
www.bsc.es

ARM-based systems and

software stack for HPC

Workshop on Computational Science Infrastructure and

Applications for Academic Development

5 Oct 2015 - Trieste

Filippo Mantovani

With the contribution of:

Dani Ruiz, Luna Backes, Oriol Vilarrubi, Nikola Rajovic

SESSION 1

Introduction to ARM-based

scientific computing

2

Outline

Brief introduction to supercomputing
– For what do we use supercomputers?

– Difference between a PC and a supercomputer

– How to “describe” a supercomputer: metrics

Analyzing history of HPC with different metrics
– From vector CPUs to commodity components

What is commodity nowadays?
– Overview of current trends for mobile CPUs

Prototypes based on mobile embedded technology @ BSC
– Mini-clusters

– The Mont-Blanc prototype

Looking ahead – Mont-Blanc project

3

Outline

Brief introduction to supercomputing
– For what do we use supercomputers?

– Difference between a PC and a supercomputer

– How to “describe” a supercomputer: metrics

Analyzing history of HPC with different metrics
– From vector CPUs to commodity components

What is commodity nowadays?
– Overview of current trends for mobile CPUs

Prototypes based on mobile embedded technology @ BSC
– Mini-clusters

– The Mont-Blanc prototype

Looking ahead – Mont-Blanc project

4

For what do we use supercomputers?

Classical scientific method

– Make experiments that are reproducible

– Collect measurements during the experiments

– Use the measurements for (in)validate the scientific theories

• Hypothesis

• Prediction

• Testing

• Analysis

There are theories where experiments are “difficult”

– Different scale (astronomy)

– Too expensive (zero gravity)

– Wide space phase (drugs docking)

– …

~1.5% experiments

accepted on the ISS!!!

5

Difference between a PC and a supercomputer

Your PC is like a standard car:

• Comfortable

– graphical interface

– screen, mouse, touch pad, …

– printer, speaker

• Versatile

– Can play music

– Can connect to internet

– Can do a bit of scientific computation

• Largely available

– Cheap

– OK, I assume you do not have a Ferrari…

A supercomputer is like a F1 car:

• Oriented to performance

– Execution of floating point operations

is the main target

– No graphical interfaces, mouse, etc…

– Only remotely accessible

• Very specialized

– Small sets of workloads

– Scientific simulations

– Parallel computation

• Produced in few units

– Very expensive

6

How to “describe” a supercomputer

Components

– Hardware

• CPU

• Accelerator (GPU, MIC, FPGA)

• Memory

• Network

• Storage

• Cooling

• Integration

– Software

• Operating System

• Driver

• Libraries

• Compilers

• Cluster management

Metrics/Categories

– Floating point performance

[FLOPS]

– Power efficiency

[FLOPS/W]

– Cost efficiency

[FLOPS/$]

– Others

7

Top500 evolution: pure performance metric

8

The metric of the power efficiency

Reorder of the 500 most powerful supercomputers

Using the same benchmark (HPL)

Sorted by power efficiency

FLOPS/W
FLoating point Operations Per Seconds

per unit of power (Watt)

9

The metric of the cost efficiency

Take the total price of a supercomputer and divide it by its

performance:

FLOPS/$
FLoating point Operations Per Seconds per Price

NOTE:

There is no “official” ranking for this metric

Introduced for this talk: does not pretend to be “smart”

10

Outline

Brief introduction to supercomputing
– For what do we use supercomputers?

– Difference between a PC and a supercomputer

– How to “describe” a supercomputer: metrics

Analyzing history of HPC with different metrics
– From vector CPUs to commodity components

What is commodity nowadays?
– Overview of current trends for mobile CPUs

Prototypes based on mobile embedded technology @ BSC
– Mini-clusters

– The Mont-Blanc prototype

Looking ahead – Mont-Blanc project

11

In the beginning... there were only supercomputers

12

Availability:

Very few of them
(why is called top500?)

Very expensive

Market:

Some units sold

Very few companies
(market mostly “drugged” by states)

Features:

Special purpose hardware

Vector operations/processors

Examples:

Cray-1
1975 - 160 MFLOPS, 80 units, 5-8 M$, 115 kW

Cray X-MP
1982, 800 MFLOPS

Cray-2
1985, 1.9 GFLOPS

Cray Y-MP
1988, 2.6 GFLOPS

12

Then, commodity took over special purpose

13

1997 - ASCI Red, Sandia
- 1 TFLOPS, 9298 cores @ 200 MHz Intel Pentium Pro, 850 kW

- upgraded to Pentium II Xeon in 1999 (3.1 TFLOPS).

