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A Simple Calculator

1) Enter number
on keyboard
=> register 1

2) Turn handle
forward = add
backward
= subtract

3) Multiply = add
register 1 with 
shifts until 
register 2 is 0 

4) Register 3
= result

Register 2

Register 1

Register 3

Controls

Arithmetic Unit
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Representing Numbers (1)

● “Real” numbers have unlimited accuracy
● Yet computers “think” digital, i.e. in integer math

=> only a fixed range of numbers can be
      represented by a fixed number of bits
=> distance between two integers is 1

● We can reduce the distance through fractions
(= fixed point), but that also reduces the range

16-bit 32-bit 64-bit 28-bit / 4-bit 22-bit / 10-bit

Min. -32768 -2147483648 ~ -9.2233 * 10-18 -16777216.0000 -2048.000000

Max. 32767 2147483647 ~ 9.2233 * 10-18 16777215.9375 ~ 2047.999023

Dist. 1 1 1 0.0635 0.0009765625
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Representing Numbers (2)

● Need a way to represent a wider range of 
numbers with a same number of bits

● Need a way to represent numbers with a 
reasonable amount of precision (distance)

● Same relative precision often sufficient:

=> Scientific notation:
     +/-(mantissa) * (base) +/-(exponent)

Mantissa  -> integer fraction
Base        -> 2
Exponent -> a small integer
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IEEE 754 Floating-point Numbers

● The IEEE 754 standard defines: storage format, 
result of operations, special values (infinity, 
overflow, invalid number), error handling
=> portability of compute kernels ensured

● Numbers are defined as bit patterns with a sign 
bit, an exponential field, and a fraction field

– Single precision:
8-bit exponent
23-bit fraction

– Double precision:
11-bit exponent
52-bit fraction
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Density of Floating-point Numbers

● How can we represent so many more numbers 
in floating point than in integer? We don't!

● The number of unique bit patterns has to be the 
same as with integers of the same bitness

● There are 8,388,607 single precision numbers in 
1.0< x <2.0, but only 8191 in 1023.0< x <1024.0

● => absolute precision depends on the magnitude
● => some numbers are not represented exactly

=> approximated using rounding mode (nearest) 
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Floating-Point Math Pitfalls

● Floating point math is commutative,
but not associative!  Example (single precision):
1.0 + (1.5*1038 + (- 1.5*1038)) = 1.0
(1.0 + 1.5*1038) + (- 1.5*1038) = 0.0

● => the result of a summation depends on the 
order of how the numbers are summed up

● => results may change significantly, if a compiler 
changes the order of operations for optimization

● => prefer adding numbers of same magnitude
=> avoid subtracting very similar numbers
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How To Reduce Errors

● Use double precision unless you can be sure of 
error cancellation or using an imprecise model
=> may collide with vectorization and GPU/MIC

● When summing numbers of different magnitude
● Sort first and sum in ascending order
● Sum in blocks (pairs) and then sum the sums
● Use integer fraction, if range and precision allow it   

● NOTE: summing numbers in parallel may give
different results depending on parallelization
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Floating Point Comparison

● Floating-point results are usually inexact
=> comparing for equality is dangerous
Example: don't use a floating point number for 
controlling a loop count. Integers are made for it

● It is OK to use exact comparison:
● When results have to be bitwise identical
● To prevent division by zero errors

● => compare against expected absolute error
● => don't expect higher accuracy than possible
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Reminder: Amdahl's Law

● The maximum speedup of a parallel code is 
limited by the fraction of sequential code.
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Running Faster: Cache Memory

● Registers are very fast, but very expensive
● Loading data from memory

is slow, but is is cheap and
there can be a lot of it

● => Cache memory = small buffer of fast
memory that sits between RAM and CPU

● Cache memory is organized in “lines”:
=> when any byte is requested from RAM, a 
whole line (64 bytes) is read into the cache.
=> random memory access “pollutes” the cache
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Running Faster: Superscalar CPU
● Superscalar CPU => instruction level parallelism
● Redundant functional units in single CPU

=> multiple instructions executed at same time,
     if there are no data dependencies

● Often combined with pipelined CPU design
● no branches
● Not SIMD/SSE/MMX
● Optimization:

=> loop unrolling
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Software Optimization 

● Writing maximally efficient code is hard:
=> most of the time it will not be executed 
exactly as programmed, not even for assembly

● Maximally efficient code is not very portable:
=> cache sizes, pipeline depth, registers, 
instruction set will be different between CPUs

● Compilers are smart (but not too smart!) and 
can do the dirty work for us, but can get fooled

=> modular programming: generic code for 
most of the work plus well optimized kernels



14

How Would This Statement Be Executed
on a Pipelined CPU?

