle
V such that V ∩ V = {0}. =⇒ CTM = V ⊕ V.

If (M,V) is formally integrable, then it is a CR structure of
CR dimM=0.

(M,V) is locally integrable ⇐⇒ M is a complex manifold with
V = T 0,1M: local charts are given by local systems of solutions
Z : U → Cd .

Newlander-Nirenberg Theorem; [6], [2]

A formally integrable almost complex structure (M,V) is locally integrable.
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Examples of CR manifolds with positive codimension.

Example 1. Let M ⊂ Cn+1 be a real hypersurface; i.e., locally,

M : ρ(z , z̄) = 0, ρ ∈ Cκ(U,R), dρ|M 6= 0.

M = M2n+1 is a CR manifold with V = T 0,1M := CTM ∩ T 0,1Cn+1;
CR dimM = n, CR codimM = 1.

Definition. CR manifolds with CR codimM = 1 are of hypersurface type.

Example 2. Let M ⊂ CN be a real submanifold of codimension k ; i.e.,

M : ρ(z , z̄) = 0, ρ ∈ Cκ(U,Rk), dρ1 ∧ . . . ∧ dρk |M 6= 0.

When k ≥ 2, the spaces T 0,1
p M := CTpM ∩ T 0,1

p CN may not have
constant dimension. But, if

rankC{∂̄ρ1, . . . , ∂̄ρk} = constant = d , (2)

then M is a CR manifold with V := T 0,1M; dimM = 2N − k ,
CR dimM = N − d , CR codimM = 2d − k . If d = k , then M is generic.
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A non-CR submanifold, totally real manifolds, and a
topological fact.

Example 3. Consider a 2-sphere S2 in C2, e.g.,

S2 : ρ1 := |z |2 + |w |2 − 1 = 0, ρ2 := Imw = 0.

=⇒ ∂̄ρ1 = zdz̄ + wdw̄ , ∂̄ρ2 = −idw̄/2; =⇒ T 0,1
p S2 = {0}, except at

the two points p = ±(0, 1), where T 0,1
p S2 equals a complex line spanned

by ∂/∂z̄ . Thus, S2 is a real submanifold of codimension k = 2 in C2, but
it is not CR.

Definition: A real submanifold M ⊂ Ω ⊂ Cm is totally real if the induced
CR structure is trivial, V := T 0,1M = {0}.

Theorem (Wells [9])

If M = M2 ⊂ C2 is a compact, totally real surface, then M is a torus.
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Levi form(s) of a CR manifold (M = M2n+d ,V = Vn).

HC := V ⊕ V is a Hermitian subbundle of rank 2n and corank d in CTM.
The rank d (characteristic) bundle H⊥C ⊂ CT ∗M can then be spanned,
locally, by d linearly independent, real 1-forms η1, . . . ηd . We set
H := ReHC ⊂ TM, and then η1, . . . ηd span H⊥ ⊂ T ∗M. If

θ = ajη
j :=

d∑
j=1

ajη
j (summation convention)

is a characteristic form (section of H⊥), then the Levi form at θ is
defined, for Xp,Yp ∈ V̄p, by

L(Xp,Yp) = Lθp(Xp,Yp) :=
i

2
〈θ, [X , Ȳ ]〉 = −i〈dθ,Xp ∧ Ȳp〉.

(Invariantly: L(Xp,Yp) = π([X , Ȳ ]), π : CTp → CTp/T
1,0
p ⊕ T 0,1

p
∼= Cd .)
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Invariance of Levi form under CR mappings f : M → M ′.

The Levi form L can be viewed as a tensor in V∗ ⊗V∗ ⊗ (H⊥)∗. Pick local
bases L1, . . . , Ln and η1, . . . , ηd for V and H; Vp ∼= Cn and H⊥p

∼= Rd .

Then L = (hαβ̄
j) ∈ V∗ ⊗ V∗ ⊗ (H⊥)∗,

hαβ̄
j := Lηjp (Lα, Lβ).

If we change bases Lα = bα
γ L̃γ , ηj = aj k η̃

k , then

hαβ̄
j = h̃γµ̄

kbα
γbβ̄

µ̄aj k , bβ̄
µ̄ := bβµ.

Invariance of Levi form. If f∗Lα = bα
β′
L′β′ , f ∗η′j ′ = aj

′
kη

k , then

aj
′
jhαβ̄

j = h′
α′β̄′

j ′bα
α′
bβ̄

β̄′
.

Proof: Same computation as in Lecture I... But also on next slide in the
hypersurface case, since we did not get to it last lecture.
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Invariance under f : M → M ′; hypersurface case.