2001 - ASCI White, LLNL
- 7.3 TFLOPS, 8192 cores @ 375 MHz, IBM Power 3

- 110 M$

- 3 MW for computational power

- 3 MW for cooling

From vector parallelism to message passing

programming models... 13

And now commodity components drive HPC

RISC processors replaced vectors

x86 processors replaced RISC
Vector processors survive as (widening) SIMD extensions

14

15

Commodity hardware on stage

Microprocessors killed the vector-based supercomputers
They were not faster but they were significantly cheaper and greener

10 microprocessors ≈ 1 vector CPU
SIMD vs. MIMD programming paradigms

15

Commodity hardware + commodity software

MareNostrum

– Nov 2004, #4 Top500

• 20 TFLOPS, Linpack

• 31 TFLOPS, Peak

• 3564 cores

• 1 MW + 1 MW

– IBM PowerPC 970 FX

• Blade enclosure

– Myrinet + 1 GbE network

– SuSe Linux

16 16

Even more commodity with game technology

Los Alamos National Laboratory (USA)

Hybrid architecture

– 1 x AMD dual-core Master blade

– 2 x PowerXCell 8i Worker blade

296 racks

– 6.480 Opteron processors

– 12.960 Cell processors

• 128-bit SIMD

Infiniband interconnect

– 288-port switches

2.35 MWatt

2008: First PFLOPS

supercomputer

IBM RoadRunner

17

2009: 1.75 PFLOPS - Cray Jaguar

Oak Ridge National Laboratory (USA)

230 racks

224.256 AMD Opteron processors

– 6 cores / chip

Cray Seastar2+ interconnect

– 3D-mesh using AMD Hypertransport

7 MWatts

104 M$

18

Commodity market driven (once more, game market)

DOE/SC/Oak Ridge National Laboratory

– Jaguar GPU upgrade

200 racks

224.256 Cray XK7 nodes

– 16-core AMD Opteron

– Nvidia Tesla K20X GPU

8.2 MWatts

97 M$

2012: 17.6 PFLOPS

Cray Titan

19

Outline

Brief introduction to supercomputing
– For what do we use supercomputers?

– Difference between a PC and a supercomputer

– How to “describe” a supercomputer: metrics

Analyzing history of HPC with different metrics
– From vector CPUs to commodity components

What is commodity nowadays?
– Overview of current trends for mobile CPUs

Prototypes based on mobile embedded technology @ BSC
– Mini-clusters

– The Mont-Blanc prototype

Looking ahead – Mont-Blanc project

20

Next commodity in the chain?

21

HPC
Jun 2015: 25 M cores

Server (+3%)
2013: 9.0 M
2014: 9.3 M

PC (-1 %)
2013: 316 M
2014: 314 M

Smartphone (+30%)
2013: 1000 M
2014: 1300 M

In case the history repeats itself, we want to be ready…

22

Performance vs. price

23

Cheap technology evolving fast

24

WARNING: Having an ISA or an IP licensed

does not guarantee that you will have a chip!

2012 2013 2014 2015

GFLOPS
(DP)

200+
Cavium

48xARM-v8 @ 2.5 GHz X-Gene

8xARM-v8 @ 2.4 GHz

Tegra K1
4xA15 @ 2.4 GHz

+ K1 GPU

Tegra 2
2xA9 @ 1 GHz

Tegra 3
4xA9 @ 1.6 GHz

Exynos 5 Dual 5250

2xA15 @ 1.7 GHz

MALI T604 GPU

Exynos 5 Dual 5422

4xA15 @ 2.0 GHz

4xA7 @ 1.4 GHz

MALI T628 GPU

2

10

30

60

100

Mobile

<50 $

<15 W

Server

500+ $

60+ W

Disclaimer: Numbers from public sources

Outline

Brief introduction to supercomputing
– For what do we use supercomputers?

