Using Blocks and Threads in CUDA

slides taken from:

(C-) CUDA programming for (multi) GPU

Massimo Bernaschi
http://www.iac.cnr.it/~massimo

GPU computing is about parallelism
So how do we run code in parallel on the device?

Solution lies in the parameters between the triple angle
brackets:

Instead of executing () once, () executed
times in parallel

With () running in parallel...let’s do vector addition

Terminology: Each parallel invocation of () referred to as a

Kernel can refer to its block’s index with the variable

Each block adds a value from a[] and b[], storing the resultinc|[] :

__global_ add (*a, *b, *¢) {
cl 1 = af 1+b[1;
}
By using to index arrays, each block handles a different index

is the first example of a CUDA predefined variable.

Parallel Programming in CUDA C

* We write this code:
__global_ add (*a, *b, *¢) {
c[blockIdx.x] = a[blockIdx.x]+b[blockIdx.x];
}

" This is what runs in parallel on the device:

Block O Block 1
c[o]=a[0]+b[0O]; c[i1]=a[1]+b[1];
Block 2 Block 3

c[2]=a[2]+b[2]; c[3]=a[3]+b[3];

Parallel Addition: main()

*a *b *c

a = (int*)malloc(size);
b = (int*)malloc(size);
c = (int*)malloc(size);

random_ints(a, N);
random_ints(b, N);

// copy 1inputs to device
cudaMemcpy(dev_a, a, size, cudaMemcpyHostToDevice);
cudaMemcpy(dev_b, b, size, cudaMemcpyHostToDevice);

// launch add() kernel with N parallel blocks
add<<< , 1 >>>(dev_a, dev_b, dev_c);

// copy device result back to host copy of c
cudaMemcpy(c, dev_c, size, cudaMemcpyDeviceToHost);

cudaFree(dev_a);

cudaFree(dev_b);

cudaFree(dev_c);
0,

Difference between “host” and “device”

— Host = CPU
— Device = GPU
Using to declare a function as

device code
— Runs on device
— Called from host

Passing parameters from host code to a
device function

" Basic device memory management

()
()
()

" Launching parallel kernels
— Launch N copies of add() with: add<<< N, 1 >>>();
— allows to access block’s index

 Exercise: look at, compile and run the
code

Terminology: A block can be split into parallel

Let’s change vector addition to use parallel threads instead
of parallel blocks:

__global_ add (*a, *b, *¢) {
cl 1 =al 1+ bl 1;
}

We use instead of in add ()

() will require one change as well...

N 512
main(void) {
*a, *b, *c; //host copies of a, b, c

*dev_a, *dev_b, *dev_c;//device copies of a, b, c

size = N * ()//we need space for 512

// allocate device copies of a, b, c

cudaMalloc((**)&dev_a, size);
cudaMalloc((**)&dev_b, size);
cudaMalloc((**)&dev_c, size);

a = (*Imalloc(size);
b = (*)malloc(size);
(s (*)malloc(size);

random_ints(a, N);
random_ints(b, N);

integers

// copy inputs to device
cudaMemcpy(dev_a, a, size, cudaMemcpyHostToDevice);
cudaMemcpy(dev_b, b, size, cudaMemcpyHostToDevice);
// launch add() kernel with N P10¢ks

add<<< >>>(dev_a, dev_b, dev_c);

// copy device result back to host copy of c
cudaMemcpy(c, dev_c, size, cudaMemcpyDeviceToHost);

free(a); free(b); free(c);
cudaFree(dev_a);
cudaFree(dev_b);
cudaFree(dev_c);
0;
}

Exercise: compile and run the code

We’ve seen parallel vector addition using
— Many blocks with 1 thread apiece
— 1 block with many threads

Let’s adapt vector addition to use lots of both blocks
and threads

After using threads and blocks together, we’ll talk
about why threads

First let’s discuss data indexing...

Indexing Arrays With Threads & Blocks

* No longer as simple as just using or as indices

* To index array with 1 thread per entry (using 8 threads/block)

threadIdx.x threadIdx.Xx threadIdx.x

01234567 041/234a5/67
}

\ Y A Y A
blockIdx.x = 0 blockIdx.x = 1 blockIdx.x = 2 blockIdx.x = 3

* |f we have M threads/block, a unique array index for each entry is given by
int index = threadIdx.x + blockIdx.x * M;

int index = X + y * width;

Indexing Arrays: Example

0 1 2 3 45 6 7|8(9|10/11|12/13{14/15(16/17|18(19|20(21

/6
+
M = 8 threads/block st
S

A
[) ,&‘e

!
blockIdx.x = 2

int

__global __ void kernel(int *a)

{

int idx = blockIdx.x*blockDim.x + threadIdx.x;
a[idx] = 7;
} Output: 7 7 7 7 7 7 7 7 7 77 77777

__global _ void kernel(int *a)

1
int idx = blockIdx.x*blockDim.x + threadIdx.x;
a[idx] = blockIdx.x;

