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For what do we use supercomputers? 

Classical scientific method 

– Make experiments that are reproducible 

– Collect measurements during the experiments 

– Use the measurements for (in)validate the scientific theories 

• Hypothesis 

• Prediction 

• Testing  

• Analysis 

There are theories where experiments are “difficult” 

– Different scale (astronomy) 

– Too expensive (zero gravity) 

– Wide space phase (drugs docking) 

– … 

 
~1.5% experiments  

accepted on the ISS!!! 
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Difference between a PC and a supercomputer 

Your PC is like a standard car: 

 

 

 

• Comfortable 

– graphical interface 

– screen, mouse, touch pad, … 

– printer, speaker 

• Versatile 

– Can play music 

– Can connect to internet 

– Can do a bit of scientific computation 

• Largely available  

– Cheap 

– OK, I assume you do not have a Ferrari… 

A supercomputer is like a F1 car: 

 

 

 

• Oriented to performance 

– Execution of floating point operations 

is the main target 

– No graphical interfaces, mouse, etc… 

– Only remotely accessible 

• Very specialized 

– Small sets of workloads 

– Scientific simulations 

– Parallel computation 

• Produced in few units 

– Very expensive 
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How to “describe” a supercomputer 

Components 

– Hardware 

• CPU 

• Accelerator (GPU, MIC, FPGA) 

• Memory 

• Network 

• Storage 

• Cooling 

• Integration 

– Software 

• Operating System 

• Driver 

• Libraries 

• Compilers 

• Cluster management 

Metrics/Categories 

– Floating point performance 

[FLOPS] 

 

 

 

– Power efficiency 

[FLOPS/W] 

 

 

 

– Cost efficiency 

[FLOPS/$] 

– Others 
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Top500 evolution: pure performance metric 
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The metric of the power efficiency 

Reorder of the 500 most powerful supercomputers 

Using the same benchmark (HPL) 

Sorted by power efficiency 

 

FLOPS/W 
FLoating point Operations Per Seconds  

per unit of power (Watt) 
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The metric of the cost efficiency 

Take the total price of a supercomputer and divide it by its 

performance: 

 

FLOPS/$ 
FLoating point Operations Per Seconds per Price 

 

NOTE:  

There is no “official” ranking for this metric 

Introduced for this talk: does not pretend to be “smart” 
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In the beginning... there were only supercomputers 
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Availability: 

Very few of them 
(why is called top500?) 

Very expensive 

 

Market: 

Some units sold 

Very few companies 
(market mostly “drugged” by states) 

 

Features: 

Special purpose hardware 

Vector operations/processors 

 
 

Examples: 

Cray-1 
1975 - 160 MFLOPS, 80 units, 5-8 M$, 115 kW 

Cray X-MP 
1982, 800 MFLOPS 

Cray-2 
1985, 1.9 GFLOPS 

Cray Y-MP 
1988, 2.6 GFLOPS 
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Then, commodity took over special purpose 
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1997 - ASCI Red, Sandia 
- 1 TFLOPS, 9298 cores @ 200 MHz Intel Pentium Pro, 850 kW 

- upgraded to Pentium II Xeon in 1999 (3.1 TFLOPS). 

 

2001 - ASCI White, LLNL 
- 7.3 TFLOPS, 8192 cores @ 375 MHz, IBM Power 3 

- 110 M$ 

- 3 MW for computational power 

- 3 MW for cooling 

 

From vector parallelism to message passing 

programming models... 13 



And now commodity components drive HPC 

 

RISC processors replaced vectors 

x86 processors replaced RISC 
Vector processors survive as (widening) SIMD extensions 
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Commodity hardware on stage 

Microprocessors killed the vector-based supercomputers 
They were not faster but they were significantly cheaper and greener 

10 microprocessors ≈ 1 vector CPU 
SIMD vs. MIMD programming paradigms 
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Commodity hardware + commodity software 

MareNostrum 

– Nov 2004, #4 Top500 

• 20 TFLOPS, Linpack 

• 31 TFLOPS, Peak 

• 3564 cores 

• 1 MW + 1 MW 

– IBM PowerPC 970 FX 

• Blade enclosure 

– Myrinet + 1 GbE network 

– SuSe Linux  

16 16 



Even more commodity with game technology 

Los Alamos National Laboratory (USA) 