1. Load a into register R0
2. Load b into R1
3. Multiply R2 = R0 * R1
4. Load c into R3
5. Load d into R4
6. Multiply R5 = R3 * R4
7. Add R6 = R2 + R5
8. Store R6 into z

z = a * b + c * d;

Data load can start
while multiplying 

Start data load for
next command

Actual steps:
z1 = a * b;

z2 = c * d;

z= z1 + z2;

Pipeline savings:
1 step out of 8, plus 3 more if next operation independent
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Superscalar & Pipelined CPU Execution

1. Load a into register R0
and load b into R1

2. Multiply R2 = R0 * R1
and load c into R3
and load d into R4

3. Multiply R5 = R3 * R4
4. Add R6 = R2 + R5
5. Store R6 into z

z = a * b + c * d;
Actual steps:
z1 = a * b;

z2 = c * d;

z= z1 + z2;

Superscalar pipeline savings:
3 out of 8 steps, plus 3 if next operation independent

Start data load for
next command
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Superscalar & Pipelined Loop

for (i = 0; i < length; i++) {
  z[i] = a[i] * b[i] + c[i] * d[i];
}

Repeat steps 4. and 5. with increasing index until done
=> two steps per iteration

1. Load a[0] into R0
and load b[0] into R1

2. Multiply R2 = R0 * R1
and load c[0] into R3
and load d[0] into R4

3. Multiply R5 = R3 * R4
and load a[1] into R0
and load b[1] into R1

4. Add R6 = R2 + R5
and load c[1] into R3 and  
load d[1] into R4

5. Store R6 into z[0]
and multiply R2 = R0 * R1 
and multiply R5 = R3 * R4
and load a[2] into R0
and load b[2] into R1
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Vectorized Loop

for (i = 0; i < length; i++) {
  z[i] = a[i] * b[i] + c[i] * d[i];
}
Vector registers on a CPU can hold multiple numbers 
and load, store or process them in parallel (SIMD):
for (i = 0; i < length; i +=2) {
 z[i] = a[i]  *b[i]   + c[i]  *d[i];
 z[i+1]=a[i+1]*b[i+1] + c[i+1]*d[i+1];
}
This is in addition to superscalar pipelining and
with using special vector instructions (SSE,AVX,etc.)
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Simple Optimization Techniques
(so easy a caveman compiler can do it)

● Scalar optimizations, for example
● Copy propagation
● Constant folding, 'dead code' removal
● Strength reduction
● Common subexpression elimination
● Variable renaming

● Loop Optimizations: loop unrolling, vectorization
● Inlining, Replacing code with a faster equivalent

=> prefer readability, let the compiler do it

Simple Optimization Techniques
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Copy Propagation

x = y
z = 1 + x

x = y
z = 1 + y

Has data dependency

No data dependency

Compile

Before

After
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Constant Folding

add = 100;
aug = 200;
sum = add + aug;

sum = 300;

Before After

sum is the sum of two constants. The compiler can precalculate
the result (once) at compile time and eliminate code that would
otherwise need to be executed at (every) run time. 
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Strength Reduction

x = pow(y, 2);
a = c / 2.0;

x = y * y;
a = c * 0.5;

Before After

Raising one value to the power of another, or 
dividing, is more expensive than multiplying.

 If the compiler can tell that the power is a small 
integer, or that the denominator is a constant,
it will use multiplication instead.

Easier to do with intrinsic functions (cf. Fortran).
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Common Subexpression Elimination

d = c * (a / b);
e = (a / b) * 2.0;

adivb = a / b;
d = c * adivb;
e = adivb * 2.0;

Before After

The subexpression (a / b) occurs in both 
assignment statements, so there’s no point in 
calculating it twice.

