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1. Introduction 
During the training sessions on the afternoons of Wednesday 5th and Thursday 6th November, we will use the 
Rglimclim software package to build and evaluate a stochastic weather generator for daily temperature and 
precipitation in northern Iberia. Rglimclim is a powerful and flexible weather generation package that runs 
within the R statistical software environment. A full introduction to Rglimclim will be provided during the 
training sessions. To ensure that delegates are able to make the most of the sessions however, they are 
requested to install all necessary software on their laptops prior to arrival: instructions are provided in Sections 
4 and 7 below. Delegates who already have R installed should ensure that they also have RStudio (see 
Section 4.2) and that they have installed the necessary add-on packages (Section 7). Delegates who are 
unfamiliar with R should also work through the preparatory exercises in Sections 5 and 6. These exercises do 
not have any direct connection to statistical downscaling or to stochastic weather generation: their purpose is 
merely to provide an introduction to the “look and feel” of R.  

2. What is R? 
R describes itself as “a free software environment for statistical computing and graphics”. It is built around the 
award-winning S language, which was developed in the late 1980s; and it is the computing environment of 
choice for much modern statistical work. Initially its use was confined largely to the academic community, but 
it is now used much more widely. Its popularity stems from a number of attractive features: 
 
• It is free.  
• It has many “inbuilt'' statistical commands (e.g. to fit linear and nonlinear models, carry out classical 

statistical tests, do time-series analysis, classification, clustering, ...) and graphical techniques: its 
capabilities equal or exceed those of all commercial statistics packages. 

• It provides an environment for users to define their own new procedures, and hence offers great flexibility. 
• The Comprehensive R Archive Network (http://cran.r-project.org/mirrors.html) distributes user-contributed 

extensions, or add-on “packages” that extend the basic capabilities of the environment. There are literally 
hundreds of these, all freely available and contributed by researchers all over the world. Thus, tested 
implementations of the latest statistical methods are freely and widely available to anybody with an internet 
connection.  

• It has excellent facilities for producing a wide range of publication-quality graphics; and graphical displays 
are easily customized so that the user has full control over their appearance. 

• It runs on almost all modern operating systems. In this introduction, it is assumed that most delegates use 
Microsoft Windows, and the instructions below are tailored to the Windows implementation. However, the 
differences for Linux or Macintosh operating systems are largely cosmetic.  

3. RStudio 
Although R itself provides a limited user interface (on Windows and Macintosh operating systems, at least), its 
inbuilt editor is rather basic. Moreover, it can be difficult to keep track of your files, your graphics windows, the 
objects in your workspace (see Section 5.3 below) and so forth. The RStudio package addresses these 
issues: it describes itself as “an integrated development environment (IDE) for R [including] a console, syntax-
highlighting editor that supports direct code execution, as well as tools for plotting, history, debugging and 
workspace management”. In these training sessions, we will use RStudio to make our lives easier. 
Instructions for installing both R and RStudio are in the next section. Install R first, and then RStudio! 

4. Obtaining the software and setting up 

4.1 Obtaining R 
The R homepage is at http://www.r-project.org/. To install the software, follow the CRAN link on the left-hand 
side of the page. This takes you to a list of mirror sites: click the link for a site near you and follow the 
appropriate links to download an appropriate binary installation file for your operating system (at the time of 
writing, these binary files are for R version 3.1.1). Note to Windows users: at this stage, you need only the 
installation file for the R base package – we will install additional contributed packages later (see Section 7).  

When you have downloaded the installation file, run it to install the software onto your computer. You may 
need administrative privileges to do this. You should probably accept the default settings during the 
installation process, unless you know what you’re doing. Installation under some Linux systems requires 
careful reading of the instructions!  

http://cran.r-project.org/mirrors.html
http://www.r-project.org/
http://cran.r-project.org/mirrors.html
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4.2 Obtaining RStudio 
Having installed R, you should install RStudio from http://www.rstudio.com/products/rstudio/download/. 
Download and install the appropriate version for your operating system – the installers can be found under the 
heading “Installers for ALL Platforms”.  

4.3 Setting yourself up 
You may download a zip archive RglimclimPrep.zip from the workshop web page at http://www.value-
cost.eu/node/1143 (the same address that you used to download the present document). This archive 
contains data files and sample R code for the self-study exercise below. Create a separate folder / directory in 
which to store these files, and unpack the zip archive into this folder. We will return to this later.  

You will need to install some additional software as well. However, you need to know something about how R 
works before doing this. We will start by learning some key concepts therefore, and install the additional 
software later (Section 7). 

5. Getting started 
The instructions here are mostly for the Windows operating system; details for other operating systems are 
similar. In the Windows version of RStudio, commands appear in blue; the results of those commands are in 
black; and information and error messages appear in red. This convention is followed throughout the 
remainder of this document.  

So: if you are using Windows, and your installation was successful, you will have an RStudio icon  on 
your desktop.1 Double-click this icon to start the program, and you get something like this: 
 

 
 
The left-hand subwindow is entitled Console: this is where most of the action takes place. We will look at the 
other subwindows later. When you start R, the console contains some text followed by a prompt 

> 

which indicates that R is waiting for a command from you.  

