
Introduction toIntroduction to
HPC HardwareHPC Hardware

Dr. Axel Kohlmeyer

Associate Dean for Scientific Computing, CST
Associate Director, Institute for Computational Science

Assistant Vice President for High-Performance Computing

Temple University
Philadelphia PA, USA

a.kohlmeyer@temple.edu

2

Why use Computers in Science?

● Use complex theories without a closed solution:
solve equations or problems that can only be
solved numerically, i.e. by inserting numbers
into expressions and analyzing the results

● Do “impossible” experiments:
study (virtual) experiments, where the boundary
conditions are inaccessible or not controllable

● Benchmark correctness of models and theories:
the better a model/theory reproduces known
experimental results, the better its predictions

3

Why Would I Care About HPC?

● My problem is big

● My problem is complex

● My computer is too small and too slow
● My software is not efficient and/or not parallel

-> often scaling with system size the problem

4

How to Get My Answers Faster?

● Work harder
=> get faster hardware (get more funding)

● Work smarter
=> use optimized algorithms (libraries!)
=> write faster code (adapt to match hardware)
=> trade performance for convenience
 (e.g. compiled program vs. script program)

● Delegate parts of the work
=> parallelize code, (grid/batch computing)
=> use accelerators (GPU/MIC CUDA/OpenCL)

5

What Determines Performance?

● How fast is my CPU?
● How fast can I move data around?
● What is the scaling behavior of my algorithm
● How well can I parallelize the work?

=> efficient serial algorithms may not parallelize
 as well as less efficient (simpler) ones

=> always run benchmarks to understand
 requirements of your applications and
 properties of your hardware

6

How Do We Measure Performance?

● For numerical operations: FLOP/s (or FLOPS)
= Floating-Point Operations per second

● Theoretical maximum (peak) performance:
clock rate x number of double precision addition
and/or multiplications completed per clock
=> 2.5 Ghz x 8 FLOP/clock = 20 GigaFLOP/s
=> can never be reached (data load/store)

● Real (sustained) performance:
=> very application dependent
=> Top500 uses Linpack (linear algebra)

7

A High-Performance Problem

8

Two Types of Parallelism

● Functional parallelism:
different people are
performing different
tasks at the same time

● Data parallelism:
different people are
performing the same
task, but on different
equivalent and
independent objects

9

Amdahl's Law vs. Real Life

● The speedup of a parallel program is limited by
the sequential fraction of the program.

● This assumes perfect scaling and no overhead

32 64 128 256 512 1024 2048 4096

0%

25%

50%

75%

100%
1 Vesicle CG-System, 2 MPI / 6 OpenMP (SP)

Other

I/O

Comm

Neighbor

Kspace

Bond

Pair

of Nodes

P
e

rc
e

n
ta

g
e

 o
f T

im
e

10

Performance of SC Applications

● Strong scaling: fixed data/problem set;
measure speedup with more processors

● Weak scaling: data/problem set increases with
more processors; measure if speed is same

● Linpack benchmark: weak scaling test, more
efficient with more memory => 60-95% peak

● Climate modeling (WRF): strong scaling test,
work distribution limited, load balancing, serial
overhead => < 5% peak (similar for MD)

11

Strong Scaling Graph

220 470 1006 2150 4596

0.1

0.15

0.24

0.39

0.61

8 Vesicles CG-System / 30,902,832 CG-Beads

Nodes

Ti
m

e
pe

r
M

D
 S

te
p

(s
ec

)

27 63 148 345 805 1878

0.04

0.08

0.17

0.36

1 Vesicle CG System / 3,862,854 CG-Beads

Nodes

Ti
m

e
pe

r M
D

 s
te

p
(s

ec
)

- double logarithmic plot
- smaller x-value better (faster)

12

Weak Scaling Graph

512 1024 2048 4096

0.05

0.1

0.15

0.2

Weak Scaling: 7,544 CG-Beads/Node

12 MPI / 1 OpenMP

6 MPI / 2 OpenMP

4 MPI / 3 OpenMP

2 MPI / 6 OpenMP

2 MPI / 6 OpenMP (SP)

Nodes

Ti
m

e
 p

e
r

M
D

-S
te

p
 (

se
c)