 

Hybrid architecture 

– 1 x AMD dual-core Master blade 

– 2 x PowerXCell 8i Worker blade 

 

296 racks 

– 6.480 Opteron processors 

– 12.960 Cell processors 

• 128-bit SIMD 

 

Infiniband interconnect 

– 288-port switches 

 

2.35 MWatt 

 

2008: First PFLOPS 

supercomputer 

IBM RoadRunner 
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2009: 1.75 PFLOPS - Cray Jaguar 

Oak Ridge National Laboratory (USA) 

 

230 racks 

 

224.256 AMD Opteron processors 

– 6 cores / chip 

 

Cray Seastar2+ interconnect 

– 3D-mesh using AMD Hypertransport 

 

7 MWatts 
 

104 M$ 
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Commodity market driven (once more, game market) 

DOE/SC/Oak Ridge National Laboratory 

– Jaguar GPU upgrade 

 

200 racks 

 

224.256 Cray XK7 nodes 

– 16-core AMD Opteron 

– Nvidia Tesla K20X GPU 

 

8.2 MWatts 

 

97 M$ 

2012: 17.6 PFLOPS 

Cray Titan 
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Next commodity in the chain? 

21 

HPC 
Jun 2015: 25 M cores 

Server (+3%) 
2013: 9.0 M 
2014: 9.3 M 

PC (-1 %) 
2013: 316 M 
2014: 314 M 

Smartphone (+30%) 
2013: 1000 M 
2014: 1300 M 



In case the history repeats itself, we want to be ready… 
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Performance vs. price 
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Cheap technology evolving fast 
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WARNING: Having an ISA or an IP licensed 

does not guarantee that you will have a chip! 

2012 2013 2014 2015 

GFLOPS 
(DP) 

200+ 
Cavium  

 
48xARM-v8 @ 2.5 GHz X-Gene 

 
8xARM-v8 @ 2.4 GHz 

Tegra K1 
4xA15 @ 2.4 GHz 

+ K1 GPU 

Tegra 2 
2xA9 @ 1 GHz 

Tegra 3 
4xA9 @ 1.6 GHz 

Exynos 5 Dual 5250 

2xA15 @ 1.7 GHz 

MALI T604 GPU 

Exynos 5 Dual 5422 

4xA15 @ 2.0 GHz 

4xA7 @ 1.4 GHz 

MALI T628 GPU 

2 

10 

30 

60 

100 

Mobile 

<50 $ 

<15 W 

Server 

500+ $ 

60+ W 

Disclaimer: Numbers from public sources 
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Mont-Blanc 

protoype: 

2015 

The BSC ARM-based prototype ecosystem 
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Prototypes are critical to accelerate software development 
System software stack + applications 

2011 

Tibidabo: 

ARM multicore 

2012 

Carma: 

ARM +  

external  

mobile GPU 

2013 

Pedraforca: 

ARM +  

HPC GPU 

2014 

NVIDIA Jetson 

ARM 4+1 + K1 GPU 

Odroid: 

ARM bigLITTLE 

In-kernel switcher 

Odroid Octa: 

ARM bigLITTLE 

Heterogeneous  

multi-processing 

Arndale: 

ARM + embedded GPU 



Exynos5 Dual SoC 

2x cores ARM Cortex-A15 

1x GPU ARM Mali-T604 

Network 

USB3.0 to 1GbE bridge 

Memory 

4 GB LPDDR3-1600 

Local Storage 

microSD up to 64 GB 

CPU + GPU + Memory + Local Storage + Network 

Form factor: 8.5 x 5.6 cm 

Mont-Blanc Server-on-Module (SoM) 

27 

8.5 cm 

5
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 c
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Exynos 5 Dual: ARM + GPU platform 

Dual-core ARM Cortex-A15 @ 1.7 GHz 

– VFP for 64-bit Floating Point 

• 6.8 GFLOPS (1 FMA / cycle) 

– NEON for 32-bit 

floating point SIMD 

Quad-core ARM Mali T604 

– Compute capable 

• OpenCL 1.1 

• 68 GFLOPS (SP) 

• 25.5 GFLOPS (DP) 

Shared memory between 

CPU and GPU 

 