This is typically only worth doing if the common 
subexpression is expensive to calculate, or the 
resulting code requires the use of less registers.



23

Variable Renaming

x = y * z;
q = r + x * 2;
x = a + b;

x0 = y * z;
q = r + x0 * 2;
x = a + b;

Before After

The original code has an output dependency, while 
the new code doesn’t – but the final value of  x  is 
still correct.
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Hoisting Loop Invariant Code

DO i = 1, n
  a(i) = b(i) + c * d
  e = g(n)
END DO

Before

temp = c * d
DO i = 1, n
  a(i) = b(i) + temp
END DO
e = g(n)

After

Code that 
doesn’t change 
inside the loop is 
known as      
loop invariant. 
It doesn’t need 
to be calculated 
over and over.
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Loop Unrolling

DO i = 1, n
  a(i) = a(i)+b(i)
END DO

DO i = 1, n, 4
  a(i)   = a(i)  +b(i)
  a(i+1) = a(i+1)+b(i+1)
  a(i+2) = a(i+2)+b(i+2)
  a(i+3) = a(i+3)+b(i+3)
END DO

Before

After

You generally shouldn’t unroll by hand.
Compilers are more reliable (no typos!).
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Loop Interchange

DO i = 1, ni
  DO j = 1, nj
    a(i,j) = b(i,j)
  END DO
END DO

DO j = 1, nj
  DO i = 1, ni
    a(i,j) = b(i,j)
  END DO
END DO

Array elements  a(i,j) and  a(i+1,j) are near 
each other in memory, while a(i,j+1) may be 
far, so it makes sense to make the  i  loop be the 
inner loop. (This is reversed in C, C++)

Before After
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Inlining

DO i = 1, n
  a(i) = func(i)
END DO
…
REAL FUNCTION func (x)  …
  func = x * 3
END FUNCTION func

DO i = 1, n
  a(i) = i * 3
END DO

Before After

When a function or subroutine is inlined, its contents 
are transferred directly into the calling routine, and 
thus eliminating the overhead of making the call.
=> compilers use an inline library at high optimization
=> math is instrinsic in Fortran => better for compiler
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Pre-process / Compile / Link

● Creating an executable includes multiple steps
● The “compiler” (gcc) is a wrapper for several 

commands that are executed in succession
● The “compiler flags” similarly fall into categories 

and are handed down to the respective tools
● The “wrapper” selects the compiler language 

from source file name, but links “its” runtime
● We will look into a C example first, since this is 

the language the OS is (mostly) written in
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● Consider the minimal C program 'hello.c':
#include <stdio.h>
int main(int argc, char **argv)
{
      printf(“hello world\n”);
      return 0;
}

● i.e.: what happens, if we do: 
> gcc -o hello hello.c
(try: gcc -v -o hello hello.c)

A simple C Example
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Step 1: Pre-processing

● Pre-processing is mandatory in C (and C++)
● Pre-processing will handle '#' directives

● File inclusion with support for nested inclusion
● Conditional compilation and Macro expansion

● In this case: /usr/include/stdio.h 
- and all files are included by it - are inserted 
and the contained macros expanded

● Use -E flag to stop after pre-processing:
> cc -E -o hello.pp.c hello.c
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Step 2: Compilation

● Compiler converts a high-level language into 
the specific instruction set of the target CPU

● Individual steps:
● Parse text (lexical + syntactical analysis)
● Do language specific transformations
● Translate to internal representation units (IRs)
● Optimization (reorder, merge, eliminate)
● Replace IRs with pieces of assembler language

● Try:> gcc -S hello.c (produces hello.s)
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Compilation cont'd
        .file "hello.c"
        .section .rodata
.LC0:
        .string "hello, world!"
        .text
.globl main
        .type main, @function
main:
        pushl   %ebp
        movl    %esp, %ebp
        andl    $-16, %esp
        subl    $16, %esp
        movl    $.LC0, (%esp)
        call    puts
        movl    $0, %eax
        leave
        ret
        .size   main, .-main
        .ident  "GCC: (GNU) 4.5.1 20100924 (Red Hat 4.5.1-4)"
        .section        .note.GNU-stack,"",@progbits