13

Performance within an Application

128 256 384 768 128 256 384 768 768

0

5

10

15

20

25

Rhodopsin Benchmark, 860k Atoms, 64 Nodes, Cray XT5

Other
Neighbor
Comm
Kspace
Bond
Pair

PE

Ti
m

e
in

 s
ec

on
ds

14

A Simple Calculator

1) Enter number
on keyboard
=> register 1

2) Turn handle
forward = add
backward
= subtract

3) Multiply = add
register 1 with
shifts until
register 2 is 0

4) Register 3
= result

Register 2

Register 1

Register 3

Controls

Arithmetic Unit

15

A Simple CPU

● The basic CPU design is not much different
from the mechanical calculator.

● Data still needs to be fetched into registers
for the CPU to be able to operate on it.

…

Arithmetic/Logic UnitControl Unit Registers
Fetch Next Instruction Add Sub

Mult Div

And Or

Not …

Integer

Floating Point

…

Fetch Data Store Data

Increment Instruction Ptr

Execute Instruction

…

16

How Many Registers?

● Minimum: 2
> very inefficient, need many load/store ops

● 32-bit x86: 4 general purpose (integer) registers
> more flexible. e.g. “indirect” load/store ops
> “width” of register defines “bitness” of CPU
> 8 floating-point registers (80-/64-/32-bit FPU)

● 64-bit x86 (AMD64,EM64T): 8 integer registers
> same FPU as 32-bit, SIMD unit (SSE, AVX)

● IBM Power 5+: 80 general purpose registers,
72 64-bit floating-point registers (or 36x 128-bit)

17

Fast and Slow Compute Operations

● Fast: add, subtract, multiply
● Medium: divide, modulus, sqrt()
● Slow: most transcendental functions
● Very slow: power (xy for real x and y)

CPUs are often optimized for only the “fast”
operations, so code will be the fastest when
using only add and multiply => linear algebra

GPUs have fast approximate versions of library
functions as needed by graphics (sin, cos, sqrt)

18

Software Optimization

● Writing maximally efficient code is hard:
=> most of the time it will not be executed
exactly as programmed, not even for assembly

● Maximally efficient code is not very portable:
=> cache sizes, pipeline depth, registers,
instruction set will be different between CPUs

● Compilers are smart (but not too smart!) and
can do the dirty work for us, but can get fooled

=> modular programming: generic code for
most of the work plus well optimized kernels

19

A Typical Computer

CPU
Memory

Controller

Bus
Controller

R
A

M

R
A

M

R
A

M

R
A

M

N
et

w
or

k

U
S

BGraphics
Processor S

A
TA

Mass
Storage

PeripheralsDisplay

20

Running Faster v1: Vector CPU

● Reading data from memory (RAM) takes time
=> performance depends on memory latency

● Big calculations often operate on blocks of data
=> use registers that hold multiple numbers

● Registers are filled sequentially; arithmetic
operations operate number-by-number and
thus can commence before the register is full
=> (some) memory access latency is hidden

● Problems: data dependencies, memory speed

21

Running Faster v2: Cache Memory

● Registers are very fast, but very expensive
● Loading data from memory

is slow, but is is cheap and
there can be a lot of it

● => Cache memory = small buffer of fast
memory between regular memory
and CPU; buffers blocks of data

● Cache can come in multiple “levels”, L#:
L1: fastest/smallest <-> L3: slowest/largest
can be within CPU, or external

22

Cache vs. Vector Registers

● Cache is much cheaper to implement
● Vector processors are easier to program,

particularly on large multi-dimensional data
=> weather and climate, finite element models

● Programs have to be written differently,
especially for nested loops
Vector CPU => “longest loop” as inner loop
Scalar CPU => re-use data from cache
 => inner loop should fit into cache

