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Why use Computers in Science?

● Use complex theories without a closed solution:
solve equations or problems that can only be 
solved numerically, i.e. by inserting numbers 
into expressions and analyzing the results

● Do “impossible” experiments:
study (virtual) experiments, where the boundary 
conditions are inaccessible or not controllable

● Benchmark correctness of models and theories:
the better a model/theory reproduces known 
experimental results, the better its predictions
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Why Would I Care About HPC?

● My problem is big

● My problem is complex

● My computer is too small and too slow
● My software is not efficient and/or not parallel

-> often scaling with system size the problem
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How to Get My Answers Faster?

● Work harder
=> get faster hardware (get more funding)

● Work smarter
=> use optimized algorithms (libraries!)
=> write faster code (adapt to match hardware)
=> trade performance for convenience
      (e.g. compiled program vs. script program)

● Delegate parts of the work
=> parallelize code, (grid/batch computing)
=> use accelerators (GPU/MIC CUDA/OpenCL)
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What Determines Performance?

● How fast is my CPU?
● How fast can I move data around?
● What is the scaling behavior of my algorithm
● How well can I parallelize the work?

=> efficient serial algorithms may not parallelize
     as well as less efficient (simpler) ones

=> always run benchmarks to understand
     requirements of your applications and
     properties of your hardware
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How Do We Measure Performance?

● For numerical operations: FLOP/s (or FLOPS)
= Floating-Point Operations per second

● Theoretical maximum (peak) performance:
clock rate x number of double precision addition 
and/or multiplications completed per clock
=> 2.5 Ghz x 8 FLOP/clock = 20 GigaFLOP/s
=> can never be reached (data load/store)

● Real (sustained) performance:
=> very application dependent
=> Top500 uses Linpack (linear algebra)
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A High-Performance Problem
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Two Types of Parallelism

● Functional parallelism:
different people are
performing different
tasks at the same time

● Data parallelism:
different people are
performing the same
task, but on different
equivalent and
independent objects
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Amdahl's Law vs. Real Life

● The speedup of a parallel program is limited by 
the sequential fraction of the program.

● This assumes perfect scaling and no overhead
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Performance of SC Applications

● Strong scaling: fixed data/problem set;
measure speedup with more processors

● Weak scaling: data/problem set increases with 
more processors; measure if speed is same

● Linpack benchmark: weak scaling test, more 
efficient with more memory => 60-95% peak

● Climate modeling (WRF): strong scaling test,
work distribution limited, load balancing, serial 
overhead => < 5% peak  (similar for MD)
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Strong Scaling Graph
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Weak Scaling Graph
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Performance within an Application
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A Simple Calculator

1) Enter number
on keyboard
=> register 1

2) Turn handle
forward = add
backward
= subtract

3) Multiply = add
register 1 with 
shifts until 
register 2 is 0 

4) Register 3
= result

Register 2

Register 1

Register 3

Controls

Arithmetic Unit
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A Simple CPU

● The basic CPU design is not much different 
from the mechanical calculator.

● Data still needs to be fetched into registers 
for the CPU to be able to operate on it.
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How Many Registers?

● Minimum: 2
> very inefficient, need many load/store ops

● 32-bit x86: 4 general purpose (integer) registers
> more flexible. e.g. “indirect” load/store ops
> “width” of register defines “bitness” of CPU
> 8 floating-point registers (80-/64-/32-bit FPU)

● 64-bit x86 (AMD64,EM64T): 8 integer registers
> same FPU as 32-bit, SIMD unit (SSE, AVX)

● IBM Power 5+: 80 general purpose registers,
72 64-bit floating-point registers (or 36x 128-bit)
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Fast and Slow Compute Operations

● Fast: add, subtract, multiply
● Medium: divide, modulus, sqrt()
● Slow: most transcendental functions
● Very slow: power (xy for real x and y)

CPUs are often optimized for only the “fast” 
operations, so code will be the fastest when 
using only add and multiply => linear algebra

GPUs have fast approximate versions of library 
functions as needed by graphics (sin, cos, sqrt)
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Software Optimization 

● Writing maximally efficient code is hard:
=> most of the time it will not be executed 
exactly as programmed, not even for assembly

● Maximally efficient code is not very portable:
=> cache sizes, pipeline depth, registers, 
instruction set will be different between CPUs

● Compilers are smart (but not too smart!) and 
can do the dirty work for us, but can get fooled

=> modular programming: generic code for 
most of the work plus well optimized kernels
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A Typical Computer
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Running Faster v1: Vector CPU

● Reading data from memory (RAM) takes time
=> performance depends on memory latency

● Big calculations often operate on blocks of data
=> use registers that hold multiple numbers

