

Introduction to Intel Xeon Phi programming techniques

Fabio Affinito
Vittorio Ruggiero

Outline

● High level overview of the Intel Xeon Phi hardware and
software stack

● Intel Xeon Phi programming paradigms: offload and native
● Performance and thread parallelism
● Using MPI
● Tracing and profiling
● Conclusions

Preliminaries

● Wrong: Intel Xeon PHI.

Correct: Intel Xeon Phi

Preliminaries

● Wrong: Intel Xeon PHI.

Correct: Intel Xeon Phi
● Intel MIC is the name of the architecture, Intel Knights

Corner is the name of the first model of the MIC
architecture, Intel Xeon Phi is the commercial name the
product...

Preliminaries

● Wrong: Intel Xeon PHI.

Correct: Intel Xeon Phi
● Intel MIC is the name of the architecture, Intel Knights

Corner is the name of the first model of the MIC
architecture, Intel Xeon Phi is the commercial name the
product...

● The Intel Xeon Phi IS NOT an accelerator

Preliminaries

● Wrong: Intel Xeon PHI.

Correct: Intel Xeon Phi
● Intel MIC is the name of the architecture, Intel Knights Corner

is the name of the first model of the MIC architecture, Intel
Xeon Phi is the commercial name the product...

● The Intel Xeon Phi IS NOT an accelerator

Ok, but it can behave very similarly to an accelerator

Preliminaries

Yeah, they look pretty similar...

Outline

● High level overview of the Intel Xeon Phi hardware and
software stack

● Intel Xeon Phi programming paradigms: offload and native
● Performance and thread parallelism
● Using MPI
● Tracing and profiling
● Conclusions

Intel Xeon Phi overview

Each Intel Xeon Phi is a multithread execution unit

● > 50 in-order cores
● ring network
● 64-bit architecture
● scalar unit based on Intel Pentium processor family

● two pipelines
● dual issue with scalar instructions

● one-per-clock scalar pipeline througput
● 4 clock latency from issue to resolution

● 4 hardware threads per core

Intel Xeon Phi overview

Each Intel Xeon Phi is a multithread execution unit

● New vector unit
● 512-bit SIMD Instructions

● not Intel SSE or Intel AVX
● 32 512-bit wide vector registers

● can contain 16 singles or 8 doubles per register

● Fully coherent L1 and L2 caches

Intel Xeon Phi overview

Vectorization: what is it?

Scalar:

one instruction per cycle
one mathematical operation per cycle

Intel Xeon Phi overview

Vectorization: what is it?

Vector:

one instruction per cycle
eight mathematical
operation per cycle

Intel Xeon Phi overview

Vectorization is crucial

Intel Xeon Phi overview

Caches and internal network
● bidirectional ring 115 GB/s
● GDDR5 memory

● 16 memory channels
● up to 5.5 Gb/s
● 8 to 16 GB

● L1 32 K cache per core
● 3 cycle access
● up to 8 concurrent accesses

● L2 512 K cache per core
● 11 cycle best access
● up to 32 concurrent accesses

Intel Xeon Phi family

Intel Xeon Phi software

● Relying on the same architecture of the Pentium family, the
Intel Xeon Phi platform can uses all the tools and software
stack used by the Xeon product line:
– Intel Composer XE (compilers)

– Intel Vtune Amplifier XE, Advisor XE, Trace Analyzer (profiling
and traces)

– Intel MPI

– Intel MKL libraries

Introduction

● High level overview of the Intel Xeon Phi hardware and
software stack

● Intel Xeon Phi programming paradigms: offload and native
● Performance and thread parallelism
● Using MPI
● Tracing and profiling
● Conclusions

Not that interesting....

Offload mode

Does it recall something to you?

Symmetric mode

Native mode

Intel Xeon Phi double nature

● Since it is built on a x86 architecture, the Intel Xeon Phi
can behave...