5.1 Getting out 
The most important thing to know about any software package is how to get out of it. To quit RStudio, type 
q() (including the brackets) at the prompt, and press the <Return> key: 

> q() 

                                                      
1 Similar icons appear on other operating systems, e.g. on the Launcher in Ubuntu if you’re using the default 
Unity desktop.  

http://www.rstudio.com/products/rstudio/download/
http://www.value-cost.eu/node/1143
http://www.value-cost.eu/node/1143
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If it asks you Save workspace image to ~/.RData? [y/n/c]:, type n (for “No”) and press <Return>.  

Now start up RStudio again, and we will look at some very basic features of the R environment.  

5.2 Simple manipulations; numbers and vectors 
Elementary R commands are either expressions or assignments. 
 
• An expression is a command to display the result of a calculation, which is not retained in the computer's 

memory. 
• An assignment passes the result of a calculation to the name of an R object which is stored (but the result 

will not necessarily be printed out on the screen). 
 
Example. Here is an expression, which displays the result of the calculation 5 + 2.6: 

> 5 + 2.6 
[1] 7.6 

Don’t worry about the [1] for the moment! Here is the same calculation, but with the result assigned to an 
object called x: 

> x <- 5 + 2.6 
> x 
[1] 7.6 

Note the use of the assignment operator <- above. This reads as an arrow pointing to the object x – you can 
interpret the command x <- 5 + 2.6 as “take the value of the expression 5 + 2.6, and store it in x”. 

5.3 Stored objects 
All assigned R objects are automatically stored by the computer in your R workspace, until you finish your R 
session. When you finish (by typing q()),R gives you the option to save your workspace for future use. If you 
always save it, all objects will remain on disk until overwritten or explicitly deleted by the command rm() (for 
remove). This means that, after a while, your R files can take up a lot of disk space: periodically therefore, you 
may need to delete those which are no longer required. RStudio displays the objects in your workspace in the 
top right-hand subwindow. You should see that the object x is listed there now, together with its value of 7.6:  
 

 
 
Another way to see what variables are stored is to type ls() (for list) or objects(). 
 
Example:  
 
> x <- 8 
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> x 
[1] 8 
> y <- 3.1415 
> ls() 
[1] "x" "y" 
> rm(x) 
> objects() 
[1] "y" 

Note that R is case-sensitive: x and X are different objects. Take care when typing, therefore! 

5.4 Syntax for R commands 
Notice that all R commands, e.g. ls(),rm(), are followed by parentheses which may or may not contain 
additional information (arguments). Writing a command name without parentheses simply makes R write out 
the underlying code. 
 
Example:  
 
> rm(y) 
> rm 
function (..., list = character(0), pos = -1, envir = as.environment(pos),  
    inherits = FALSE)  
{ 
    dots <- match.call(expand.dots = FALSE)$... 
    if (length(dots) && !all(sapply(dots, function(x) is.symbol(x) ||  
        is.character(x))))  
        stop("... must contain names or character strings") 
    names <- sapply(dots, as.character) 
    if (length(names) == 0)  
        names <- character(0) 
    list <- .Primitive("c")(list, names) 
    .Internal(remove(list, envir, inherits)) 
} 
<bytecode: 0x08e2f8c4> 
<environment: namespace:base> 

Don’t worry about the details here – the point is that if you omit the parentheses, R simply tells you how the 
rm() command is defined. 

5.5 Creating vectors in R 
The command c() (for combine) creates R vectors. 
 
Example: 
> x <- c(2.3,1.2,2.4) 
> x 
[1] 2.3 1.2 2.4  
> y <- c(x,9.0,x) 
> y 
[1] 2.3 1.2 2.4 9.0 2.3 1.2 2.4 

If you make a mistake while typing, you can use the up arrow key ↑ to recall your previous commands and 
correct them – you don't have to type everything again from the beginning. 

Sometimes we want to create sequences. The expression 1:n denotes the sequence 1,2, …, n-1,n. More 
generally, seq(i,j,k) is a sequence from i to j in steps of k. 
 
Example: 
> z <- 1:50 
> z 
 [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 
[28] 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 
> seq(3,10,2) 
[1] 3 5 7 9 
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We can now clarify the meaning of the [1] in the output for many of the earlier examples: it indicates that the 
object being printed is a vector, and that the current line of output starts with its first element. In the first part of 
the example above, the vector is too long to fit on one line, and we see that the second line starts with the 28th 
element of the vector (which is obvious in this particular case, but not in general).  

Notice also that the “Environment” tab in the top right-hand subwindow in RStudio now contains more details 
of the current objects in the workspace, for example num [1:3] 2.3 1.2 2.4 alongside x. This tells us 
something about what kind of object x is – in this case, a numeric vector indexed from 1 to 3 (because it has 
three elements). 

To extract specific elements of a vector, we can use square brackets [].  
 
Example: 
 
> z <- c(3,1,4,1,5,9,2,7) 
> z[3] 
[1] 4 
> z[c(3,2,5)] 
[1] 4 1 5 

The last command above uses a vector c(3,2,5) within the square brackets [], to extract respectively the 
third, second and fifth elements of z.  