#include <stdio.h>
int main(int argc,
        char **argv)
{
 printf(“hello world\n”);
 return 0;
}

gcc replaced printf with puts
 

try: gcc -fno-builtin -S hello.c
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vector_add() Compilation 

void vector_add(float *a,
float *b,float *c,int dim)
{
  int i;
  for (i=0; i<dim; ++i)
    c[i] = a[i] + b[i];
}

vector_add_cpu:
.LFB0:

pushq %rbp
movq%rsp, %rbp
movq%rdi, -40(%rbp)
movq%rsi, -48(%rbp)
movq%rdx, -56(%rbp)
movl %ecx, -60(%rbp)
movq-40(%rbp), %rax
movq%rax, -16(%rbp)
movq-48(%rbp), %rax
movq%rax, -24(%rbp)
movq-56(%rbp), %rax
movq%rax, -32(%rbp)
movl $0, -4(%rbp)
jmp .L2

.L3:
movl -4(%rbp), %eax
cltq
leaq 0(,%rax,4), %rdx
movq-32(%rbp), %rax
addq %rax, %rdx
movl -4(%rbp), %eax
cltq

leaq 0(,%rax,4), %rcx
movq-16(%rbp), %rax
addq %rcx, %rax
movss (%rax), %xmm1
movl -4(%rbp), %eax
cltq
leaq 0(,%rax,4), %rcx
movq-24(%rbp), %rax
addq %rcx, %rax
movss (%rax), %xmm0
addss %xmm0, %xmm1
movd%xmm1, %eax
movl %eax, (%rdx)
addl $1, -4(%rbp)

.L2:
movl -4(%rbp), %eax
cmpl -60(%rbp), %eax
jl .L3
popq %rbp
.cfi_def_cfa 7, 8
ret
.cfi_endproc

.LFE0:
.size vector_add_cpu, .-vector_add_cpu
.ident"GCC: (GNU) 4.9.2 20150212 (Red Hat 4.9.2-6)"
.section .note.GNU-stack,"",@progbits
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vector_add() w/ -O -mfpmath=387

void vector_add(float *a,
float *b,float *c,int dim)
{
  int i;
  for (i=0; i<dim; ++i)
    c[i] = a[i] + b[i];
}`

.file "vector_add.c"

.text

.globl vector_add_cpu

.type vector_add_cpu, @function
vector_add_cpu:
.LFB0:

.cfi_startproc
testl %ecx, %ecx
jle .L1
movl $0, %eax

.L3:
flds (%rdi,%rax,4)
fadds(%rsi,%rax,4)
fstps (%rdx,%rax,4)
addq $1, %rax
cmpl %eax, %ecx
jg .L3

.L1:
rep ret
.cfi_endproc

.LFE0:
.size vector_add_cpu, .-vector_add_cpu
.ident"GCC: (GNU) 4.9.2 20150212 (Red Hat 4.9.2-6)"
.section .note.GNU-stack,"",@progbits

Same operations using the
x86 floating point unit
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vector_add() -O Compilation 

void vector_add(float *a,
float *b,float *c,int dim)
{
  int i;
  for (i=0; i<dim; ++i)
    c[i] = a[i] + b[i];
}`

.file "vector_add.c"

.text

.globl vector_add_cpu

.type vector_add_cpu, @function
vector_add_cpu:
.LFB0:

.cfi_startproc
testl %ecx, %ecx
jle .L1
movl $0, %eax

.L3:
movss (%rdi,%rax,4), %xmm0
addss (%rsi,%rax,4), %xmm0
movss %xmm0, (%rdx,%rax,4)
addq $1, %rax
cmpl %eax, %ecx
jg .L3

.L1:
rep ret
.cfi_endproc

.LFE0:
.size vector_add_cpu, .-vector_add_cpu
.ident"GCC: (GNU) 4.9.2 20150212 (Red Hat 4.9.2-6)"
.section .note.GNU-stack,"",@progbits