Intel Xeon Phi double nature

● Since it is built on a x86 architecture, the Intel Xeon Phi
can behave...

as an accelerator,
using the offload model

as an many-core platform,
using the native or symmetric

model

Intel Xeon Phi as an accelerator

● The host can offload on the Xeon Phi the computation of
hotspots or highly parallel kernels

● Also libraries can be offloaded (for example MKL)
● Advantages:

– More memory available

– Better file access

– Host can better manage serial part of the code

– Better use of resources

Intel Xeon Phi as a many core node

● The Intel Xeon Phi can behave as co-processor aside the the Xeon cpu,
or alone as a single stand-alone node

● Advantages:
– Simpler model (no directives)

– Easier to port

– Good kernel test

● Use only:
– Not serial

– Modest memory footprint

– Complex code

– No singular hotspots

Intel Xeon Phi as a many core node

● The Intel Manycore Software Stack (MPSS) provides a
striped version of Linux on the coprocessor

● Intel MPSS also provides a virtual FS on the Xeon Phi
– You can mount on the Xeon Phi the host FS using NFS

● The architecture is not exactly the same of the host
– cross compiling is needed to build executables for the MIC

architecture:

icc -O3 -g -mmic nativeMIC myNativeProgram.o

Using the offload with Intel Xeon Phi

● Intel provides a set of directives (Intel LEO: Language
Extensions for Offload) in order to manage explicitly the
offload.

● These directives implemented in the Intel Composer
compile objects for both the host and the coprocessor and
manage the data transfer between them

Variable and function definitions

C/C++
__attribute__ ((target(mic)))

Fortran
!dir$ attributes offload:mic :: <function/var name>

It compiles (allocates) variables on both the host and device

For entire files or large blocks of code (C/C++ only)
#pragma offload_attribute (push, target(mic))
#pragma offload_attribute (pop)

Offload programming model

Explicit copy must be managed by the programmer using clauses defined
in the LEO

Since host and device don't have physical or virtual shared memory, variable must
be copied in an explicit or in an implicit way.

Implicit copy is assumed for
- scalar variables
- static arrays

Offload programming model

Programmer clauses for explicit copy:
in, out, inout, nocopy

Data transfer with offload region:

C/C++ #pragma offload target(mic) in(data:length(size))
Fortran !dir$ offload target (mic) in(data:length(size))

Data transfer without offload region:

C/C++ #pragma offload_transfer target(mic)in(data:length(size))
Fortran !dir$ offload_transfer target(mic) in(data:length(size))

Offload programming model

C/C++

#pragma offload target (mic) out(a:length(n)) \
in(b:length(n))
for (i=0; i<n; i++){

a[i] = b[i]+c*d
}

Fortran

!dir$ offload begin target(mic) out(a) in(b)
do i=1,n

a(i)=b(i)+c*d
end do
!dir$ end offload

Offload programming model

C/C++

__attribute__ ((target(mic)))
void foo(){

printf(“Hello MIC\n”);
}

int main(){
#pragma offload target(mic)

foo();
return 0;
}

Fortran

!dir$ attributes &
!dir$ offload:mic ::hello
subroutine hello

write(*,*)”Hello MIC”
end subroutine

program main
!dir$ attributes &
!dir$ offload:mic :: hello
!dir$ offload begin target (mic)

call hello()
!dir$ end offload
end program

Offload programming model

Memory allocation

- CPU is managed as usual
- on coprocessor is defined by in,out and inout clauses

Input/Output pointers

- by default on coprocessor “new” allocation is performed for each pointer
- by default de-allocation is performed after offload region
- defaults can be modified with alloc_if and free_if qualifiers

Offload programming model

Using memory qualifiers

free_if(0)
free_if(.false.) retain target memory

alloc_if(0)
alloc_if(.false.) reuse data in subsequent offload

alloc_if(1)
alloc_if(.true.) allocate new memory

free_if(1)
free_if(.true.) deallocate memory

Offload programming model

#define ALLOC alloc_if(1)
#define FREE free_if(1)
#define RETAIN free_if(0)
#define REUSE alloc_if(0)

#allocate the memory but don't de-allocate
#pragma offload target(mic:0) in(a:length(8)) ALLOC RETAIN)
...