28 * Cost efficiency of the chip only 



Exynos 5 compute card 

2 x Cortex-A15 @ 1.7GHz 

1 x Mali T604 GPU 

6.8 + 25.5 GFLOPS 

15 Watts 

2.1 GFLOPS/W 

 
Carrier blade 

15 x Compute cards 

485 GFLOPS 

1 GbE to 10 GbE 

300 Watts 

1.6 GFLOPS/W 

 
Blade chassis 7U 

9 x Carrier blade 

135 x Compute cards 

4.3 TFLOPS 

2.7 kWatts 

1.6 GFLOPS/W 

Rack 

8 BullX chassis 

72 Compute blades 

1080 Compute cards 

2160 CPUs 

1080 GPUs 

4.3 TB of DRAM 

17.2 TB of Flash 

 
35 TFLOPS 

24 kWatt 

Mont-Blanc 
[GFLOPS/W] 

Green500 
[GFLOPS/W] 

Nov 2011 0.15 2.0 

Nov 2014 1.5 5.2 

The Mont-Blanc prototype 
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~10x 

~3.5x 

~2.5x ~10x 
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Everything perfect then? Not really… 

Only dual core 
– Limiting factors for app that needs large number of threads 

– Limitation when overlapping computation and communication 

32-bit memory controller 
– Even if ARM Cortex-A15 offers 40-bit address space 

No ECC protection in memory 
– But surprisingly enough this is not affecting badly scalability (so far) 

No DMA support 

No standard server I/O interfaces 
– No native Ethernet or PCI Express 

No network protocol off-load engine 
– TCP/IP, OpenMX, USB protocol stacks run on the CPU 

Thermal package not designed for sustained full-power 
operation 

30 

Constantly test 

new SoCs 

Model new 

HPC SoCs 

Learn how to 

mitigate the effect 

of these limitations. 



OpenCL driver 

Full system software stack for ARM 

31 

CPU 
GPU CPU 

CPU 

Source files (C, C++, FORTRAN, Python, …) 

GNU JDK Mercurium 

Compilers 

Linux OS / Ubuntu 

LAPACK Boost PETSc clFFT 

FFTW HDF5 ATLAS clBLAS 

Scientific libraries 

Scalasca Perf Extrae 

Developer tools 

SLURM Ganglia NTP 

OpenLDAP Nagios Puppet 

Cluster management 

Nanos++ OpenCL CUDA MPI 

Runtime libraries 

Lustre NFS Power 
monitor DVFS 

Hardware support / Storage 

Fine grained power 

monitoring tool 

1 

OmpSs programming  

model ported to ARM + 

OpenCL support + 

FORTRAN support 

2 

Automatically deployed 

through Puppet and 

distributed through github 

3 

Tested on commercial  

ARM-based platforms 

4 



Power monitor – HW infrastructure 
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Power monitor – HW / SW interface 

Field Programmable Gate Array (FPGA) 
– Collects power consumption data from all 15 power measurement / 

sample interval: 70ms 

Board Management Controller (BMC) 
– Collects 1s averaged  

data from FPGA 

– Stores measurement  
samples in FIFO 

Mont-Blanc Pusher 
– Collects measurement data  

from multiple BMCs using  
custom IPMI commands 

– Forwards data using MQTT  
protocol through Collect Agent  
into key-value store 

33 



Power monitor – Block diagram 
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OmpSs programming model 

Programmer exposed to a  
simple architecture 
– Tasks 

– Data dependencies 

– Target devices (heterogeneity) 

Task graph provides look ahead 
– Exploit knowledge about the future 

– Allows exploration of scheduling policies 

It helps handling limitations 
 of the hardware 
– Heterogeneity 

– Multiple address spaces 

– Low interconnect bandwidth 

– Synchronization 
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Is Mont-Blanc just a prototype? 
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Mont-Blanc 3 Mont-Blanc 

Mont-Blanc 2 

2012 2013 2014 2016 2015 

× HPC prototype based  

on current mobile  

embedded technology 

× Port and test real  

scientific applications  

× Learn from the experience, 

plan for future architecture 

Extend 

× Support to hardware and system software 
× OmpSs programming model 

× Productivity tools 

× New scientific and industrial applications 

× Next generation Mont-Blanc architecture 

Explore 

× ARM 64-bit 

× Fault tolerance and resiliency 

× Market of ARM-based platforms 

for mini-clusters 

No, Mont-Blanc is a EU project that leverages the fast growing market of 

mobile technology for scientific computation, HPC and non-HPC workload. 



