
Using Blocks and Threads in CUDA

slides taken from:

(C-) CUDA programming for (multi) GPU

Massimo Bernaschi
http://www.iac.cnr.it/~massimo

Parallel Programming in CUDA C

• GPU computing is about massive parallelism

• So how do we run code in parallel on the device?

• Solution lies in the parameters between the triple angle
brackets:

 add<<< 1, 1 >>>(dev_a, dev_b, dev_c);

 add<<< N, 1 >>>(dev_a, dev_b, dev_c);

• Instead of executing add() once, add() executed N
times in parallel

Parallel Programming in CUDA C
• With add() running in parallel…let’s do vector addition

• Terminology: Each parallel invocation of add() referred to as a block

• Kernel can refer to its block’s index with the variable blockIdx.x

• Each block adds a value from a[] and b[], storing the result in c[]:

 __global__ void add(int *a, int *b, int *c) {
 c[blockIdx.x] = a[blockIdx.x]+b[blockIdx.x];
 }

• By using blockIdx.x to index arrays, each block handles a different index
• blockIdx.x is the first example of a CUDA predefined variable.

Parallel Programming in CUDA C

Block 1

c[1]=a[1]+b[1];

 We write this code:
 __global__ void add(int *a, int *b, int *c) {

 c[blockIdx.x] = a[blockIdx.x]+b[blockIdx.x];

 }

 This is what runs in parallel on the device:

Block 0

c[0]=a[0]+b[0];

Block 2

c[2]=a[2]+b[2];

Block 3

c[3]=a[3]+b[3];

Parallel Addition: main()
#define N 512
int main(void) {
 int *a, *b, *c; // host copies of a, b, c
 int *dev_a, *dev_b, *dev_c; // device copies of a, b, c
 int size = N * sizeof(int); // we need space for 512

// integers

 // allocate device copies of a, b, c
 cudaMalloc((void**)&dev_a, size);
 cudaMalloc((void**)&dev_b, size);
 cudaMalloc((void**)&dev_c, size);

 a = (int*)malloc(size);
 b = (int*)malloc(size);
 c = (int*)malloc(size);

 random_ints(a, N);
 random_ints(b, N);

Parallel Addition: main() (cont)
 // copy inputs to device
 cudaMemcpy(dev_a, a, size, cudaMemcpyHostToDevice);
 cudaMemcpy(dev_b, b, size, cudaMemcpyHostToDevice);

 // launch add() kernel with N parallel blocks
 add<<< N, 1 >>>(dev_a, dev_b, dev_c);

 // copy device result back to host copy of c
 cudaMemcpy(c, dev_c, size, cudaMemcpyDeviceToHost);

 free(a); free(b); free(c);
 cudaFree(dev_a);
 cudaFree(dev_b);
 cudaFree(dev_c);
 return 0;
}

Review
 Difference between “host” and “device”

—Host = CPU
—Device = GPU

 Using __global__ to declare a function as
device code
—Runs on device
—Called from host

 Passing parameters from host code to a
device function

Review (cont)
 Basic device memory management

—cudaMalloc()
—cudaMemcpy()
—cudaFree()

 Launching parallel kernels
—Launch N copies of add() with: add<<< N, 1 >>>();
—blockIdx.x allows to access block’s index

• Exercise: look at, compile and run the
add_simple_blocks.cu code

Threads
 Terminology: A block can be split into parallel threads

 Let’s change vector addition to use parallel threads instead
of parallel blocks:

 __global__ void add(int *a, int *b, int *c) {
 c[] = a[]+ b[];
 }

 We use threadIdx.x instead of blockIdx.x in add()

 main() will require one change as well…

threadIdx.x threadIdx.x threadIdx.xblockIdx.x blockIdx.x blockIdx.x

Parallel Addition (Threads): main()
#define N 512
int main(void) {
 int *a, *b, *c; //host copies of a, b, c
 int *dev_a, *dev_b, *dev_c;//device copies of a, b, c
 int size = N * sizeof(int)//we need space for 512 integers

 // allocate device copies of a, b, c
 cudaMalloc((void**)&dev_a, size);
 cudaMalloc((void**)&dev_b, size);
 cudaMalloc((void**)&dev_c, size);

 a = (int*)malloc(size);
 b = (int*)malloc(size);
 c = (int*)malloc(size);

 random_ints(a, N);
 random_ints(b, N);