Pick contact forms θ, θ′ on M, M ′. Definition of CR =⇒ f ∗θ′ = aθ. For
Xp,Yp ∈ T 1,0

p M,

(L′)θ′f (p)(f∗Xp, f∗Yp) =
i

2
〈θ′, [f∗X , f∗Yp]〉 = −i〈dθ′, f∗Xp ∧ f∗Yp〉

= −i〈f ∗dθ′,Xp ∧ Yp〉 = −i〈d(aθ),Xp ∧ Yp〉
= Laθp (Xp,Yp) = a(p)Lθp(Xp,Yp).

In a local frame L1, . . . , Ln and contact form θ, T 1,0
p M ∼= Cn,

Lθ(x , y) = xEy∗, x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Cn,

where E = E θp is the Hermitian n × n matrix with matrix elements

Ejk = i/2〈θ, [Lj , L̄k ]〉. If f∗ ∼= B, n × n′ matrix, then Levi form invariance:

aE = BE ′B∗.
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Hans Lewy’s Example and nonintegrable CR structures.

Consider the Lewy operator (vector field)

L̄ =
∂

∂z̄
− iz

∂

∂s
, (z , s) ∈ C× R.

Note that L̄ defines the CR structure on the Lewy hypersurface
M : Imw = |z |2 in C2, in the coordinates (z , s).

Theorem (Lewy [5])

There exist (many) v ∈ C∞ near 0 such that L̄u = v has no C 1 solutions
near 0.

Remark. By the classical Cauchy-Kowalevski Theorem, for every v ∈ Cω,
there are Cω solutions u.
A modification of the construction in the proof of Lewy’s Theorem, yield
examples of nonintegrable CR structures. The first example was given by
Nirenberg [7]. The reader is referred to [3] for a readable account of these
constructions.
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Nirenberg’s Example of a nonintegrable CR structure.

Theorem (Nirenberg [7])

There exist (many) v ∈ C∞ near 0, vanishing at 0 to infinite order, such
that

L̄′u = 0, L̄′ = L̄ + iv
∂

∂s

has no C 1 solutions near 0 other than the constants.

L̄′ defines a C∞ CR structure V ′ on M ′ = C× R. (Note that formal
integrability is automatic for rank 1 bundles.)

Local integrability near 0 would require two solutions u = Z 1, u = Z 2

to L̄′u = 0 with dZ 1 ∧ dZ 2 6= 0, which is of course impossible by
Nirenberg’s Theorem. =⇒ the CR manifold M ′ is not locally
integrable at 0.

The CR structure of M ′ agrees up to infinite order with that of the
Lewy hypersurface M. In particular, M ′ is strictly pseudoconvex near
0.
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The local integrability problem for strictly pseudoconvex
CR manifolds.

Theorem (Kuranishi dimM ≥ 9, [4]; Akahori dimM = 7, [1])

Let (M,V) be a C∞ CR manifold of hypersurface type (CR codimM = 1).
Assume that M is strictly pseudoconvex and dimM ≥ 7 (CR dimM ≥ 3).
Then, (M,V) is locally integrable.

Remark. As mentioned, Nirenberg showed that the conclusion does not
hold when dimM = 3.

Problem. What about dimM = 5?
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Lars Hörmander.
An introduction to complex analysis in several variables, volume 7 of
North-Holland Mathematical Library.
North-Holland Publishing Co., Amsterdam, third edition, 1990.

Howard Jacobowitz.
An introduction to CR structures, volume 32 of Mathematical Surveys
and Monographs.
American Mathematical Society, Providence, RI, 1990.

Masatake Kuranishi.
Strongly pseudoconvex CR structures over small balls. I, II, III.
Ann. of Math. (2), 115-116, 1982.

Hans Lewy.

Peter Ebenfelt (UCSD) CR Geometry, Mappings into Spheres, and Sums-Of-Squares Lecture IISeptember 29, 2015 17 / 17



An example of a smooth linear partial differential equation without
solution.
Ann. of Math. (2), 66:155–158, 1957.

A. Newlander and L. Nirenberg.
Complex analytic coordinates in almost complex manifolds.
Ann. of Math. (2), 65:391–404, 1957.

Louis Nirenberg.
Lectures on linear partial differential equations.
American Mathematical Society, Providence, R.I., 1973.
Expository Lectures from the CBMS Regional Conference held at the
Texas Technological University, Lubbock, Tex., May 22–26, 1972,
Conference Board of the Mathematical Sciences Regional Conference
Series in Mathematics, No. 17.

François Trèves.
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