Mont-Blanc project 

38 

“The secret is to win going as slowly as possible.” 
Niki Lauda 

MontBlancEU 

@MontBlanc_EU 

montblanc-project.eu 

filippo.mantovani@bsc.es 
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39 
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Exynos 5 compute card 

2 x Cortex-A15 @ 1.7GHz 

1 x Mali T604 GPU 

6.8 + 25.5 GFLOPS 

15 Watts 

2.1 GFLOPS/W 

 
Carrier blade 

15 x Compute cards 

485 GFLOPS 

1 GbE to 10 GbE 

300 Watts 

1.6 GFLOPS/W 

 
Blade chassis 7U 

9 x Carrier blade 

135 x Compute cards 

4.3 TFLOPS 

2.7 kWatts 

1.6 GFLOPS/W 

The Mont-Blanc prototype 
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Rack 

8 BullX chassis 

72 Compute blades 

1080 Compute cards 

2160 CPUs 

1080 GPUs 

4.3 TB of DRAM 

17.2 TB of Flash 

 



Exynos5 Dual SoC 

2x cores ARM Cortex-A15 

1x GPU ARM Mali-T604 

Network 

USB3.0 to 1GbE bridge 

Memory 

4 GB LPDDR3-1600 

Local Storage 

microSD up to 64 GB 

CPU + GPU + Memory + Local Storage + Network 

Form factor: 8.5 x 5.6 cm 

Mont-Blanc Server-on-Module (SoM) 
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Interconnection network 
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40Gb 

Samsung 

Exynos 5 Dual 

2xCortex-A15 

Mali-T604 

1GbE 

USB2.0 

USB2.0 

1Gb 

N
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e 
C
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d 
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N
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e 
C
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d 

x15 

1Gb … 

10Gb 10Gb 

x36 

10Gb 10Gb 

… 

B
la

de
 

x36 

10Gb 10Gb 

B
la

de
 

10Gb 10Gb 

B
la

de
 

1Gb 1Gb 1Gb 

x15 x15 x15 

Rack Rack 

Cisco Interconnect Switch 

4-port 40Gb 

 80-port 10Gb 

Cisco Interconnect Switch 

4-port 40Gb 

 80-port 10Gb 

Broadcom Switch 

2-port 10Gb 

16-port 1Gb 



Exynos 5 Dual: ARM + embedded GPU platform 

Dual-core ARM Cortex-A15 @ 1.7 GHz 

– VFP for 64-bit Floating Point 

• 6.8 GFLOPS (1 FMA / cycle) 

– NEON for 32-bit 

floating point SIMD 

Quad-core ARM Mali T604 

– Compute capable 

• OpenCL 1.1 

• 68 GFLOPS (SP) 

• 25.5 GFLOPS (DP) 

Shared memory between 

CPU and GPU 

– Possibility of avoiding 

host-device copies 
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Taking advantage of the resources 

By the end of the day we want to be able to run a small program 

on each of the following configurations: 

1 CPU core (serial code) 

2 CPU cores (OpenMP) 

1 CPU core + GPU (OpenCL) 

For each of these configurations  

we will change core frequency 

 

We will study: 

Time to solution 

Energy to solution 

Power profile 

45 



How important is power? 
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MareNostrum @ BSC 

~1.1 PFLOPS in ~1 MWatts 

Assuming (non-realistic) 
linear scale we need a 
system ~1000x larger to 
reach one EFLOP. 