5.6 R vector arithmetic 
R uses the symbols +, -, * and / for the basic arithmetic operations, and ^ for exponentiation (raising to a 
power). Vector operations are done element by element, with recycling of short vectors if required. 
 
Example:  
 
> x <- c(2,3) 
> y <- c(1,4,5,6) 
> 2*x 
[1] 4 6 
> 2 + x 
[1] 4 5 
> y^2 
[1] 1 16 25 36 
> x + y 
[1] 3 7 7 9 
> x*y 
[1] 2 12 10 18 

The last two examples above illustrate the “recycling” convention: x has two elements but y has four, so the 
third and fourth elements of y are paired with the first and second elements of x respectively.  

It is important to understand the order in which R does things. For the standard arithmetic operations +, -, *, 
/ and ^, R follows the usual rules: ^ is done first, then * and /, and finally + and -.  
 
Example: 
 
> 4+2*3 
[1] 10 
> 2^2*3 
[1] 12 

Note, however, that it is difficult to read these commands. In general, it is good practice to make explicit the 
order in which you want the calculations to be performed, using brackets: 
 
> 4+(2*3) 
[1] 10 
> (4+2)*3 
[1] 18 
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Not only does this make the commands easier to read; it also guarantees that R is not making any decisions 
for you. Much of the time, its decisions are very intuitive. However, this is not always the case and it is always 
best to err on the side of caution. Look at this: 

> x <- 3 
> 1:x 
[1] 1 2 3 
> 1:x+2 
[1] 3 4 5 

You might expect the last command to produce the sequence 1 to x+2 i.e. 1,2,3,4,5. However, in R the 
sequence operator : is executed before any of the arithmetic operators. So R interprets the last command 
above as (1:x)+2. To count from 1 to x + 2, we must go 

> 1:(x+2) 
[1] 1 2 3 4 5 

5.7 Current working directory 
In some of the examples below, we will use R to read data and commands from files. Whenever you ask R to 
access information from a file, by default it assumes that the file is located in the current working directory. 
Similarly, if you ask R to save anything then it will usually be written to the current working directory. To find 
out what this is, use the getwd() command: 

> getwd() 
[1] "C:/Users/richard/Documents" 

You will get a different result here, depending on your system setup.2 You should usually change the current 
working directory to the place where you have saved the files for your current project. The easiest way to do 
this in RStudio is via the Set Working Directory option on the Session drop-down menu. This allows 
you to browse your directories and select (by clicking) the directory you want. Do this now, and change to the 
directory into which you unpacked RglimclimPrep.zip in Section 4.3. Check that R can see all of the files 
that you unpacked – the contents of the directory are displayed in the “Files” tab in the lower right-hand 
subwindow. The first few files in the list should be galapagos.dat, R_SelfStudy.r and 
R_SelfStudy_Clean.r. If you cannot see these and other files, then EITHER you have not changed to the 
correct working directory, OR you did not unpack RglimclimPrep.zip correctly in Section 4.3. 

5.8 Getting unstuck 
R and RStudio are usually very stable (although RStudio occasionally hangs in Ubuntu). However, any 
software package can occasionally have problems, and all package users can do silly things. Sometimes 
therefore, you may need to intervene to stop a particular operation that seems to be taking too long or was 

started in error. If you’re lucky, this can be done by clicking on the “STOP” icon  at the top of the console 
subwindow. If this doesn’t work (or if the “STOP” icon doesn’t appear), try the Restart R option on the 
Session drop-down menu – or, if all else fails, the Terminate R option. If you use either of the last two 
options, you will need to reset the current working directory afterwards.  

6. Self-study exercise: analysis of Galapagos tortoise data 
We can now demonstrate some of the basic graphical and analytical capabilities of R. Please note: you 
should not expect to remember everything instantly. The purpose of this exercise is merely to give you a feel 
for how the system works, so that you can recognize the key concepts when we start using Rglimclim.  

For this demonstration, we will analyse some data on tortoise species in the Galapagos islands: these data 
can be found in file galapagos.dat, which was unpacked from RglimclimPrep.zip in Section 4.3. To 
view this file, set the working directory appropriately (if you have just worked through Section 5.7, you should 
already be in the right place) and click on galapagos.dat in the “Files” tab of the lower right-hand 
subwindow (see screenshot below):  

                                                      
2 Windows users: notice that R uses a forward slash / as a directory separator, whereas Windows usually 
uses a backslash \. Yours is not to reason why … 
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When you click on the filename, a new subwindow opens displaying the file contents. The first few rows look 
like this: 

Species Endemics Area Elevation Nearest Scruz Adjacent 
Baltra 58 23 25.09 346 0.6 0.6 1.84 
Bartolome 31 21 1.24 109 0.6 26.3 572.33 
Caldwell 3 3 0.21 114 2.8 58.7 0.78 
Champion 25 9 0.1 46 1.9 47.4 0.18 