– Difference between a PC and a supercomputer

– How to “describe” a supercomputer: metrics

Analyzing history of HPC with different metrics
– From vector CPUs to commodity components

What is commodity nowadays?
– Overview of current trends for mobile CPUs

Prototypes based on mobile embedded technology @ BSC
– Mini-clusters

– The Mont-Blanc prototype

Looking ahead – Mont-Blanc project

25

Mont-Blanc

protoype:

2015

The BSC ARM-based prototype ecosystem

26

Prototypes are critical to accelerate software development
System software stack + applications

2011

Tibidabo:

ARM multicore

2012

Carma:

ARM +

external

mobile GPU

2013

Pedraforca:

ARM +

HPC GPU

2014

NVIDIA Jetson

ARM 4+1 + K1 GPU

Odroid:

ARM bigLITTLE

In-kernel switcher

Odroid Octa:

ARM bigLITTLE

Heterogeneous

multi-processing

Arndale:

ARM + embedded GPU

Exynos5 Dual SoC

2x cores ARM Cortex-A15

1x GPU ARM Mali-T604

Network

USB3.0 to 1GbE bridge

Memory

4 GB LPDDR3-1600

Local Storage

microSD up to 64 GB

CPU + GPU + Memory + Local Storage + Network

Form factor: 8.5 x 5.6 cm

Mont-Blanc Server-on-Module (SoM)

27

8.5 cm

5
.6

 c
m

Exynos 5 Dual: ARM + GPU platform

Dual-core ARM Cortex-A15 @ 1.7 GHz

– VFP for 64-bit Floating Point

• 6.8 GFLOPS (1 FMA / cycle)

– NEON for 32-bit

floating point SIMD

Quad-core ARM Mali T604

– Compute capable

• OpenCL 1.1

• 68 GFLOPS (SP)

• 25.5 GFLOPS (DP)

Shared memory between

CPU and GPU

28 * Cost efficiency of the chip only

Exynos 5 compute card

2 x Cortex-A15 @ 1.7GHz

1 x Mali T604 GPU

6.8 + 25.5 GFLOPS

15 Watts

2.1 GFLOPS/W

Carrier blade

15 x Compute cards

485 GFLOPS

1 GbE to 10 GbE

300 Watts

1.6 GFLOPS/W

Blade chassis 7U

9 x Carrier blade

135 x Compute cards

4.3 TFLOPS

2.7 kWatts

1.6 GFLOPS/W

Rack

8 BullX chassis

72 Compute blades

1080 Compute cards

2160 CPUs

1080 GPUs

4.3 TB of DRAM

17.2 TB of Flash

35 TFLOPS

24 kWatt

Mont-Blanc
[GFLOPS/W]

Green500
[GFLOPS/W]

Nov 2011 0.15 2.0

Nov 2014 1.5 5.2

The Mont-Blanc prototype

29

~10x

~3.5x

~2.5x ~10x

30

Everything perfect then? Not really…

Only dual core
– Limiting factors for app that needs large number of threads

– Limitation when overlapping computation and communication

32-bit memory controller
– Even if ARM Cortex-A15 offers 40-bit address space

No ECC protection in memory
– But surprisingly enough this is not affecting badly scalability (so far)

No DMA support

No standard server I/O interfaces
– No native Ethernet or PCI Express

No network protocol off-load engine
– TCP/IP, OpenMX, USB protocol stacks run on the CPU

Thermal package not designed for sustained full-power
operation

30

Constantly test

new SoCs

Model new

HPC SoCs

Learn how to

mitigate the effect

of these limitations.

OpenCL driver

Full system software stack for ARM

31

CPU
GPU CPU

CPU

Source files (C, C++, FORTRAN, Python, …)

GNU JDK Mercurium

Compilers

Linux OS / Ubuntu

LAPACK Boost PETSc clFFT

FFTW HDF5 ATLAS clBLAS

Scientific libraries

Scalasca Perf Extrae

Developer tools

SLURM Ganglia NTP

OpenLDAP Nagios Puppet

Cluster management

Nanos++ OpenCL CUDA MPI

Runtime libraries

Lustre NFS Power
monitor DVFS

Hardware support / Storage

Fine grained power

monitoring tool

1

OmpSs programming

model ported to ARM +

OpenCL support +

FORTRAN support

2

Automatically deployed

through Puppet and

distributed through github

3

Tested on commercial

ARM-based platforms

4

Power monitor – HW infrastructure

32

Power monitor – HW / SW interface

Field Programmable Gate Array (FPGA)
– Collects power consumption data from all 15 power measurement /

sample interval: 70ms

Board Management Controller (BMC)
– Collects 1s averaged

data from FPGA

– Stores measurement
samples in FIFO

Mont-Blanc Pusher
– Collects measurement data

from multiple BMCs using
custom IPMI commands

– Forwards data using MQTT
protocol through Collect Agent
into key-value store

33

Power monitor – Block diagram

34

OmpSs programming model

Programmer exposed to a
simple architecture
– Tasks

– Data dependencies

– Target devices (heterogeneity)