#don't allocate or deallocate the memory
#pragma offload target(mic:0) in(a:length(8)) REUSE RETAIN)

#don't allocate the memory but de-allocate
#pragma offload target(mic:0) in(a:length(8)) REUSE FREE)

Offload programming model

Partial offload of arrays

int *p;
#pragma offload ... in (p[10:100] : alloc(p(5:1000))
{...}

It allocates 1000 elements on coprocessor; first usable
element has index 5, last has index 1004; only 100
elements are tranferred,
starting from index 10.

p[10:100]
first element length

Offload programming model

Copy from a variable to another one

It permits to copy data from the host to a different array allocated on the device

integer :: p(1000), p1(2000)
integer :: rank1(1000), rank2(10,100)

!dir$ offload ... (p(1:500) : into (p1(501:1000)))

Offload programming model

Using OpenMP in an offload region:

C/C++
#pragma offload target (mic)
#pragma omp parallel for
for (i=0; i<n; i++){

a[i]=b[i]*c+d;
}

Fortran
!dir$ omp offload target (mic)
!$omp parallel do
do i=1,n

A(i)=B(i)*C+D
end do
!$omp end parallel

optional, if defined, it must be immediately
 followed by a openmp directive

Offload programming model

Asynchronous computation

By default, offload forces the host to wait for completion

lAsynchronous offload starts the offload and continues on the next statement just
lafter the offload region
lUse the signal clause to synchronize with a offload_wait statement

Offload programming model

Example

char signal_var;
do {
 #pragma offload target(mic:0) signal(&signal_var)
 {
 long_running_mic_compute();
 }
 concurrent_cpu_computation();
 #pragma offload_wait target(mic:0) wait(&signal_var)
} while(1);

Offload programming model

Reporting

Use OFFLOAD_REPORT with a verbosity from 1 to 3.
OFFLOAD_REPORT=1 only provides timing

Conditional offload

Only offload if it is worth

#pragma offload target (mic) in (b:length(size)) \
 out (a:length(size) \
 if(size>100)

Offload programming model

● High level overview of the Intel Xeon Phi hardware and
software stack

● Intel Xeon Phi programming paradigms: offload and native
● Performance and thread parallelism
● Using MPI
● Tracing and profiling
● Conclusions

Thread parallelism

OpenMP on the Intel Xeon Phi

● Basically, it works just like for the Intel Xeon cpu
● But this is essential to obtain good performances both in offload

and native modes
● There are 4 hardware threads per core

– at least 2 x no_of_cores threads for good performances

– for all except the most memory-bound workload

– only sometimes 3x or 4x can be effective

– use always the KMP_AFFINITY to control the thread binding

OpenMP on the Intel Xeon Phi

● What are the default values?
– 1 per core on the host (if hyperthreading is disabled)

– 4 per core on native coprocessor executions

– 4 per (core-1) for offload executions

● It's a good rule to manually set up all the values using
environment variables because...

OpenMP on the Intel Xeon Phi

● Define environment variables for the Xeon Phi:

MIC_ENV_PREFIX=MIC
● Define Xeon Phi specific values:

MIC_OMP_NUM_THREADS=120

MIC_2_OMP_NUM_THREADS=120

MIC_3_OMP_NUM_THREADS=”240|KMP_AFFINITY=balanced”

Threads affinity

● Setting the threads affinity on the Xeon Phi is really
important, because it helps to optimize the access to
memory or cache

● Particularly important if all available h/w threads are not
used (it prevents migration and overload)

KMP_AFFINITY = ...