The data file contains data on seven variables for each of 30 islands. The first row contains the variable 
names; each remaining row contains the name of an island, along with the values of the seven variables for 
that island. Fields are separated by spaces and are not aligned in columns. We will find out what the variables 
represent in a moment. First, however: we don’t need to keep the data file on display, so close it by clicking 
the “x” symbol in its tab: 

 
 

To analyse these data, we will use a script containing a sequence of R commands, and which was also 
provided in RglimclimPrep.zip. This script is called R_SelfStudy.r. To open it, click its name in the 
“Files” tab. Do not open R_SelfStudy_Clean.r yet – we’ll look at that later! 
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The script opens in a new subwindow again. The first few lines look like this:  

####################################################################### 
####################################################################### 
####################################################################### 
######                                                           ###### 
######             3rd VALUE training workshop, 2014             ###### 
######                                                           ###### 
######         Preparatory material for Rglimclim training:      ###### 
######                     self-study exercises                  ###### 
######                                                           ###### 
######              Analysis of Galapagos Islands data           ###### 
######                                                           ###### 
######  This script contains the commands used in a short        ###### 
######  (and non-definitive) analysis of the dataset on          ###### 
######  Galapagos islands tortoises that is considered in        ###### 
######                                                           ###### 
######  Faraway, J. (2005). Linear Models with R. Chapman &      ###### 
######   Hall / CRC Press, Boca Raton.                           ###### 
 

Notice the use of the “hash” sign #. This indicates a comment in R code: R will ignore everything after a hash 
sign on any line of code.3 Comments are used to make code easier to read.  

Read through the comments at the top of the script – they tell you what the data represent. Ignore the part 
about the faraway package – add-on packages are discussed in Section 7 below. 

6.1 Reading data from a file 
After the script header, you find the following: 

## 
## First step: read the data and have a look at them 
## 
tortoise.data <- read.table("galapagos.dat",header=TRUE) 

The first three lines are comments. The last reads data from the file galapagos.dat and assigns it the the 
object tortoise.data. To run this command, copy and paste it to the console prompt. The easiest way to 
do this is to position the cursor anywhere on the line, and either press <Ctrl-R> or click the “Run” button at 
the top of the subwindow: 
 

 
 
                                                      
3 Unless the hash is obviously part of a character string and should be interpreted as such. 
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> tortoise.data <- read.table("galapagos.dat",header=TRUE) 

Hopefully, you won’t see anything when you do this. If you see the following:  

Error in file(file, "rt") : cannot open the connection 
In addition: Warning message: 
In file(file, "rt") : 
  cannot open file 'galapagos.dat': No such file or directory 

it means that R could not find the data file galapagos.dat. The reason is probably EITHER that you have 
not changed to the correct working directory (see Section 5.7), OR that you did not unpack 
RglimclimPrep.zip correctly in Section 4.3. 

The read.table() command is often the easiest way to read data into R. It can be used whenever your 
data are provided in an ASCII file, in fields separated by spaces. The fields may be aligned in columns, but 
(as here) this is not necessary – all that is required is that each row of the data file contains the same number 
of entries. The argument header=TRUE tells R that the first row of the data file contains variable names rather 
than data values.  

To see what the above command has done, copy and paste the next command to the prompt: 

> tortoise.data 
             Species Endemics    Area Elevation Nearest Scruz Adjacent 
Baltra            58       23   25.09       346     0.6   0.6     1.84 
Bartolome         31       21    1.24       109     0.6  26.3   572.33 
Caldwell           3        3    0.21       114     2.8  58.7     0.78 
Champion          25        9    0.10        46     1.9  47.4     0.18 
[output truncated] 

R has read the data and stored it in a data frame, which can be thought of as the R equivalent of a 
spreadsheet: each column contains the values of a single variable. In this case, the variables are all numeric, 
and R has named them using the information from the first row of the data file. Notice, however, that there is 
no variable name for the first column in the output above: this column contains the row names of the data 
frame, which in this case are the names of the individual Galapagos islands. R figured this out from the format 
of the data file: there are seven variable names in the header row, but eight fields in each subsequent line. It 
is not necessary to include row names in data files: if they are omitted (so that the number of variable names 
is the same as the number of fields in each subsequent line, R will just number the rows. Later, we will see 
one way in which row names can be used. 

6.2 Examining data frames 
For this particular example, it is feasible (although not particularly informative!) to look at tortoise.data on 
screen. For larger data frames, perhaps containing thousands or even hundreds of thousands of rows, this is 
not feasible. One way to get an idea of the structure of a data frame is to use the head() command, which 
just prints the first few rows. The next script command illustrates this: 

> head(tortoise.data) 
             Species Endemics  Area Elevation Nearest Scruz Adjacent 
Baltra            58       23 25.09       346     0.6   0.6     1.84 
Bartolome         31       21  1.24       109     0.6  26.3   572.33 
Caldwell           3        3  0.21       114     2.8  58.7     0.78 
Champion          25        9  0.10        46     1.9  47.4     0.18 
Coamano            2        1  0.05        77     1.9   1.9   903.82 
Daphne.Major      18       11  0.34       119     8.0   8.0     1.84 

By looking at the first few lines of the data frame, you can see what variables are present and how they are 
recorded. In particular, you can see whether they are numeric – as here – or not. Nonetheless, sometimes 
you may only want to know what variables are present in the data frame. If variable names have been 
defined, you can use the names() command to discover this: 

> names(tortoise.data) 
[1] "Species"   "Endemics"  "Area"      "Elevation" "Nearest"   "Scruz"     
[7] "Adjacent" 

Notice the numbers [1] and [7] here: the variable names are a character vector i.e. a vector whose elements 
are character strings. Whenever R prints character strings, they are enclosed in quotation marks “…”.  