Parallel Addition (Threads): main()
 // copy inputs to device
 cudaMemcpy(dev_a, a, size, cudaMemcpyHostToDevice);
 cudaMemcpy(dev_b, b, size, cudaMemcpyHostToDevice);

 // launch add() kernel with N
 add<<< >>>(dev_a, dev_b, dev_c);

 // copy device result back to host copy of c
 cudaMemcpy(c, dev_c, size, cudaMemcpyDeviceToHost);

 free(a); free(b); free(c);
 cudaFree(dev_a);
 cudaFree(dev_b);
 cudaFree(dev_c);
 return 0;
}

 threads

 1, N

 blocks

 N, 1

Exercise: compile and run the add_simple_threads.cu code

Using Threads And Blocks
 We’ve seen parallel vector addition using

— Many blocks with 1 thread apiece
— 1 block with many threads

 Let’s adapt vector addition to use lots of both blocks
and threads

 After using threads and blocks together, we’ll talk
about why threads

 First let’s discuss data indexing…

Indexing Arrays With Threads & Blocks

• No longer as simple as just using threadIdx.x or blockIdx.x as indices

• To index array with 1 thread per entry (using 8 threads/block)

• If we have M threads/block, a unique array index for each entry is given by
 int index = threadIdx.x + blockIdx.x * M;

 int index = x + y * width;

blockIdx.x = 0 blockIdx.x = 1 blockIdx.x = 2 blockIdx.x = 3

threadIdx.x

00 11 22 33 44 55 66 77

threadIdx.x

00 11 22 33 44 55 66 77

threadIdx.x

00 11 22 33 44 55 66 77

threadIdx.x

00 11 22 33 44 55 66 77

Indexing Arrays: Example
• In this example, the red entry would have an index of 21:

 int index = threadIdx.x + blockIdx.x * M;
 = 5 + 2 * 8;
 = 21;

blockIdx.x = 2

M = 8 threads/block

0 178 16 18 19 20 2121 3 4 5 6 7 109 11 12 13 14 15

Indexing Arrays: other examples
(4 blocks with 4 threads per block)

Addition with Threads and Blocks
 blockDim.x is a built-in variable for threads per block:
 int index= threadIdx.x + blockIdx.x * blockDim.x;
 gridDim.x is a built-in variable for blocks in a grid;

 A combined version of our vector addition kernel to use blocks
and threads:

 __global__ void add(int *a, int *b, int *c) {
 int index = threadIdx.x + blockIdx.x * blockDim.x;
 c[index] = a[index] + b[index];
 }

 So what changes in main() when we use both blocks and
threads?

Parallel Addition (Blocks/Threads)
#define N (2048*2048)
#define THREADS_PER_BLOCK 512
int main(void) {
 int *a, *b, *c; // host copies of a, b, c
 int *dev_a, *dev_b, *dev_c;//device copies of a, b, c
 int size = N * sizeof(int); // we need space for N

 // integers

 // allocate device copies of a, b, c
 cudaMalloc((void**)&dev_a, size);
 cudaMalloc((void**)&dev_b, size);
 cudaMalloc((void**)&dev_c, size);

 a = (int*)malloc(size);
 b = (int*)malloc(size);
 c = (int*)malloc(size);

 random_ints(a, N);
 random_ints(b, N);

Parallel Addition
(Blocks/Threads)

 // copy inputs to device
 cudaMemcpy(dev_a, a, size, cudaMemcpyHostToDevice);
 cudaMemcpy(dev_b, b, size, cudaMemcpyHostToDevice);

 // launch add() kernel with blocks and threads
 add<<< N/THREADS_PER_BLOCK, THREADS_PER_BLOCK >>>(dev_a, dev_b, dev_c);

 // copy device result back to host copy of c
 cudaMemcpy(c, dev_c, size, cudaMemcpyDeviceToHost);

 free(a); free(b); free(c);
 cudaFree(dev_a);
 cudaFree(dev_b);
 cudaFree(dev_c);
 return 0;
}

Exercise: compile and run the add_simple.cu code

Exercise: dynamic size floating point
vector add

• Start from the vector_add.cu code which has an
implementation for the vector addition on the CPU.
The code must do an addition of two vectors and
produce the same result as on the CPU.

• The comments containing XXX indicate what the
CUDA code should do, that you will have to write.