This means ~1 GWatts for  
operating a supercomputer 

NOTE: Vandellòs Nuclear 
Power Plant in Catalunya: 
(144 km) is generating  
~1 GWatts 

 



Power monitor – HW / SW interface 

Field Programmable Gate Array  
(FPGA) 
– Collects power consumption data  

from all 15 power measurement 
sample interval: 70ms 

Board Management Controller (BMC) 
– Collects 1s averaged  

data from FPGA 

– Stores measurement  
samples in FIFO 

Mont-Blanc Pusher 
– Collects measurement data  

from multiple BMCs using  
custom IPMI commands 

– Forwards data using MQTT  
protocol through Collect Agent  
into key-value store 

47 



Power monitor – Block diagram 

48 

 



Session 2 - Outline 
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Runtime libraries… by examples 

– Serial code 

– OpenMP 

– OpenCL 
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Compilers 

Our ARM systems uses GNU compiler suite 

– gcc 

– gfortran 

– g++ 

50 



Compilers: optimization flags 

-march=arm* - tells the compiler what kind of instructions can 

emit when generating assembly code 

– Binary portability across different ARM platforms 

– -march=armv7-a 

– -march=native 

 

-mtune=name - target specific ARM processors 

– Tune the code for a specific architecture 

– Often used together with -mcpu 

– -mtune=cortex-a15 

51 



Compilers: Floating point - ABI* 

-mfloat-abi={soft,softfp,hard} 

– soft - library calls for floating point emulation 

• Old ARM based SoCs did not include floating-point unit 

– softfp - allows the generation of code using the hardware floating-point 

instructions, but still uses soft-float calling convention 

• Binaries will benefit from dedicated hardware 

– hard - allows generation of floating-point instructions and uses FPU-

specific calling convention 

• Noticeable improvement in floating-point performance compared to soft 

• Cortex-A15 (hands-on) uses hard 

* ABI: application binary interface 52 



Environment modules 

Package which provides dynamic modification of a user’s 
environment via module files 
– Each module configures the shell for an application 

– Support for different versions of a single application 

How to use it? 
– module avail 

– module load ${module_name}/${version} 
e.g. module load power_monitor 

– module unload ${module_name}/${version} 

How it works? 
– It modifies environment variables 

• PATH 

• LD_LIBRARY_PATH 

• LD_RUN_PATH 

53 



Job scheduler: SLURM 

SLURM is an open source job scheduler and resource 

manager 

– Designed to operate in heterogeneous clusters with up to 64k nodes 

and >100k processors 

– Developed by Lawrence Livermore national Laboratory 

– Since 2010, maintained by SchedMD LLC 

SLURM features 

– Several scheduler policies (FIFO, backfilling, GANG) 

– Support for external schedulers (LSF, MOAB/MAUI) 

– Uses priorities and limits (queues) 

– Support for Heterogeneous systems (GPU) 

– DB (MySQL) for accounting management 

Most important: it allows you to run on a subset of nodes 

of a large clusters without interferences 
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Running/Handling jobs with SLURM 

sbatch <myscript.job> 

– myscript.job is a shell script with directives (resources, application, etc) 

squeue - Job queue control 
fmantovani@mb-login-1:~$ squeue 

JOBID  PARTITION  NAME    USER       ST  TIME  NODES  NODELIST 

46     mb         myjob   fmantovani R   0:24  16     mb-[1-15,30] 

47     mb         myjob   fmantovani R   0:15  20     mb-[31-50] 

scancel <job_id> - Delete a job 

sinfo - Ciew information about SLURM nodes and partitions 
fmantovani@mb-login-1:~$ sinfo 

PARTITION  AVAIL TIMELIMIT  NODES  STATE  NODELIST 

mb*        up    30:00      900    idle   mb-[1-900] 

mb*        up    30:00      30     alloc  mb-[901-930] 

scontrol show job <job_id> - Shows information regarding the 

job identified by job_id 
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Your first SLURM job script 

#!/bin/bash 

 

#SBATCH --partition=mb 

#SBATCH --job-name=ictp-test 

#SBATCH --output=ictp_%j.out 

#SBATCH --error=ictp_%j.err 

#SBATCH --ntasks=1 

#SBATCH --nodes=1 

#SBATCH --time=00:05:00 

#SBATCH --gres=gpu 

 

srun hostname 

56 

This is important… It requires an estimation 

of duration of the job execution: HH:MM:SS 

If you want to run on the GPU you need this 

srun --cpu-freq=<FREQ-IN-KHz> <app-to-run>  



Power measurement acquisition 

Data needed: 

– WHEN: Interval of time while the job was running $T_START, $T_END 

– WHERE: List of nodes where the job was running $NODE 

 