Usually of course, it is not adequate merely to know what variables are present. Before doing anything 
complicated , we might want to compute some simple summary statistics: 
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> summary(tortoise.data) 
    Species          Endemics          Area             Elevation       
 Min.   :  2.00   Min.   : 0.00   Min.   :   0.0100   Min.   :  25.00   
 1st Qu.: 13.00   1st Qu.: 7.25   1st Qu.:   0.2575   1st Qu.:  97.75   
 Median : 42.00   Median :18.00   Median :   2.5900   Median : 192.00   
 Mean   : 85.23   Mean   :26.10   Mean   : 261.7087   Mean   : 368.03   
 3rd Qu.: 96.00   3rd Qu.:32.25   3rd Qu.:  59.2375   3rd Qu.: 435.25   
 Max.   :444.00   Max.   :95.00   Max.   :4669.3200   Max.   :1707.00   
    Nearest          Scruz           Adjacent       
 Min.   : 0.20   Min.   :  0.00   Min.   :   0.03   
 1st Qu.: 0.80   1st Qu.: 11.03   1st Qu.:   0.52   
 Median : 3.05   Median : 46.65   Median :   2.59   
 Mean   :10.06   Mean   : 56.98   Mean   : 261.10   
 3rd Qu.:10.03   3rd Qu.: 81.08   3rd Qu.:  59.24   
 Max.   :47.40   Max.   :290.20   Max.   :4669.32 

This summarizes each variable in the data frame. In this particular case, the variables are all quantitative (i.e. 
numeric): R recognizes this and produces an appropriate set of summary statistics. If some of the variables 
had been categorical, R would have reported a frequency table for these variables (i.e. a tally indicating how 
often each category occurred).  

Of course, summary statistics on their own do not tell the whole story. We might in addition want to look at 
relationships between the variables. The next command in the script provides an easy way of doing this: 

> plot(tortoise.data) 

In response to this, R produces a scatterplot matrix showing the relationship between each pair of variables in 
the data frame. This matrix is displayed in the “Plots” tab of the bottom-right subwindow in RStudio.4 In this 
case, the variables are all numeric so the scatterplots are easily interpretable. The scatterplot matrix shows, 
for example, that the variables Species and Endemics are strongly related – this is not surprising, given that 
the former variable represents the total number of tortoise species on an island and the latter represents the 
number of these species that are endemic.  

Plotting the data enables us to visualize potential relationships between variables. It also provides an 
opportunity to identify data values that seem out of line with the majority: such values may have a large effect 
on the subsequent analysis, or may suggest that there is some error in the recorded data. In this particular 
example, there is a clear outlier on all of the plots involving Area, as well as those involving Adjacent. 
Recall (from the comments at the top of the script file) that both of these variables represent the areas of 
islands. The outlying data point thus represents an unusually large island. The plots indicate that the area of 
this island exceeds 3000km2, whereas all of the remaining islands have areas well below 3000km2. On the 
basis of this, we can find out which is the outlying island as follows: 

> big.island <- (tortoise.data$Area > 3000) 
> big.island 
 [1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE 
[13] FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE 
[25] FALSE FALSE FALSE FALSE FALSE FALSE 
> tortoise.data[big.island,]# It's Isabela, with an area of 4669.32km^2 
        Species Endemics    Area Elevation Nearest Scruz Adjacent 
Isabela     347       89 4669.32      1707     0.7  28.1   634.49 

There are only three commands here, but several new concepts: 

• The first command assigns the result of (tortoise.data$Area > 3000) to an object big.island. 
Note firstly the use of the dollar symbol $, which is used to extract a named component of an object. In this 
case, tortoise.data$Area extracts the Area column of tortoise.data. Note secondly that an 
expression of this form evaluates to either TRUE (in this case, if the island area exceeds 3000km2) or 
FALSE (otherwise). Expressions of this form are called logical expressions. Thus, the object big.island 
is a vector, the same length as tortoise.data$Area, containing the value TRUE for islands larger than 
3000km2 and FALSE for the remaining islands. The output from the big.island command shows that 
there is only one island with an area greater than 3000km2, and that this is the 16th island in the data set.  

• In the final command, we have used square brackets [] again. In Section 5.5, we used square brackets to 
extract specific elements of a vector. Of course, a data frame consists of both rows and columns: in the 

                                                      
4 If the subwindow is too small to see the plots clearly, click the “Zoom” button to view the graphics in an 
external window – which can be closed again when you’re done.  
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square bracket notation, these are referenced as [row(s), column(s)]. If either index is omitted in an 
expression, all available values are used. Thus, the expression tortoise.data[big.island,] extracts 
the rows of tortoise.data corresponding to big.island, and all columns. 