} Qutput: 6 #6066 111122223333

__global __ void kernel(int *a)

{
int idx = blockIdx.x*blockDim.x + threadIdx.x;
a[idx] = threadIdx.x;

} Output: 61 239012301230123

Addition with Threads and Blocks

" blockDim.Xx
index= threadIdx.x + blockIdx.x * blockDim.Xx;
" gridDim.Xx

index = threadIdx.x + blockIdx.x * blockDim.Xx;
index index index

main()

main(void) {

*a, *b, *c; // host copies of a, b, ¢
*dev_a, *dev_b, *dev_c;//device copies of a, b, c
size = N * (); // we need space for N

// integers

// allocate device copies of a, b, c

cudaMalloc((**)&dev_a, size);
cudaMalloc((**)&dev_b, size);
cudaMalloc((**)&dev_c, size);

a = (*)malloc(size);
b = (*)malloc(size),
(o (*)malloc(size);

random_ints(a, N);
random_ints(b, N);

// copy inputs to device
cudaMemcpy(dev_a, a, size, cudaMemcpyHostToDevice);
cudaMemcpy(dev_b, b, size, cudaMemcpyHostToDevice);

// launch add() kernel with blocks and threads
add<<< >>>(dev_a, dev_b, dev_c);

// copy device result back to host copy of c
cudaMemcpy(c, dev_c, size, cudaMemcpyDeviceToHost);

free(a); free(b); free(c);
cudaFree(dev_a);
cudaFree(dev_b);
cudaFree(dev_c);
0,

Exercise: compile and run the code

* Start from the code which has an
implementation for the vector addition on the CPU.
The code must do an addition of two vectors and
produce the same result as on the CPU.

* The comments containing indicate what the
CUDA code should do, that you will have to write.

* Remember that:
is the number of threads per block;
is the index of the current thread in the block;
is the number of blocks in a grid;
is the index of the current block in the grid;

CUDA Thread organization: Grids and Blocks

1D 2D Device
3D grid of thread blocks. Grid 1

0,00 | (1L,0) (20
thread block 1D,2D 3D |
" Block | Block

shared memory Block (1, 1)

Threads blocks

in any order!

d I1M3:anew datatype defined by CUDA: struct dim3 { unsigned int x,y, z };
three unsigned ints where any unspecified component defaults to 1.

e dim3 ,
— Dimensions of the grid in blocks
e dim3 -
— Dimensions of the block in threads
e dim3 ;
— Block index within the grid
e dim3 ;

— Thread index within the block

int main() {
int dimx = 16;

Bi-dimensional threads iy 16
5 - int num_bytes = dimx*dimy *sizeof(int);
configuration by example:
set the elements of

int *d_a=0, *h_a=0; // device and host pointers

h_a = (int*)malloc(num_bytes);

d Sq uare m atrix cudaMalloc((void* *)&d_a, num_bytes);
(assume the matrix is a ot
block.y = 4;

single block of memory!) sridx -dime/biocix

grid.y =dimy / block.y;
kernel<<<grid, block>>>(d_a, dimx, dimy);
cudaMemcpy(h_a,d_a,num_bytes,

cudaMemcpyDeviceToHost);
__global__ void kernel(int *a, int dimx, int dimy) {

intix = blockldx.x*blockDim.x + threadldx.x; for(int row=0; row<dimy; row++) {
intiy = blockldx.y*blockDim.y + threadldx.y; for(int col=0; col<dimx; col++)
int idx = iy*dimx + ix; printf("%d ", h_a[row*dimx+col]);
printf("\n");
afidx] =idx+1; }
}
free(h_a));
cudaFree(d_a);
setmatrix.cu return 0;

One block of threads computes one
matrix element of matrix C
Each block loops over

— arow of matrix A

— a column of matrix B

— Perform one multiply and sum the
result into a temporary variable

Store the result into the proper
element of matrix C

Size of matrix limited by the number
of blocks per dimension!

s

2D Bock Grid

Block .
2,2)

~

A

\ 4

WIDTH

N
o,
o,
,
“,
“,

Start from the code which has an
implementation for a unoptimized matrix multiplication
on the CPU

The code must do the multiplication of the matrices and
produce the same result as on the CPU.

The comments containing indicate what the
CUDA code should do, that you will have to write.

Use a 2D-grid of thread blocks where each block computes
one matrix element of the result matrix.

For tomorrow: parallelize the dot product over threads

	Slide 1
	Parallel Programming in CUDA C
	Parallel Programming in CUDA C
	Parallel Programming in CUDA C
	Parallel Addition: main()
	Parallel Addition: main() (cont)
	Review
	Review (cont)
	Threads
	Parallel Addition (Threads): main()
	Parallel Addition (Threads): main()
	Using Threads And Blocks
	Indexing Arrays With Threads & Blocks
	Indexing Arrays: Example
	Slide 15
	Addition with Threads and Blocks
	Parallel Addition (Blocks/Threads)
	Parallel Addition (Blocks/Threads)
	Exercise: array reversal
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