How to get them 

– AT RUN TIME: 
Inside the job script: date +”%s” and echo $SLURM_JOB_NODELIST 

– POST-EXECUTION with SLURM command: 
export SLURM_TIME_FORMAT="%s“ 
sacct -u $USER -o jobid,nodelist,start,end,consumedenergy -j $JOB 

 

Query the power monitoring database 

– dcdbquery -h mb.mont.blanc -r ${NODE}-PWR $T_START $T_END 

 

Output is a csv file with the following format 

– “ID,Timestamps,PowerData[mW]” 

– You can import it in Excel, plot it with Gnuplot, etc. 
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Exercises 

1. Submit your first job 

– Run ‘hostname’ on 1, 2 and 4 Mont-Blanc nodes 

2. Test compiler flags 

– Get the code in $HOME/workshop-day6/es1.c and compile it with: 

• gcc es1.c -o es1-1 -lm 

• gcc -O3 es1.c -o es1-2 -lm 

• gcc -O3 -march=native es1.c -o es1-3 -lm 

– Write a job script that execute es1-1, es1-2 and es1-3 

– Execute the job script and analyze the output 

3. Consider one of your previous jobs  

– Run it at 0.8GHz and 1.6GHz 

– Get energy to solution of it 

– Get power data of it 
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SESSION 3 

How to use all resources 
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Session 3 - Outline 

Runtime libraries… by examples 

– Serial code 

– OpenMP 

– OpenCL 
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Synthetic workload 

 for (i = 0; i < arraySize; i++) { 

    a2 = cbrt( inputA[i]*inputA[i] / M_PI ) ; 

    b2 = cbrt( inputB[i]*inputB[i] * M_PI_2 ) ; 

    output[i] = log(sqrt(a2+b2)); 

 } 

 

You already used it  

(without knowing it) in es0… 

 

Classical C implementation  

produces a serial code 
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OpenMP 

De facto standard API for writing shared memory parallel 

applications in C, C++, and Fortran 

 

OpenMP API consists of: 

Compiler Directives 

Runtime subroutines/functions 

Environment variables 

62 

#include <omp.h> 

#pragma omp parallel for private (a2,b2) 

 for (i = 0; i < arraySize; i++) { 

    a2 = cbrt( inputA[i]*inputA[i] / M_PI ) ; 

    b2 = cbrt( inputB[i]*inputB[i] * M_PI_2 ) ; 

    output[i] = log(sqrt(a2+b2)); 

 } 

export OMP_NUM_THREADS=2 

gcc … -fopenmp … 



with OpenMP 

CPUs are fine, but how can we take advantage of the GPU? 
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OpenCL 

Framework for writing programs across heterogeneous 

platforms containing processing elements such as: 

– CPUs 

– GPUs 

– FPGAs 

Open standard 

Flexible, can be used from many languages such as: 

– C++ 

– Java 

– Python 

– Perl 

Easy to try anywhere, even in a laptop without GPU 
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Memory types 

Global memory: __global 

To refer to memory objects allocated from the global memory pool. 

Local memory: __local 

To describe variables that need to be allocated in local memory and 

are shared by all work-items of a work-group. 

Constant memory: __constant 

To describe variables allocated in global memory and which are 

accessed inside a kernel(s) as read-only variables. These can be 

accessed by all work-items of the kernel during its execution. 

Private memory: __private 

All variables inside a function or passed into the function as 

arguments are in the __private or private address space. Variables 

declared as pointers are considered to point to the __private 

address space if an address space qualifier is not specified. 
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Basic data structures 
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Variable Type 

Platform id cl_platform_id 

Device id cl_device_id 

Context cl_context 

Command Queue cl_command_queue 

Program cl_program 

Kernels cl_kernel 



Steps for porting to OpenCL 

 

Initialization 

Finalization 

Create kernel in OpenCL 

Create wrapper function 

Replace function call 
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Initialization (1) 

Get the platform IDs and select one 

Connect to a compute device of selected platform 

Create a compute context for the selected device 

Create a command queue for those context and device 

Open kernels file, read it and format it for OpenCL 

Create the compute program 

Build the program executable: at runtime! 