● Registers are filled sequentially; arithmetic 
operations operate number-by-number and 
thus can commence before the register is full
=> (some) memory access latency is hidden

● Problems: data dependencies, memory speed
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Running Faster v2: Cache Memory

● Registers are very fast, but very expensive
● Loading data from memory

is slow, but is is cheap and
there can be a lot of it

● => Cache memory = small buffer of fast
memory between regular memory
and CPU; buffers blocks of data

● Cache can come in multiple “levels”, L#:
L1: fastest/smallest <-> L3: slowest/largest
can be within CPU, or external
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Cache vs. Vector Registers

● Cache is much cheaper to implement
● Vector processors are easier to program,

particularly on large multi-dimensional data
=> weather and climate, finite element models

● Programs have to be written differently, 
especially for nested loops
Vector CPU => “longest loop” as inner loop
Scalar CPU => re-use data from cache
                   => inner loop should fit into cache

=> use tiling, if inner loop too long
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Running Faster v3: Pipelining

● Multiple steps in one CPU “operation”: e.g.
fetch, decode, execute, memory, write back
=> multiple units with out-of-order execution

● Using a pipeline can improve their utilization,
allows for faster clock

● Dependencies and
branches can stall
the pipeline
=> branch prediction
=> no “if” in inner loop
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Running Faster v4: Superscalar
● Superscalar CPU => instruction level parallelism
● Redundant functional units in single CPU

=> multiple instructions executed at same time,
     if there are no data dependencies

● Often combined with pipelined CPU design
● no branches
● Not SIMD/SSE/MMX
● Optimization:

=> loop unrolling
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Running Faster v5: Hyperthreading

● Method to keep functional units in CPU busy
● Two sets of registers share functional units
● Improves utilization, but not individual speed
● Operating system “sees” two processors

=> added overhead for managing processes
● Performance gain application dependent

- independent data access => cache trashing
- applications need to use mix of functional
  units (load/store, integer, floating-point)
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Running Faster v6: Multi-core

● Maximum CPU clock
rate limited by physics

● Implement multiple
complete, pipelined,
and superscalar CPUs
into one processor

● Need parallel software
to take advantage

● Memory speed limiting
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Running Faster v7: Accelerator

● Offload compute intensive or data intensive
tasks to add-on card with GPU/Xeon Phi/FPGA

● Fast, wide memory bus
● Simple CPU design, but

large number of cores
● SMT (hyper-threading),

hardware thread manager
● Close-to-the-metal

=> no OS/kernel on GPU
=> Exception: Xeon Phi
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What About Memory Access?

● Memory access faster through multi-channel
memory bus (need multiple RAM modules)
=> memory itself not much faster

● Memory controller integrated in CPU
=> Multi-processor machines are NUMA
     (= non-uniform memory access)
=> total (shared memory) larger, but some
     memory is faster than other

● Need to use processor & memory affinity where 
possible for maximum efficiency (→numactl)
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External Storage

● Hard drive storage has grown in capacity, but
not so much in performance
=> large performance gap: RAM vs. HD
=> virtual memory (swap to disk) mostly useless

● Solid state drives combine lots of (slow) non-
volatile RAM with hard drive-like interface
=> fast search times, higher transfer rate
=> “no” mechanical wear

● RAID (=redundant array of inexpensive disks)
allows for parallelism and reliability
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Storage Hierarchy

● Register
integer/floating point, single/vector

● Cache
multiple levels, shared/exclusive

● Main memory
Local/NUMA

● External storage
Solid state, hard drive, networked file server
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Many “Levels” of CPU Hardware
We Need to Worry About

● x86_64 has 16 SIMD/Vector registers
(SSE => 2x DP, 4x SP; AVX => 4x DP, 8x SP; 
Xeon Phi 8x DP, 16x SP; ...)

● 2-3 Cache levels, L1 is per core, higher levels 
shared between varying amounts of cores

● Hybrid hyper-threading (some functional units 
are shared between two cores, others not)

● NUMA for multi-core, multi-processor machines
● Hybrid hardware (CPU/GPU hybrids)
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How to Optimize For All of This?
● Vector registers: compiler auto-vectorization

(plus directives), vector intrinsics, libraries
-> loops without data dependencies & branches
-> struct of arrays instead of array of structs

● Caches: maximize data reuse
-> tiling, short inner loops, data reorganization

● Superscalar, pipelined architectures
-> predictable data flows, concurrent execution

● Multi-core, NUMA: multi-level parallelism with 
shared and distributed/replicated data as needed
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Memory Mountain

● Memory performance with “strided” access 
stride = distance between two data locations

● Shows cache sizes
and performances

● Stride 1 best
● Try with and without

compiler optimization
=> prefetch instruction,
     vectorization
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