Serial SSE instructions using
SSE registers (exactly one)
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vector_add() with SSE vectorization 
vector_add_cpu:
.LFB0:

testl %ecx, %ecx
jle .L1
leaq 16(%rdx), %r9
cmpq%r9, %rdi
setnb%r8b

    ( . . .  )
movl $0, %eax
movl $0, %r9d

.L5:
movaps (%rdi,%rax), %xmm0
addps (%rsi,%rax), %xmm0
movaps %xmm0, (%rdx,%rax)
addl $1, %r9d
addq $16, %rax
cmpl %r8d, %r9d
jb .L5
jmp .L15

.L7:
movslq %eax, %r8
movss (%rdi,%r8,4), %xmm0
addss (%rsi,%r8,4), %xmm0
movss %xmm0, (%rdx,%r8,4)
addl $1, %eax
cmpl %eax, %ecx
jg .L7
rep ret

.

L15:
movl %r10d, %eax
cmpl %r10d, %ecx
jne .L7
rep ret

.L11:
movl $0, %eax
jmp .L7

.L10:
movl $0, %eax

.L3:
movss (%rdi,%rax,4), %xmm0
addss (%rsi,%rax,4), %xmm0
movss %xmm0, (%rdx,%rax,4)
addq $1, %rax
cmpl %eax, %ecx
jg .L3

.L1:
rep ret
.cfi_endproc

.LFE0:
.size vector_add_cpu, .-vector_add_cpu
.ident"GCC: (GNU) 4.9.2 20150212 (Red Hat 4.9.2-6)"
.section .note.GNU-stack,"",@progbits

Parallel 
Instructions
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vector_add() with SSE vectorization 
vector_add_cpu:
.LFB0:

testl %ecx, %ecx
jle .L1
leaq 16(%rdx), %r9
cmpq%r9, %rdi
setnb%r8b

    ( . . .  )
movl $0, %eax
movl $0, %r9d

.L5:
        vmovaps (%rdi,%r8), %ymm0
        vaddps  (%rsi,%r8), %ymm0, %ymm0
        vmovaps %ymm0, (%rdx,%r8)
        addl    $1, %r9d
        addq    $32, %r8
        cmpl    %eax, %r9d
        jb      .L5
        jmp     .L15
.L7:
        movslq  %eax, %r8
        vmovss  (%rdi,%r8,4), %xmm0
        vaddss  (%rsi,%r8,4), %xmm0, %xmm0
        vmovss  %xmm0, (%rdx,%r8,4)
        addl    $1, %eax
        cmpl    %eax, %ecx
        jg      .L7
        ret

L15:
movl %r10d, %eax
cmpl %r10d, %ecx
jne .L7
rep ret

.L11:
movl $0, %eax
jmp .L7

.L10:
movl $0, %eax

.L3:
        vmovss  (%rdi,%rax,4), %xmm0
        vaddss  (%rsi,%rax,4), %xmm0, %xmm0
        vmovss  %xmm0, (%rdx,%rax,4)
        addq    $1, %rax
        cmpl    %eax, %ecx
        jg      .L3
.L1:

rep ret
.cfi_endproc

.LFE0:
.size vector_add_cpu, .-vector_add_cpu
.ident"GCC: (GNU) 4.9.2 20150212 (Red Hat 4.9.2-6)"
.section .note.GNU-stack,"",@progbits

Parallel 
Instructions
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Performance Comparison

● Running vector_add() for 10,000,000 elements:
● No optimization: 35ms
● Manual loop unrolling (4x): 25ms
● Manual loop unrolling (8x): 24ms
● Full optimization, gcc 4.9.x: 8.5ms
● Full optimization + manual loop unrolling: 9.7ms
● Full optimization, intel 13.x: 8.7ms
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Matrix Multiply Optimization

● Need to access rows or matrix A and columns 
of matrix B multiple times => CPU cache