There is another difference between the use of square brackets here and in Section 5.5. There, the 
elements of interest were defined using their numeric positions. Here however, they are defined using a 
logical vector with TRUE elements in the positions required, and FALSE elements elsewhere. Both methods 
are valid. Thus, instead of typing tortoise.data[big.island,], we could have typed 
tortoise.data[16,]: the first version translates as “all rows of tortoise.data for which 
big.island is TRUE”, and the second as “the 16th row of tortoise.data”.  

We have thus seen three different ways of extracting subsets of an object: 

- By using square brackets [] with numeric vectors to select the components of interest – as in 
z[c(3,2,5)] or tortoise.data[16,]. 

- By using square brackets [] with logical vectors to select the components of interest – as in 
tortoise.data[big.island,]. 

- By using the dollar sign $ to extract named components of an object – as in tortoise.data$Area.  

• The final command above contains a comment at the end of the line: # It's Isabela, with an area 
of 4669.32km^2. A comment does not have to occupy a line by itself: sometimes, as here, it is 
convenient to add a comment at the end of a line of code. 

6.3 Customizing graphics 
The plot() command above is a very convenient way to examine relationships between variables quickly. 
However, to produce publication-quality graphics it is necessary to exercise finer control over the output. We 
will illustrate this by plotting the relationship between Elevation and Endemics – from the earlier scatterplot 
matrix, it looks as though there may be a roughly linear relationship here. The next line in the script produces 
a plot involving just these two variables: 

> plot(tortoise.data$Elevation,tortoise.data$Endemics) 

Remember that the dollar sign $ is used to extract named components of an object: thus the arguments to this 
plot() command are vectors containing the Elevation and Endemics columns of tortoise.data. If the 
first two arguments to the plot() command are vectors of equal length, R produces a scatterplot with the 
first and second vectors on the horizontal and vertical axes respectively. Notice that plot() behaves 
differently here from previously: when we typed plot(tortoise.data) we obtained a scatterplot matrix. 
This is because plot() is a generic function with different methods for different classes of object. In plain 
English: R is intelligent enough to realize that plotting a data frame is different from plotting two vectors, and to 
act appropriately.  

To control the appearance of the plot, we can proceed as follows: 

> plot(tortoise.data$Elevation,tortoise.data$Endemics, 
+      xlab="Elevation (m)",ylab="No. of species", 
+      main="Variation of endemic species numbers with\nisland elevation", 
+      pch=15,col="blue") 
> box(lwd=2)# Nice frame round the plot 

The first command here is plot() again, but this time with many more arguments. These are as follows: 

• xlab, ylab: the labels for the x- and y-axes of the plot.  
• main: title for the plot. Notice the use of the special code \n in the middle of the title: this is a new line 

character, and forces R to write the remainder of the title on a new line (look at the output to see this).  
• pch: the plotting character to use. Plotting character 15 is a filled square. If you want to see what other 

plotting characters are available, type help(points) at the R prompt. Notice that the help page opens in 
the “Help” tab of the lower right-hand subwindow. 

• col: the colour to use for the points. 

The final command draws a box around the plot, using lines that are twice as wide as the default (lwd=2). 
This can be helpful for reproduction when graphics are submitted for publication or in conference 
presentations.  

Of course, beautiful graphics are of little use unless they can be saved to a file. Fortunately, R can export 
graphics to many different file formats. The next few lines in the script illustrate this:  
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> dev.copy(pdf,"endemics.pdf",width=6,height=6) 
pdf  
  4  
> dev.off() 
RStudioGD  
        2 

The first of these commands translates as “copy the current contents of the graphics window to a PDF file 
called endemics.pdf, which is 6 inches wide and 6 inches high”. R responds with a note to say that graphics 
output is currently being written to device 4, which is a pdf device. The second command – dev.off() – tells 
R to stop copying and close the PDF file. R responds to say that graphics output has reverted to device 2 
which is a RStudioGD device (i.e. the “RStudio Graphics Device”, which is the “Plots” panel in the lower-right). 
After running both of these commands, you should find the file endemics.pdf in your current working 
directory (verify this by clicking the “Files” tab). 

As indicated above, R is able to export graphics to a wide variety of file formats. The script contains 
comments to show how to create JPEG and encapsulated postscript (EPS) files (publishers often require 
graphics files in EPS format). To try out these commands, uncomment them and then run them in the usual 
way. If you want to know what other graphics formats are available, type help(Devices) at the R prompt.  

6.4 Fitting statistical models 
Given the apparent linear relationship between the elevation (i.e. maximum altitude) of an island and the 
number of endemic species found on it, it may be of interest to quantify this relationship by calculating the 
least-squares regression line. The command for this is lm(), which stands for “linear model”: 

> endemics.model <- lm(Endemics ~ Elevation, data=tortoise.data) 

The first argument to the lm() command here is Endemics ~ Elevation. This is an example of a model 
formula: the special character ~ means “depends on”. The second argument to the lm() command tells R 
that the variables in the model formula can be found in the tortoise.data data frame. Thus the code 
above means “Fit a linear model in which Endemics depends upon Elevation, where these variables can 
be found in tortoise.data; and store the result in the object endemics.model”. 