– Add OpenCL flags 

– Get information about kernel’s compilation errors 

Create kernel  
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Initialization (2) 

clGetPlatformIDs() 

clGetDeviceIDs() 

clCreateContext() 

clCreateCommandQueue() 

(Open kernels file, read it and format it for OpenCL) 

clCreateProgramWithSource() 

clBuildProgram() 

– Add OpenCL flags 

– Get information about kernel’s compilation errors! 

clCreateKernel() 
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https://www.khronos.org/registry/cl/sdk/1.0/docs/man/xhtml/clGetPlatformIDs.html
https://www.khronos.org/registry/cl/sdk/1.0/docs/man/xhtml/clGetPlatformIDs.html
https://www.khronos.org/registry/cl/sdk/1.0/docs/man/xhtml/clGetDeviceIDs.html
https://www.khronos.org/registry/cl/sdk/1.0/docs/man/xhtml/clGetDeviceIDs.html
https://www.khronos.org/registry/cl/sdk/1.0/docs/man/xhtml/clCreateContext.html
https://www.khronos.org/registry/cl/sdk/1.0/docs/man/xhtml/clCreateContext.html
https://www.khronos.org/registry/cl/sdk/1.0/docs/man/xhtml/clCreateCommandQueue.html
https://www.khronos.org/registry/cl/sdk/1.0/docs/man/xhtml/clCreateCommandQueue.html
https://www.khronos.org/registry/cl/sdk/1.0/docs/man/xhtml/clCreateProgramWithSource.html
https://www.khronos.org/registry/cl/sdk/1.0/docs/man/xhtml/clCreateProgramWithSource.html
https://www.khronos.org/registry/cl/sdk/1.0/docs/man/xhtml/clBuildProgram.html
https://www.khronos.org/registry/cl/sdk/1.0/docs/man/xhtml/clBuildProgram.html
https://www.khronos.org/registry/cl/sdk/1.0/docs/man/xhtml/clCreateKernel.html
https://www.khronos.org/registry/cl/sdk/1.0/docs/man/xhtml/clCreateKernel.html


Finalization 

Release kernel objects 

clReleaseKernel() 

– All of them! 

Release program 

clReleaseProgram() 

Release command queue 

clReleaseCommandQueue() 

Release context 

clReleaseContext() 
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https://www.khronos.org/registry/cl/sdk/1.0/docs/man/xhtml/clReleaseKernel.html
https://www.khronos.org/registry/cl/sdk/1.0/docs/man/xhtml/clReleaseKernel.html
https://www.khronos.org/registry/cl/sdk/1.0/docs/man/xhtml/clReleaseKernel.html
https://www.khronos.org/registry/cl/sdk/1.1/docs/man/xhtml/clReleaseProgram.html
https://www.khronos.org/registry/cl/sdk/1.1/docs/man/xhtml/clReleaseProgram.html
https://www.khronos.org/registry/cl/sdk/1.1/docs/man/xhtml/clReleaseProgram.html
https://www.khronos.org/registry/cl/sdk/1.1/docs/man/xhtml/clReleaseCommandQueue.html
https://www.khronos.org/registry/cl/sdk/1.1/docs/man/xhtml/clReleaseCommandQueue.html
https://www.khronos.org/registry/cl/sdk/1.1/docs/man/xhtml/clReleaseCommandQueue.html
https://www.khronos.org/registry/cl/sdk/1.0/docs/man/xhtml/clReleaseContext.html
https://www.khronos.org/registry/cl/sdk/1.0/docs/man/xhtml/clReleaseContext.html
https://www.khronos.org/registry/cl/sdk/1.0/docs/man/xhtml/clReleaseContext.html


Create kernel in OpenCL (1) 

Should be something with this shape: 
__kernel nameOfKernel (__global const int 

*inputVector, __global int *outputVector)  

{ 

 const int i = get_global_id(0); 

 outputVector[i] = inputVector[i] * 2; 

} 

Like a look 
for (i = 0; i < SIZE; i++) 

 outputVector[i] = inputVector[i] * 2; 

Store it in a “.cl” file 
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Create kernel in OpenCL (2) 

Should be something with this shape: 
__kernel nameOfKernel (__global const int *inputVector, __global       

int *outputVector)  

{ 

 const int i = get_global_id(0); 

 outputVector[i] = inputVector[i] * 2; 