● Looping through columns of matrix B has 
strided access => cache pollution

● Lesson from GPU: use temporary buffer
● Change loop order and make loop over 

columns outer loop
● Copy column into auxiliary buffer
● Loop over rows and use buffer for dot product
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Matrix Multiply Kernel Comparison
void matmul_cpu(float *a, float *b, float *c, 
int n, int m, int o)
{
    int i,j,k;
    float sum;
    for (i = 0; i < n; ++i)
        for (j = 0; j < o; ++j) {
            sum = 0.0f;
            for (k = 0; k < m; ++k)
                sum += a[m*i+k] * b[o*k+j];

            c[o*i+j] = sum;
        }
}
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Matrix Multiply Kernel Comparison
void matmul_opt(float *a, float *b, float *c,
 int n, int m, int o) {
    int i,j,k;
    float aux[m],sum;
    for (j = 0; j < o; ++j) {
        for (k = 0; k < m; ++k)
            aux[k] = b[o*k+j];
        for (i = 0; i < n; ++i) {
            sum = 0.0f;
            for (k = 0; k < m; ++k)
                sum += a[m*i+k] * aux[k];
            c[o*i+j] = sum;
        }
    }
}
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Performance Comparison
● Running matrix_multiply() for 1000, 1024, 3000:

● No compiler optimization: 18.8s
● Same with buffer added: 10.7s
● Same with OpenMP added: 5.2s (2 cores plus HT) 
● Full optimization, gcc 4.9.x: 9.6s
● Same with buffer added: 3.5s
● Same with OpenMP added: 1.3s
● Full optimization, intel 13.x: 10.3s
● Same with buffer added: 0.91s
● Same with OpenMP added: 0.5s
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Step 3: Assembler / Step 4: Linker

● Assembler (as) translates assembly to binary
● Creates so-called object files (in ELF format)

Try: > gcc -c hello.c
Try: > nm hello.o
00000000 T main
         U puts

● Linker (ld) puts binary together with startup 
code and required libraries

● Final step, result is executable.
Try: > gcc -o hello hello.o
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Symbols in Object Files & Visibility

● Compiled object files have multiple sections 
and a symbol table describing their entries:
● “Text”: this is executable code
● “Data”: pre-allocated variables storage
● “Constants”: read-only data
● “Undefined”: symbols that are used but not defined
● “Debug”: debugger information (e.g. line numbers)

● Entries in the object files can be inspected with 
either the “nm” tool or the “readelf” command 
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Example File: visbility.c
static const int val1 = -5;
const int val2 = 10;
static int val3 = -20;
int val4 = -15;
extern int errno;

static int add_abs(const int v1, const int v2) { 
    return abs(v1)+abs(v2);
}

int main(int argc, char **argv) {
     int val5 = 20;
     printf("%d / %d / %d\n",
            add_abs(val1,val2),
            add_abs(val3,val4),
            add_abs(val1,val5));
     return 0;
}

nm visibility.o:
00000000 t add_abs
         U errno
00000024 T main
         U printf
00000000 r val1
00000004 R val2
00000000 d val3
00000004 D val4
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What Happens During Linking?

● Historically, the linker combines a “startup 
object” (crt1.o) with all compiled or listed object 
files, the C library (libc) and a “finish object” 
(crtn.o) into an executable (a.out)

● With current compilers it is more complicated
● The linker then “builds” the executable by 

matching undefined references with available 
entries in the symbol tables of the objects

● crt1.o has an undefined reference to “main”
thus C programs start at the main() function
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Static Libraries

● Static libraries built with the “ar” command are 
collections of objects with a global symbol table

● When linking to a static library, object code is 
copied into the resulting executable and all 
direct addresses recomputed (e.g. for “jumps”)

● Symbols are resolved “from left to right”, so 
circular dependencies require to list libraries 
multiple times or use a special linker flag

● When linking only the name of the symbol is 
checked, not whether its argument list matches
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Shared Libraries

● Shared libraries are more like executables that 
are missing the main() function

● When linking to a shared library, a marker is 
added to load the library by its “generic” name 
(soname) and the list of undefined symbols

● When resolving a symbol (function) from 
shared library all addresses have to be 
recomputed (relocated) on the fly.

● The shared linker program is executed first and 
then loads the executable and its dependencies
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Differences When Linking

● Static libraries are fully resolved “left to right”;
circular dependencies are only resolved 
between explicit objects or inside a library
-> need to specify libraries multiple times
or use: -Wl,--start-group (...) -Wl,--end-group

● Shared libraries symbols are not fully resolved 
at link time, only checked for symbols required 
by the object files. Full check only at runtime.