To view this result, type endemics.model: 

> endemics.model 
 
Call: 
lm(formula = Endemics ~ Elevation, data = tortoise.data) 
 
Coefficients: 
(Intercept)    Elevation   
     7.1827       0.0514   

The output contains the original call to the lm() function, along with the coefficients of the fitted regression 
line which is y = 7.1827 + 0.0514x, where y and x denote respectively the number of endemic species and the 
elevation. On its own however, this is not very informative. We might, for example, want to test for an 
association between Elevation and Endemics or to calculate the proportion of variance explained by the 
model (otherwise known as the coefficient of determination, or R2): 

> summary(endemics.model) 
 
[output truncated] 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept) 7.182682   4.138088   1.736   0.0936 .   
Elevation   0.051401   0.007465   6.886 1.75e-07 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
 
Residual standard error: 16.95 on 28 degrees of freedom 
Multiple R-squared: 0.6287,     Adjusted R-squared: 0.6154  
F-statistic: 47.41 on 1 and 28 DF,  p-value: 1.751e-07  

The result is very similar to regression model output for other statistical software packages: it contains a table 
giving the estimated regression coefficients along with standard errors, test statistics and p-values for testing 
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the null hypothesis that the true value of each coefficient is zero. The tiny p-value for Elevation suggests 
that at any reasonable level of significance we should reject this null hypothesis: we conclude that there is a 
genuine relationship between the elevation of an island and the number of endemic species found there 
(remember, however, that we cannot draw any conclusions about cause and effect from this!). The output also 
gives the multiple and adjusted R2 statistics.  

This is the second time that we have used the summary() command. The first time was to summarise the 
variables in tortoise.data (Section 6.2). This time however, it produces completely different output. Like 
plot(), summary() is a generic function, and it does different things for different classes of object. We will 
see this several times when we start to use Rglimclim.  

You may want to add the fitted regression line to the scatterplot produced earlier. Your graphics window 
should still contain this scatterplot (if not, repeat the earlier commands to recreate it). To add the regression 
line: 

> abline(endemics.model, col="red", lty=2, lwd=2) 

The command abline() adds the line with equation y = a + bx to the current plot. There are many ways of 
specifying the values of a and b – to see all of them, type help(abline) at the R prompt. In this particular 
case, R extracts the appropriate coefficients automatically from the endemics.model object, recognizing 
that this corresponds to a linear regression model.  

The remaining arguments to the abline() command above are optional, and have been included to improve 
the appearance of the plot. They are as follows: 

• col: the colour of the line (recall that the same argument was used in the earlier plot() command to 
control the colour of the points). 

• lty: the line type. A value of 1 corresponds to a solid line, a value of 2 to a dashed line, a value of 3 to a 
dotted line and so on.  

• lwd: the line width. As with the earlier box() command, we use a double-width line for emphasis.  

Finally: all statistical models are based on assumptions, and the validity of these assumptions should be 
checked before drawing conclusions from the model (strictly speaking therefore, we should have checked the 
assumptions before testing hypotheses about the relationship between Elevation and Endemics!). For 
most statistical models, a wide variety of graphical diagnostics are available for checking assumptions. The 
plot() command can be used again: 

> par(mfrow=c(2,2)) 
> plot(endemics.model) 
> par(mfrow=c(1,1)) 

The first command here tells R to split the graphics window into two rows and two columns: this is because 
the subsequent plot() command produces four plots in total, and it is helpful to see them all at the same 
time. The final command ensures that any subsequent plots will occupy the entire graphics window again.  

For linear models, the plot() command produces a different result again (recall that we have already used it 
to plot a data frame and to produce a scatterplot of two variables). Here, the plots produced are as follows: 

• A plot of the residuals against the fitted values. The fitted values are the predicted numbers of endemic 
species according to the fitted model; the residuals are the differences between the observed and predicted 
numbers. The idea is that if the model is an adequate fit, the residuals should be randomly scattered 
around zero and should not show any obvious relationship with the fitted values. The red curve on the plot 
is a nonparametric regression curve and is intended to indicate any potential relationships that may be 
present. Notice also that the three points with the largest (positive or negative) residuals are labeled on the 
plot: the labels are taken from the row names of tortoise.data (see Section 6.1). In this case, the row 
names are the names of the individual islands, so we can see immediately the islands for which the model 
fit is potentially problematic.  

• A normal quantile-quantile (Q-Q) plot of the residuals. This is intended to assess the assumption that the 
residuals from the linear model are normally distributed: if so, the points on this plot should fall on a straight 
line. Here, there are apparent departures from linearity at each end of the plot, suggesting that the 
normality assumption may not be satisfied. Once again, the worst offenders are labeled: this enables us to 
investigate these data points in more detail and, potentially, to identify ways of improving the model.  