Task graph provides look ahead
– Exploit knowledge about the future

– Allows exploration of scheduling policies

It helps handling limitations
 of the hardware
– Heterogeneity

– Multiple address spaces

– Low interconnect bandwidth

– Synchronization

35

Outline

Brief introduction to supercomputing
– For what do we use supercomputers?

– Difference between a PC and a supercomputer

– How to “describe” a supercomputer: metrics

Analyzing history of HPC with different metrics
– From vector CPUs to commodity components

What is commodity nowadays?
– Overview of current trends for mobile CPUs

Prototypes based on mobile embedded technology @ BSC
– Mini-clusters

– The Mont-Blanc prototype

Looking ahead – Mont-Blanc project

36

Is Mont-Blanc just a prototype?

37

Mont-Blanc 3 Mont-Blanc

Mont-Blanc 2

2012 2013 2014 2016 2015

× HPC prototype based

on current mobile

embedded technology

× Port and test real

scientific applications

× Learn from the experience,

plan for future architecture

Extend

× Support to hardware and system software
× OmpSs programming model

× Productivity tools

× New scientific and industrial applications

× Next generation Mont-Blanc architecture

Explore

× ARM 64-bit

× Fault tolerance and resiliency

× Market of ARM-based platforms

for mini-clusters

No, Mont-Blanc is a EU project that leverages the fast growing market of

mobile technology for scientific computation, HPC and non-HPC workload.

Mont-Blanc project

38

“The secret is to win going as slowly as possible.”
Niki Lauda

MontBlancEU

@MontBlanc_EU

montblanc-project.eu

filippo.mantovani@bsc.es

SESSION 2

How to run scientific simulations on the

Mont-Blanc prototype:

from theory to practice

39

Session 2 - Outline

HW resources

– Cores

– GPUs

– Power monitoring

SW resources

– Compiler

– Modules

– Job scheduler

– Power monitoring

Exercises

40

Exynos 5 compute card

2 x Cortex-A15 @ 1.7GHz

1 x Mali T604 GPU

6.8 + 25.5 GFLOPS

15 Watts

2.1 GFLOPS/W

Carrier blade

15 x Compute cards

485 GFLOPS

1 GbE to 10 GbE

300 Watts

1.6 GFLOPS/W

Blade chassis 7U

9 x Carrier blade

135 x Compute cards

4.3 TFLOPS

2.7 kWatts

1.6 GFLOPS/W

The Mont-Blanc prototype

41

Rack

8 BullX chassis

72 Compute blades

1080 Compute cards

2160 CPUs

1080 GPUs

4.3 TB of DRAM

17.2 TB of Flash

Exynos5 Dual SoC

2x cores ARM Cortex-A15

1x GPU ARM Mali-T604

Network

USB3.0 to 1GbE bridge

Memory

4 GB LPDDR3-1600

Local Storage

microSD up to 64 GB

CPU + GPU + Memory + Local Storage + Network

Form factor: 8.5 x 5.6 cm

Mont-Blanc Server-on-Module (SoM)

42

8.5 cm

5
.6

 c
m

Interconnection network

43

40Gb

Samsung

Exynos 5 Dual

2xCortex-A15

Mali-T604

1GbE

USB2.0

USB2.0

1Gb

N
od

e
C

ar
d

B
la

de

N
od

e
C

ar
d

x15

1Gb …

10Gb 10Gb

x36

10Gb 10Gb

…

B
la

de

x36

10Gb 10Gb

B
la

de

10Gb 10Gb

B
la

de

1Gb 1Gb 1Gb

x15 x15 x15

Rack Rack

Cisco Interconnect Switch

4-port 40Gb

 80-port 10Gb

Cisco Interconnect Switch

4-port 40Gb

 80-port 10Gb

Broadcom Switch

2-port 10Gb

16-port 1Gb

Exynos 5 Dual: ARM + embedded GPU platform

Dual-core ARM Cortex-A15 @ 1.7 GHz

– VFP for 64-bit Floating Point

• 6.8 GFLOPS (1 FMA / cycle)