● Shared libraries may depend on other shared 
libraries whose symbols will be globally visible
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Semi-static Linking

● Fully static linking is a bad idea with GNU libc;
it requires matching shared objects for NSS

● Dynamic linkage of add-on libraries requires a 
compatible version to be installed (e.g. MKL)

● Static linkage of individual libs via linker flags
-Wl,-Bstatic,-lfftw3,-Bdynamic

● can be combined with grouping, example:
-Wl,--start-group,-Bstatic \
      -lmkl_gf_lp64 -lmkl_sequential \
      -lmkl_core -Wl,--end-group,-Bdynamic
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Dynamic Linker Properties

● Linux defaults to dynamic libraries:
> ldd hello
linux-gate.so.1 =>  (0x0049d000)
libc.so.6 => /lib/libc.so.6 
(0x005a0000)
/lib/ld-linux.so.2 (0x0057b000)

● /etc/ld.so.conf, LD_LIBRARY_PATH
define where to search for shared libraries

● gcc -Wl,-rpath,/some/dir will encode 
/some/dir into the binary for searching
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Difference Between C and Fortran
● Basic compilation principles are the same

=> preprocess, compile, assemble, link
● In Fortran, symbols are case insensitive

=> most compilers translate them to lower case
● In Fortran symbol names may be modified to 

make them different from C symbols
(e.g. append one or more underscores)

● Fortran entry point is not “main” (no arguments)
PROGRAM => MAIN__ (in gfortran)

● C-like main() provided as startup (to store args)
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Pre-processing in C and Fortran

● Pre-processing is mandatory in C/C++
● Pre-processing is optional in Fortran
● Fortran pre-processing enabled implicitly via

file name: name.F, name.F90, name.FOR
● Legacy Fortran packages often use /lib/cpp:

 /lib/cpp -C -P -traditional -o name.f name.F
● -C : keep comments (may be legal Fortran code)
● -P : no '#line' markers (not legal Fortran syntax)
● -traditional : don't collapse whitespace

(incompatible with fixed format sources) 
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Fortran Symbols Example

 SUBROUTINE GREET
  PRINT*, 'HELLO, WORLD!'
END SUBROUTINE GREET

program hello
  call greet
end program

0000006d t MAIN__
         U _gfortran_set_args
         U _gfortran_set_options
         U _gfortran_st_write
         U _gfortran_st_write_done
         U _gfortran_transfer_character
00000000 T greet_
0000007a T main

- “program” becomes symbol “MAIN__”  (compiler dependent)
- “subroutine” name becomes lower case with '_' appended
- several “undefineds” with '_gfortran' prefix
  => calls into the Fortran runtime library, libgfortran
- cannot link object with “gcc” alone, need to add -lgfortran
  => cannot mix and match Fortran objects from different compilers
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Fortran 90+ Modules

● When subroutines or variables are defined 
inside a module, they have to be hidden

● gfortran creates the following symbols:

module func
  integer :: val5, val6
contains
  integer function add_abs(v1,v2)
    integer, intent(in) :: v1, v2
    add_abs = iabs(v1)+iabs(v2)
  end function add_abs
end module func

00000000 T __func_MOD_add_abs
00000000 B __func_MOD_val5
00000004 B __func_MOD_val6
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The Next Level: C++

● In C++ functions with different number or type 
of arguments can be defined (overloading)
=> encode prototype into symbol name:

Example : symbol for int add_abs(int,int)
becomes: _ZL7add_absii

● Note: the return type is not encoded
● C++ symbols are no longer compatible with C

=> add 'extern “C”' qualifier for C style symbols
● C++ symbol encoding is compiler specific
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C++ Namespaces and Classes
vs. Fortran 90 Modules

● Fortran 90 modules share functionality with 
classes and namespaces in C++

● C++ namespaces are encoded in symbols
Example: int func::add_abs(int,int)
becomes: _ZN4funcL7add_absEii

● C++ classes are encoded the same way
● Figuring out which symbol to encode into the 

object as undefined is the job of the compiler
● When using the gdb debugger use '::' syntax 
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Why We Need Header or Module Files

● The linker is “blind” for any language specific 
properties of a symbol => checking of the 
validity of the interface of a function is only 
possible during compilation