Using MKL libraries

● MKL is the Intel specific math library. It covers:
– Linear algebra (BLAS, LAPACK, ScaLAPACK)

– Fast Fourier transform (up to 7D, FFTW interface)

– Vector math

– Random number generators

– Statistics

– Data fitting

Using MKL libraries

Using MKL libraries

Three different usage models
● Automatic offload

– no codes changes are required

– it uses automatically host and coprocessor

– transparent data movement and execution management

– not available for every MKL function

● Compiler assisted offload
– It uses the offload directives to offload MKL functions

– It can be used together with the automatic offload

● Native execution
– It uses the coprocessor as independent node

– It is implemented in a different library linkable by the the native executable

MKL: Controlling the automatic offload

● Several API functions or env variables are provided to
manage and control the automatic offload.

MKL_MIC_0_WORKDIVISION=0.5

for example, offload 50% of the computation only to the
first Xeon Phi card

MKL: Compiler assisted offload

● You can use the offload directives applied to any MKL
function to offload the computation to the coprocessor

● High level overview of the Intel Xeon Phi hardware and
software stack

● Intel Xeon Phi programming paradigms: offload and native
● Performance and thread parallelism
● Using MPI
● Tracing and profiling
● Conclusions

Intel Xeon Phi as a network node

● Each Xeon Phi

has a network IP
● Xeon Phi can participate

to a MPI communicator

Coprocessor only programming model

● MPI ranks only on Intel Xeon Phi coprocessor

Symmetric programming model

● MPI ranks are both on Intel Xeon Phi and on host CPUs

MPI+Offload programming model

● MPI ranks are on Intel Xeon processor only. Intel Xeon Phi
are used in offload mode

● High level overview of the Intel Xeon Phi hardware and
software stack

● Intel Xeon Phi programming paradigms: offload and native
● Performance and thread parallelism
● Using MPI
● Tracing and profiling
● Conclusions

Tracing and Profiling tools

● In addition to free tools, there are severals tools from Intel
designed to obtain traces and profiles of applications
running on Intel Xeon Phi

● Intel Trace Analyzer and Collector (ITAC) permits to
analyze the event timeline of the application, distinguishing
computation and communication

● Intel Vtune Amplifier permits an in-depth profiling, also
accessing hardware counters

Intel Trace Analyzer and Collector

Intel Trace Analyzer and Collector on Intel
Xeon Phi

Profiling with hardware data

● Vtune permits to analyze data from hardware counters
– 2 counters in core, most thread specific

– 4 outside the core that get no core or thread details

● Vtune can use CL or GUI.
– Use CL to collect data

– Use GUI to analyze data

amplxe-cl -collect knc_general_exploration -- mpirun -host mic0 -n 10 -env
OMP_NUM_THREADS=6 -env KMP_AFFINITY=granularity=fine,balanced -env
LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/opt/intel/composerxe/lib/mic/:/opt/intel/comp
oser_xe_2015/mkl/lib/mic/ ~/yambo-native -F ./INPUTS/02_QP_PPA -J TEST_L_29

Profiling with Intel Vtune Amplifier

● High level overview of the Intel Xeon Phi hardware and
software stack

● Intel Xeon Phi programming paradigms: offload and native
● Performance and thread parallelism
● Using MPI
● Tracing and profiling
● Conclusions

Conclusions

● Intel Xeon Phi is a manycore platform that can be used both as coprocessor and as
an accelerator

● Intel development environment is available:
– Compiler

– IntelMPI

– Performance libraries: MKL

– Profiling tools (ITAC, VTUNE)

● Standard techniques are available: MPI+OpenMP
● Offload permits to use Xeon Phi as an accelerator
● Three different usage models: offload, native, symmetric

Resources

● https://software.intel.com/mic-developer

Resources - books

● J. Jeffers, J. Reinders. Intel Xeon Phi Coprocessor High-
Performance programming

● J. Jeffers, J. Reinders, High Performance Parallelism
Pearls

● R. Rahman, Intel Xeon Phi Coprocessor

Architecture and Tools

Hands on

● Log on the cineca EURORA cluster
● ssh a08traNN@login.eurora.cineca.it

where NN=19 to 28 (each user serves to 3 or 4 students)
● on /tmp/ICTP you can get a file containing lecture notes

and hands on instructions
● use get_mic_node to log on a compute node

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72