– NEON for 32-bit

floating point SIMD

Quad-core ARM Mali T604

– Compute capable

• OpenCL 1.1

• 68 GFLOPS (SP)

• 25.5 GFLOPS (DP)

Shared memory between

CPU and GPU

– Possibility of avoiding

host-device copies

44

Taking advantage of the resources

By the end of the day we want to be able to run a small program

on each of the following configurations:

1 CPU core (serial code)

2 CPU cores (OpenMP)

1 CPU core + GPU (OpenCL)

For each of these configurations

we will change core frequency

We will study:

Time to solution

Energy to solution

Power profile

45

How important is power?

46

MareNostrum @ BSC

~1.1 PFLOPS in ~1 MWatts

Assuming (non-realistic)
linear scale we need a
system ~1000x larger to
reach one EFLOP.

This means ~1 GWatts for
operating a supercomputer

NOTE: Vandellòs Nuclear
Power Plant in Catalunya:
(144 km) is generating
~1 GWatts

Power monitor – HW / SW interface

Field Programmable Gate Array
(FPGA)
– Collects power consumption data

from all 15 power measurement
sample interval: 70ms

Board Management Controller (BMC)
– Collects 1s averaged

data from FPGA

– Stores measurement
samples in FIFO

Mont-Blanc Pusher
– Collects measurement data

from multiple BMCs using
custom IPMI commands

– Forwards data using MQTT
protocol through Collect Agent
into key-value store

47

Power monitor – Block diagram

48

Session 2 - Outline

HW resources

– Cores

– GPUs

– Power monitoring

SW resources

– Compiler

– Modules

– Job scheduler

– Power monitoring

Runtime libraries… by examples

– Serial code

– OpenMP

– OpenCL

49

Compilers

Our ARM systems uses GNU compiler suite

– gcc

– gfortran

– g++

50

Compilers: optimization flags

-march=arm* - tells the compiler what kind of instructions can

emit when generating assembly code

– Binary portability across different ARM platforms

– -march=armv7-a

– -march=native

-mtune=name - target specific ARM processors

– Tune the code for a specific architecture

– Often used together with -mcpu

– -mtune=cortex-a15

51

Compilers: Floating point - ABI*

-mfloat-abi={soft,softfp,hard}

– soft - library calls for floating point emulation

• Old ARM based SoCs did not include floating-point unit

– softfp - allows the generation of code using the hardware floating-point

instructions, but still uses soft-float calling convention

• Binaries will benefit from dedicated hardware

– hard - allows generation of floating-point instructions and uses FPU-

specific calling convention

• Noticeable improvement in floating-point performance compared to soft

• Cortex-A15 (hands-on) uses hard

* ABI: application binary interface 52

Environment modules

Package which provides dynamic modification of a user’s
environment via module files
– Each module configures the shell for an application

– Support for different versions of a single application

How to use it?
– module avail

– module load ${module_name}/${version}
e.g. module load power_monitor

– module unload ${module_name}/${version}

How it works?
– It modifies environment variables

• PATH

• LD_LIBRARY_PATH

• LD_RUN_PATH

53

Job scheduler: SLURM

SLURM is an open source job scheduler and resource

manager

– Designed to operate in heterogeneous clusters with up to 64k nodes

and >100k processors

– Developed by Lawrence Livermore national Laboratory

– Since 2010, maintained by SchedMD LLC

SLURM features

– Several scheduler policies (FIFO, backfilling, GANG)

– Support for external schedulers (LSF, MOAB/MAUI)

– Uses priorities and limits (queues)

– Support for Heterogeneous systems (GPU)

– DB (MySQL) for accounting management

Most important: it allows you to run on a subset of nodes

of a large clusters without interferences

54

Running/Handling jobs with SLURM

sbatch <myscript.job>

– myscript.job is a shell script with directives (resources, application, etc)

squeue - Job queue control
fmantovani@mb-login-1:~$ squeue

JOBID PARTITION NAME USER ST TIME NODES NODELIST

46 mb myjob fmantovani R 0:24 16 mb-[1-15,30]

47 mb myjob fmantovani R 0:15 20 mb-[31-50]

scancel <job_id> - Delete a job

sinfo - Ciew information about SLURM nodes and partitions
fmantovani@mb-login-1:~$ sinfo