• Remember that:
– blockDim.x is the number of threads per block;
– threadIdx.x is the index of the current thread in the block;
– gridDim.x is the number of blocks in a grid;
– blockIdx.x is the index of the current block in the grid;

CUDA Thread organization: Grids and Blocks

• A kernel is executed as a 1D, 2D or
3D grid of thread blocks.
– All threads share the global memory

• A thread block is a 1D, 2D or 3D
batch of threads that can cooperate
with each other by:
– Synchronizing their execution

• For hazard-free shared memory
accesses

– Efficiently sharing data through a low
latency shared memory

• Threads blocks are independent of
each other and can be executed
in any order!

Host

Kernel
1

Kernel
2

Device

Grid 1

Block
(0, 0)

Block
(1, 0)

Block
(2, 0)

Block
(0, 1)

Block
(1, 1)

Block
(2, 1)

Grid 2

Block (1, 1)

Thread
(0, 1)

Thread
(1, 1)

Thread
(2, 1)

Thread
(3, 1)

Thread
(4, 1)

Thread
(0, 2)

Thread
(1, 2)

Thread
(2, 2)

Thread
(3, 2)

Thread
(4, 2)

Thread
(0, 0)

Thread
(1, 0)

Thread
(2, 0)

Thread
(3, 0)

Thread
(4, 0)

Courtesy: NVIDIA

Built-in Variables to manage grids and blocks

• dim3 gridDim;
– Dimensions of the grid in blocks

• dim3 blockDim;
– Dimensions of the block in threads

• dim3 blockIdx;
– Block index within the grid

• dim3 threadIdx;
– Thread index within the block

dim3: a new datatype defined by CUDA: struct dim3 { unsigned int x, y, z };
three unsigned ints where any unspecified component defaults to 1.

int main() {
 int dimx = 16;
 int dimy = 16;
 int num_bytes = dimx*dimy*sizeof(int);

 int *d_a=0, *h_a=0; // device and host pointers

 h_a = (int*)malloc(num_bytes);
 cudaMalloc((void**)&d_a, num_bytes);

 dim3 grid, block;
 block.x = 4;
 block.y = 4;
 grid.x = dimx / block.x;
 grid.y = dimy / block.y;

 kernel<<<grid, block>>>(d_a, dimx, dimy);

 cudaMemcpy(h_a,d_a,num_bytes,
 cudaMemcpyDeviceToHost);

 for(int row=0; row<dimy; row++) {
 for(int col=0; col<dimx; col++)
 printf("%d ", h_a[row*dimx+col]);
 printf("\n");
 }

 free(h_a);
 cudaFree(d_a);
 return 0;
}

__global__ void kernel(int *a, int dimx, int dimy) {
 int ix = blockIdx.x*blockDim.x + threadIdx.x;
 int iy = blockIdx.y*blockDim.y + threadIdx.y;
 int idx = iy*dimx + ix;

 a[idx] = idx+1;
}

Bi-dimensional threads
configuration by example:

set the elements of
a square matrix

(assume the matrix is a
single block of memory!)

Exercise: compile and run: setmatrix.cu

Matrix multiply with thread blocks

• One block of threads computes one
matrix element of matrix C

• Each block loops over
– a row of matrix A
– a column of matrix B
– Perform one multiply and sum the

result into a temporary variable
• Store the result into the proper

element of matrix C
• Size of matrix limited by the number

of blocks per dimension!

 2D Bock Grid

3 2 5 4

2

4

2

6

48

Block
(2, 2)

 WIDTH

A C

B

Exercise: dynamic size matrix multiply

• Start from the matrix_multiply.cu code which has an
implementation for a unoptimized matrix multiplication
on the CPU

• The code must do the multiplication of the matrices and
produce the same result as on the CPU.

• The comments containing XXX indicate what the
CUDA code should do, that you will have to write.

• Use a 2D-grid of thread blocks where each block computes
one matrix element of the result matrix.

• For tomorrow: parallelize the dot product over threads

	Slide 1
	Parallel Programming in CUDA C
	Parallel Programming in CUDA C
	Parallel Programming in CUDA C
	Parallel Addition: main()
	Parallel Addition: main() (cont)
	Review
	Review (cont)
	Threads
	Parallel Addition (Threads): main()
	Parallel Addition (Threads): main()
	Using Threads And Blocks
	Indexing Arrays With Threads & Blocks
	Indexing Arrays: Example
	Slide 15
	Addition with Threads and Blocks
	Parallel Addition (Blocks/Threads)
	Parallel Addition (Blocks/Threads)
	Exercise: array reversal
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