● A header or module file contains the prototype 
of the function (not the implementation) and the 
compiler can compare it to its use

● Important: header/module has to match library
=> Problem with FFTW-2.x: cannot tell if library 
was compiled for single or double precision
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Calling C from Fortran 77

● Need to make C function look like Fortran 77
● Append underscore (except on AIX, HP-UX)
● Call by reference conventions
● Best only used for “subroutine” constructs (cf. MPI)

as passing return value of functions varies a lot:
void add_abs_(int *v1,int *v2,int *res){
*res = abs(*v1)+abs(*v2);}

● Arrays are always passed as “flat” 1d arrays by 
providing a pointer to the first array element

● Strings are tricky (no terminal 0, length added)
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Calling C from Fortran 77 Example
void sum_abs_(int *in, int *num, int *out) {
 int i,sum;
 sum = 0;
 for (i=0; i < *num; ++i) { sum += abs(in[i]);}
   *out = sum;
   return;
}

/* fortran code:
   integer, parameter :: n=200
   integer :: s, data(n)

   call SUM_ABS(data, n, s)
   print*, s
*/
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Calling Fortran 77 from C

● Inverse from previous, i.e. need to add 
underscore and use lower case (usually)

● Difficult for anything but Fortran 77 style calls 
since Fortran 90+ features need extra info
● Shaped arrays, optional parameters, modules

● Arrays need to be “flat”,
C-style multi-dimensional arrays are lists of 
pointers to individual pieces of storage, which 
may not be consecutive
=> use 1d and compute position
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Calling Fortran 77 From C Example
subroutine sum_abs(in, num, out)
   integer, intent(in)  :: num, in(num)
   integer, intent(out) :: out
   Integer              :: i, sum
   sum = 0
   do i=1,num
     sum = sum + ABS(in(i))
   end do
   out = sum
end subroutine sum_abs
!! c code:
!   const int n=200;
!   int data[n], s;
!   sum_abs_(data, &n, &s);
!   printf("%d\n", s);
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Modern Fortran vs C Interoperability

● Fortran 2003 introduces a standardized way to 
tell Fortran how C functions look like and how 
to make Fortran functions have a C-style ABI

● Module “iso_c_binding” provides kind definition: 
e.g. C_INT, C_FLOAT, C_SIGNED_CHAR

● Subroutines can be declared with “BIND(C)”
● Arguments can be given the property “VALUE” 

to indicate C-style call-by-value conventions
● String passing tricky, needs explicit 0-terminus
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Calling C from Fortran 03 Example

int sum_abs(int *in, int num) {
  int i,sum;
  for (i=0,sum=0;i<num;++i) {sum += abs(in[i]);}
  return sum;
} 
/* fortran code:
  use iso_c_binding, only: c_int
  interface
    integer(c_int) function sum_abs(in, num) bind(C)
      use iso_c_binding, only: c_int
      integer(c_int), intent(in) :: in(*)
      integer(c_int), value :: num
    end function sum_abs
  end interface
  integer(c_int), parameter :: n=200
  integer(c_int) :: data(n)
  print*, SUM_ABS(data,n)  */
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Calling Fortran 03 From C Example
subroutine sum_abs(in, num, out) bind(c)
   use iso_c_binding, only : c_int
   integer(c_int), intent(in)  :: num,in(num)
   integer(c_int), intent(out) :: out
   integer(c_int),             :: i, sum
   sum = 0
   do i=1,num
     sum = sum + ABS(in(i))
   end do
   out = sum
end subroutine sum_abs

!! c code:
!   const int n=200;
!   int data[n], s;
!   sum_abs(data, &n, &s);
!   printf("%d\n", s);
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Linking Multi-Language Binaries

● Inter-language calls via mutual C interface only 
due to name “mangling” of C++ / Fortran 90+
=> extern “C”, ISO_C_BINDING, C wrappers

● Fortran “main” requires Fortran compiler for link
● Global static C++ objects require C++ for link

=> avoid static objects (good idea in general)
● Either language requires its runtime for link

=> GNU: -lstdc++ and -lgfortran
=> Intel: “its complicated” (use -# to find out)
more may be needed (-lgomp, -lpthread, -lm)
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