PARTITION AVAIL TIMELIMIT NODES STATE NODELIST

mb* up 30:00 900 idle mb-[1-900]

mb* up 30:00 30 alloc mb-[901-930]

scontrol show job <job_id> - Shows information regarding the

job identified by job_id

55

Your first SLURM job script

#!/bin/bash

#SBATCH --partition=mb

#SBATCH --job-name=ictp-test

#SBATCH --output=ictp_%j.out

#SBATCH --error=ictp_%j.err

#SBATCH --ntasks=1

#SBATCH --nodes=1

#SBATCH --time=00:05:00

#SBATCH --gres=gpu

srun hostname

56

This is important… It requires an estimation

of duration of the job execution: HH:MM:SS

If you want to run on the GPU you need this

srun --cpu-freq=<FREQ-IN-KHz> <app-to-run>

Power measurement acquisition

Data needed:

– WHEN: Interval of time while the job was running $T_START, $T_END

– WHERE: List of nodes where the job was running $NODE

How to get them

– AT RUN TIME:
Inside the job script: date +”%s” and echo $SLURM_JOB_NODELIST

– POST-EXECUTION with SLURM command:
export SLURM_TIME_FORMAT="%s“
sacct -u $USER -o jobid,nodelist,start,end,consumedenergy -j $JOB

Query the power monitoring database

– dcdbquery -h mb.mont.blanc -r ${NODE}-PWR $T_START $T_END

Output is a csv file with the following format

– “ID,Timestamps,PowerData[mW]”

– You can import it in Excel, plot it with Gnuplot, etc.

57

Exercises

1. Submit your first job

– Run ‘hostname’ on 1, 2 and 4 Mont-Blanc nodes

2. Test compiler flags

– Get the code in $HOME/workshop-day6/es1.c and compile it with:

• gcc es1.c -o es1-1 -lm

• gcc -O3 es1.c -o es1-2 -lm

• gcc -O3 -march=native es1.c -o es1-3 -lm

– Write a job script that execute es1-1, es1-2 and es1-3

– Execute the job script and analyze the output

3. Consider one of your previous jobs

– Run it at 0.8GHz and 1.6GHz

– Get energy to solution of it

– Get power data of it

58

SESSION 3

How to use all resources

59

Session 3 - Outline

Runtime libraries… by examples

– Serial code

– OpenMP

– OpenCL

60

Synthetic workload

 for (i = 0; i < arraySize; i++) {

 a2 = cbrt(inputA[i]*inputA[i] / M_PI) ;

 b2 = cbrt(inputB[i]*inputB[i] * M_PI_2) ;

 output[i] = log(sqrt(a2+b2));

 }

You already used it

(without knowing it) in es0…

Classical C implementation

produces a serial code

61

OpenMP

De facto standard API for writing shared memory parallel

applications in C, C++, and Fortran

OpenMP API consists of:

Compiler Directives

Runtime subroutines/functions

Environment variables

62

#include <omp.h>

#pragma omp parallel for private (a2,b2)

 for (i = 0; i < arraySize; i++) {

 a2 = cbrt(inputA[i]*inputA[i] / M_PI) ;

 b2 = cbrt(inputB[i]*inputB[i] * M_PI_2) ;

 output[i] = log(sqrt(a2+b2));

 }

export OMP_NUM_THREADS=2

gcc … -fopenmp …

with OpenMP

CPUs are fine, but how can we take advantage of the GPU?

63

OpenCL

Framework for writing programs across heterogeneous

platforms containing processing elements such as:

– CPUs

– GPUs

– FPGAs

Open standard

Flexible, can be used from many languages such as:

– C++

– Java

– Python

– Perl

Easy to try anywhere, even in a laptop without GPU

64

Memory types

Global memory: __global

To refer to memory objects allocated from the global memory pool.

Local memory: __local

To describe variables that need to be allocated in local memory and

are shared by all work-items of a work-group.

Constant memory: __constant

To describe variables allocated in global memory and which are

accessed inside a kernel(s) as read-only variables. These can be

accessed by all work-items of the kernel during its execution.

Private memory: __private

All variables inside a function or passed into the function as

arguments are in the __private or private address space. Variables

declared as pointers are considered to point to the __private

address space if an address space qualifier is not specified.