=> use tiling, if inner loop too long

23

Running Faster v3: Pipelining

● Multiple steps in one CPU “operation”: e.g.
fetch, decode, execute, memory, write back
=> multiple units with out-of-order execution

● Using a pipeline can improve their utilization,
allows for faster clock

● Dependencies and
branches can stall
the pipeline
=> branch prediction
=> no “if” in inner loop

24

Running Faster v4: Superscalar
● Superscalar CPU => instruction level parallelism
● Redundant functional units in single CPU

=> multiple instructions executed at same time,
 if there are no data dependencies

● Often combined with pipelined CPU design
● no branches
● Not SIMD/SSE/MMX
● Optimization:

=> loop unrolling

25

Running Faster v5: Hyperthreading

● Method to keep functional units in CPU busy
● Two sets of registers share functional units
● Improves utilization, but not individual speed
● Operating system “sees” two processors

=> added overhead for managing processes
● Performance gain application dependent

- independent data access => cache trashing
- applications need to use mix of functional
 units (load/store, integer, floating-point)

26

Running Faster v6: Multi-core

● Maximum CPU clock
rate limited by physics

● Implement multiple
complete, pipelined,
and superscalar CPUs
into one processor

● Need parallel software
to take advantage

● Memory speed limiting

27

Running Faster v7: Accelerator

● Offload compute intensive or data intensive
tasks to add-on card with GPU/Xeon Phi/FPGA

● Fast, wide memory bus
● Simple CPU design, but

large number of cores
● SMT (hyper-threading),

hardware thread manager
● Close-to-the-metal

=> no OS/kernel on GPU
=> Exception: Xeon Phi

28

What About Memory Access?

● Memory access faster through multi-channel
memory bus (need multiple RAM modules)
=> memory itself not much faster

● Memory controller integrated in CPU
=> Multi-processor machines are NUMA
 (= non-uniform memory access)
=> total (shared memory) larger, but some
 memory is faster than other

● Need to use processor & memory affinity where
possible for maximum efficiency (→numactl)

29

External Storage

● Hard drive storage has grown in capacity, but
not so much in performance
=> large performance gap: RAM vs. HD
=> virtual memory (swap to disk) mostly useless

● Solid state drives combine lots of (slow) non-
volatile RAM with hard drive-like interface
=> fast search times, higher transfer rate
=> “no” mechanical wear

● RAID (=redundant array of inexpensive disks)
allows for parallelism and reliability

30

Storage Hierarchy

● Register
integer/floating point, single/vector

● Cache
multiple levels, shared/exclusive

● Main memory
Local/NUMA

● External storage
Solid state, hard drive, networked file server

31

Many “Levels” of CPU Hardware
We Need to Worry About

● x86_64 has 16 SIMD/Vector registers
(SSE => 2x DP, 4x SP; AVX => 4x DP, 8x SP;
Xeon Phi 8x DP, 16x SP; ...)

● 2-3 Cache levels, L1 is per core, higher levels
shared between varying amounts of cores

● Hybrid hyper-threading (some functional units
are shared between two cores, others not)

● NUMA for multi-core, multi-processor machines
● Hybrid hardware (CPU/GPU hybrids)

32

How to Optimize For All of This?
● Vector registers: compiler auto-vectorization

(plus directives), vector intrinsics, libraries
-> loops without data dependencies & branches
-> struct of arrays instead of array of structs

● Caches: maximize data reuse
-> tiling, short inner loops, data reorganization

● Superscalar, pipelined architectures
-> predictable data flows, concurrent execution

● Multi-core, NUMA: multi-level parallelism with
shared and distributed/replicated data as needed

33

Memory Mountain

● Memory performance with “strided” access
stride = distance between two data locations

● Shows cache sizes
and performances

● Stride 1 best
● Try with and without

compiler optimization
=> prefetch instruction,
 vectorization

0

200

400

600

800

1000

1200

1400

Memory Mountain

Nehalem 2.8GHz

Data Size

M
B

yt
e/

s

Stride

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