} 

If passing pointers as arguments, declare them with the 
__global prefix 

To allow double precision set this pragma at the start of the 

OpenCL file: 
#pragma OPENCL EXTENSION cl_khr_fp64 : enable 
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Create wrapper function (1) 

Add this in your program where the function that will be 

replaced by the new kernel is 

Wrapper including: 

1. Create memory objects  

2. Create buffers 

3. Prepare arguments 

4. Set number of threads to partition the data  

5. Call the kernel 

6. Wait for the kernel execution to finish 

7. Get the results and mapping them to the CPU 

8. Release memory created by the buffers 
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Create wrapper function (2) 

 
{ 

  int *variable = (int*)malloc(size); 

  // Initialization 

1 cl_mem memoryObject; 

2 memoryObject = clCreateBuffer(); 

3 clSetKernelArg(..., memoryObject); 

4 size_t globalWorkSize[1] = { size }; // #elems to process 

4 size_t localWorkSize[1]  = { 1 };    // #elems per kernel 

5 clEnqueueNDRangeKernel(); 

6 clFinish(); 

7 clEnqueueMapBuffer(); // Get output data (copy from GPU) 

8 clReleaseMemObject(); 

  // Finalization 

} 
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https://www.khronos.org/registry/cl/sdk/1.0/docs/man/xhtml/clCreateBuffer.html
https://www.khronos.org/registry/cl/sdk/1.0/docs/man/xhtml/clCreateBuffer.html
https://www.khronos.org/registry/cl/sdk/1.0/docs/man/xhtml/clSetKernelArg.html
https://www.khronos.org/registry/cl/sdk/1.0/docs/man/xhtml/clEnqueueNDRangeKernel.html
https://www.khronos.org/registry/cl/sdk/1.0/docs/man/xhtml/clFinish.html
https://www.khronos.org/registry/cl/sdk/1.0/docs/man/xhtml/clEnqueueMapBuffer.html
https://www.khronos.org/registry/cl/sdk/1.0/docs/man/xhtml/clReleaseMemObject.html


One example 

/lustre/ICTP/session-3/es2.cpp 
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Exercises 

1. Transform es0.c into an OpenMP program (es1.c) 

2. Run es1 with 1 and 2 threads @ 0.8 GHz and @ 1.6 GHz 

3. Copy files in /lustre/ICTP/session-3/ to your home 

Recognize the part ported to OpenCL in es2.cpp 

4. Compile es2.cpp 

5. Run es2 @ 0.8 GHz and @ 1.6 GHz 

6. Provide a ranking of the execution times of each of the 4 

tests performed 

76 



SESSION 4 

Becoming “energy aware programmers” 
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We have a workload implemented as 

– serial 

– parallel (OpenMP) 

– heterogeneous (OpenCL) 

We know how to run each of these on the Mont-Blanc 

prototype 

– we can submit/cancel/check jobs 

– we can run at different frequencies 

We know how to retrieve power data out of the Mont-Blanc 

prototype 

Is all this true? 

Requirements 
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Exercises 

1. Prepare a single job script that runs the following cases and 

fill the table: 

 

 

 

 

 

 

 

 

2. Plot the power profile of the previous execution (csv) 

– Hint: insert a “srun sleep 10” between consecutive executions 
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1 core 2 cores 
@1.6 

GHz 

@0.8 

GHz 
GPU 

Time to 

solution 

Energy to 

solution 

X X 

X X 

X X 

X X 

X X X 

X X X 



Power profile study 
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30.6 s 

238 J 

1 core @ 

1.6 GHz 

13.5 s 

126 J 

 

2 cores @ 

1.6 GHz 

OpenMP 

52.7 s 

352 J 

1 core @ 

0.8 GHz 

2 cores @ 

0.8 GHz 

OpenMP 

26.4 s 

204 J 
9.1 s 

61 J 

 

1 core @ 

1.6 GHz 

+ 

GPU 

1 core @ 

0.8 GHz 

+ 

GPU 

12.1 s 

90 J 

 
Static Idle Power > 5W 



Mont-Blanc project 
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“The secret is to win going as slowly as possible.” 
Niki Lauda 

MontBlancEU 

@MontBlanc_EU 

montblanc-project.eu 

filippo.mantovani@bsc.es 
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