65

Basic data structures

66

Variable Type

Platform id cl_platform_id

Device id cl_device_id

Context cl_context

Command Queue cl_command_queue

Program cl_program

Kernels cl_kernel

Steps for porting to OpenCL

Initialization

Finalization

Create kernel in OpenCL

Create wrapper function

Replace function call

67

Initialization (1)

Get the platform IDs and select one

Connect to a compute device of selected platform

Create a compute context for the selected device

Create a command queue for those context and device

Open kernels file, read it and format it for OpenCL

Create the compute program

Build the program executable: at runtime!

– Add OpenCL flags

– Get information about kernel’s compilation errors

Create kernel

68

Initialization (2)

clGetPlatformIDs()

clGetDeviceIDs()

clCreateContext()

clCreateCommandQueue()

(Open kernels file, read it and format it for OpenCL)

clCreateProgramWithSource()

clBuildProgram()

– Add OpenCL flags

– Get information about kernel’s compilation errors!

clCreateKernel()

69

https://www.khronos.org/registry/cl/sdk/1.0/docs/man/xhtml/clGetPlatformIDs.html
https://www.khronos.org/registry/cl/sdk/1.0/docs/man/xhtml/clGetPlatformIDs.html
https://www.khronos.org/registry/cl/sdk/1.0/docs/man/xhtml/clGetDeviceIDs.html
https://www.khronos.org/registry/cl/sdk/1.0/docs/man/xhtml/clGetDeviceIDs.html
https://www.khronos.org/registry/cl/sdk/1.0/docs/man/xhtml/clCreateContext.html
https://www.khronos.org/registry/cl/sdk/1.0/docs/man/xhtml/clCreateContext.html
https://www.khronos.org/registry/cl/sdk/1.0/docs/man/xhtml/clCreateCommandQueue.html
https://www.khronos.org/registry/cl/sdk/1.0/docs/man/xhtml/clCreateCommandQueue.html
https://www.khronos.org/registry/cl/sdk/1.0/docs/man/xhtml/clCreateProgramWithSource.html
https://www.khronos.org/registry/cl/sdk/1.0/docs/man/xhtml/clCreateProgramWithSource.html
https://www.khronos.org/registry/cl/sdk/1.0/docs/man/xhtml/clBuildProgram.html
https://www.khronos.org/registry/cl/sdk/1.0/docs/man/xhtml/clBuildProgram.html
https://www.khronos.org/registry/cl/sdk/1.0/docs/man/xhtml/clCreateKernel.html
https://www.khronos.org/registry/cl/sdk/1.0/docs/man/xhtml/clCreateKernel.html

Finalization

Release kernel objects

clReleaseKernel()

– All of them!

Release program

clReleaseProgram()

Release command queue

clReleaseCommandQueue()

Release context

clReleaseContext()

70

https://www.khronos.org/registry/cl/sdk/1.0/docs/man/xhtml/clReleaseKernel.html
https://www.khronos.org/registry/cl/sdk/1.0/docs/man/xhtml/clReleaseKernel.html
https://www.khronos.org/registry/cl/sdk/1.0/docs/man/xhtml/clReleaseKernel.html
https://www.khronos.org/registry/cl/sdk/1.1/docs/man/xhtml/clReleaseProgram.html
https://www.khronos.org/registry/cl/sdk/1.1/docs/man/xhtml/clReleaseProgram.html
https://www.khronos.org/registry/cl/sdk/1.1/docs/man/xhtml/clReleaseProgram.html
https://www.khronos.org/registry/cl/sdk/1.1/docs/man/xhtml/clReleaseCommandQueue.html
https://www.khronos.org/registry/cl/sdk/1.1/docs/man/xhtml/clReleaseCommandQueue.html
https://www.khronos.org/registry/cl/sdk/1.1/docs/man/xhtml/clReleaseCommandQueue.html
https://www.khronos.org/registry/cl/sdk/1.0/docs/man/xhtml/clReleaseContext.html
https://www.khronos.org/registry/cl/sdk/1.0/docs/man/xhtml/clReleaseContext.html
https://www.khronos.org/registry/cl/sdk/1.0/docs/man/xhtml/clReleaseContext.html

Create kernel in OpenCL (1)

Should be something with this shape:
__kernel nameOfKernel (__global const int

*inputVector, __global int *outputVector)

{

 const int i = get_global_id(0);

 outputVector[i] = inputVector[i] * 2;

}

Like a look
for (i = 0; i < SIZE; i++)

 outputVector[i] = inputVector[i] * 2;

Store it in a “.cl” file

71

Create kernel in OpenCL (2)

Should be something with this shape:
__kernel nameOfKernel (__global const int *inputVector, __global

int *outputVector)

{

 const int i = get_global_id(0);

 outputVector[i] = inputVector[i] * 2;

}

If passing pointers as arguments, declare them with the
__global prefix

To allow double precision set this pragma at the start of the

OpenCL file:
#pragma OPENCL EXTENSION cl_khr_fp64 : enable

72

Create wrapper function (1)

Add this in your program where the function that will be

replaced by the new kernel is

Wrapper including:

1. Create memory objects

2. Create buffers

3. Prepare arguments

4. Set number of threads to partition the data

5. Call the kernel

6. Wait for the kernel execution to finish

7. Get the results and mapping them to the CPU

8. Release memory created by the buffers

73

Create wrapper function (2)

{

 int *variable = (int*)malloc(size);

 // Initialization

1 cl_mem memoryObject;

2 memoryObject = clCreateBuffer();

3 clSetKernelArg(..., memoryObject);

4 size_t globalWorkSize[1] = { size }; // #elems to process

4 size_t localWorkSize[1] = { 1 }; // #elems per kernel

5 clEnqueueNDRangeKernel();

6 clFinish();

7 clEnqueueMapBuffer(); // Get output data (copy from GPU)

8 clReleaseMemObject();

 // Finalization

}

74

https://www.khronos.org/registry/cl/sdk/1.0/docs/man/xhtml/clCreateBuffer.html
https://www.khronos.org/registry/cl/sdk/1.0/docs/man/xhtml/clCreateBuffer.html
https://www.khronos.org/registry/cl/sdk/1.0/docs/man/xhtml/clSetKernelArg.html
https://www.khronos.org/registry/cl/sdk/1.0/docs/man/xhtml/clEnqueueNDRangeKernel.html
https://www.khronos.org/registry/cl/sdk/1.0/docs/man/xhtml/clFinish.html
https://www.khronos.org/registry/cl/sdk/1.0/docs/man/xhtml/clEnqueueMapBuffer.html
https://www.khronos.org/registry/cl/sdk/1.0/docs/man/xhtml/clReleaseMemObject.html

One example

/lustre/ICTP/session-3/es2.cpp

75

Exercises

1. Transform es0.c into an OpenMP program (es1.c)

2. Run es1 with 1 and 2 threads @ 0.8 GHz and @ 1.6 GHz

3. Copy files in /lustre/ICTP/session-3/ to your home

Recognize the part ported to OpenCL in es2.cpp

4. Compile es2.cpp

5. Run es2 @ 0.8 GHz and @ 1.6 GHz

6. Provide a ranking of the execution times of each of the 4

tests performed

76

SESSION 4

Becoming “energy aware programmers”

77

We have a workload implemented as

– serial

– parallel (OpenMP)

– heterogeneous (OpenCL)

We know how to run each of these on the Mont-Blanc

prototype

– we can submit/cancel/check jobs

– we can run at different frequencies

We know how to retrieve power data out of the Mont-Blanc

prototype

Is all this true?

Requirements

78

Exercises

1. Prepare a single job script that runs the following cases and

fill the table:

2. Plot the power profile of the previous execution (csv)

– Hint: insert a “srun sleep 10” between consecutive executions

79

1 core 2 cores
@1.6

GHz

@0.8

GHz
GPU

Time to

solution

Energy to

solution

X X

X X

X X

X X

X X X

X X X

Power profile study

80

30.6 s

238 J

1 core @

1.6 GHz

13.5 s

126 J

2 cores @

1.6 GHz

OpenMP

52.7 s

352 J

1 core @

0.8 GHz

2 cores @

0.8 GHz

OpenMP

26.4 s

204 J
9.1 s

61 J

1 core @

1.6 GHz

+

GPU

1 core @

0.8 GHz

+

GPU

12.1 s

90 J

Static Idle Power > 5W

Mont-Blanc project

81

“The secret is to win going as slowly as possible.”
Niki Lauda

MontBlancEU

@MontBlanc_EU

montblanc-project.eu

filippo.mantovani@bsc.es

82