• A scale-location plot, which is intended to check the assumption that the residuals have a common 
variance. In this example, it seems that the variability of the residuals increases with the fitted values, so 
that this assumption is not satisfied.  

• A plot of residuals versus leverage, with contours of Cook’s distance superimposed.  
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If you haven’t seen these kinds of plot before, don’t worry – they aren’t critical, and we will see similar ideas 
when we start to use Rglimclim. The main message for the moment is that it is easy to check modelling 
assumptions using R! 

There are a few other commands at the end of the script – don’t run these yet, because they require an 
additional package (see Section 7 below).  

6.5 Running commands in batch mode 
So far, we have used R by typing (or copying and pasting) individual commands to the prompt; and the output 
in the Console subwindow consists of commands interspersed with the results that they produce. For more 
extensive analyses however, this is slightly cumbersome. Fortunately, R also offers the opportunity to run 
commands in batch mode and to write the results to a file if required. The main things to know about this are: 

• To run commands in batch mode, you need to save them in a script file and to run this using the source() 
command.  

• To get output to appear when commands are run in batch mode, you need to use the cat() and print() 
commands.  

• To write output to a file instead of to the console, use the sink() command; and to return output to the 
console afterwards, use the sink() command again.  

The script R_SelfStudy_Clean.r illustrates this. It is a slightly amended version of R_SelfStudy.r. 
Open the new script and read through it, noticing the use of sink(), cat() and print(). Then run it by 
clicking the “Source” button at the top of its subwindow. You will not see anything in the console, although you 
will see new plots in the graphics window. After the script has finished however, you will find a file called 
Galapagos_Results.txt in your working directory: click on this in the “Files” tab to view the results.  

Hopefully, this example has given you a sense of how R works and what it can do. However, it has not been 
possible to explain everything here. If you have any questions, please note them down – they can be 
addressed during the training sessions.  

7. Additional R packages 
As explained previously, one of the key features of R is that many add-on packages are available. One way to 
see them is to browse the “Packages” pages on the CRAN (see Section 4.1). The number of available 
packages is quite bewildering, however! Fortunately, if you know which packages you want, and if they are 
available from CRAN, it is very easy to locate and install them providing you have an internet connection.  

Using RStudio, the easiest way to install a small number of additional packages is via the Install 
Packages option in the drop-down Tools menu. If you have a large number of packages to install however, 
it is usually easier to use the install.packages() command at the R prompt. There are a few packages to 
install here, so we’ll use a script that uses install.packages() to automate the procedure – details are 
below.  

Not all packages are available from CRAN, however. For example, Rglimclim is not on CRAN. Instead, it is 
available from http://www.homepages.ucl.ac.uk/~ucakarc/work/glimclim.html. To make things easier however, 
the installation files Rglimclim_1.2-4.zip (for Windows) and Rglimclim_1.2-4.tar.gz (for other 
operating systems) are provided in RglimclimPrep.zip: you should find them in the folder you created in 
Section 4.3 (if not, you made a mistake either creating the folder or unpacking the zip archive!). The 
installation script contains the necessary code to install it automatically for you. 

To install the required add-on packages now, proceed as follows: 
 

1. Ensure that your computer is connected to the internet. 
2. Start up RStudio, if it is not already running; and ensure that you have sufficient administrative privileges 

to install software from within it.5  
3. Change to the directory where you unpacked the RglimclimPrep.zip (see Section 5.7 for details on 

how to do this) 
4. Type source("RglimclimSetup.r") at the console prompt, and press <Return>. 

 
This should produce the following result (if you do not see this, read on for possible explanations!): 
                                                      
5 If you are using Windows, you may need to right-click the icon and select “Run as administrator”. Under 
Linux, you may need to start RStudio from a terminal, using a command such as sudo rstudio & (note 
that this is case-sensitive) to ensure that you have the necessary permissions.  
 

http://www.homepages.ucl.ac.uk/~ucakarc/work/glimclim.html
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Installing Rglimclim ... 
Installing package into ‘C:/Users/richard/Documents/R/win-library/3.0’ 
(as ‘lib’ is unspecified) 
package ‘Rglimclim’ successfully unpacked and MD5 sums checked 
Installing packages from CRAN ... 
[output truncated] 

If you see something like this: 

> source("RglimclimSetup.r") 
Error in file(filename, "r", encoding = encoding) :  
  cannot open the connection 
In addition: Warning message: 
In file(filename, "r", encoding = encoding) : 
cannot open file 'RglimclimSetup.r': No such file or directory 

it means that R could not find the file RglimclimSetup.r. The reason is probably EITHER that you have not 
changed to the correct working directory (see Section 5.7), OR that you did not unpack 
RglimclimPrep.zip correctly in Section 4.3.6 

To check that Rglimclim has installed properly now, from the RStudio console type 

> library(Rglimclim) 

If you see the message 

Use 'help("Rglimclim-package")' to get started 

then you are ready to come to Trieste. Well done!  

8. Postscript: the case study area 
In case you feel disappointed that this introduction has not covered anything that is directly relevant to 
downscaling or to the development of stochastic weather generators: you might be interested at least to see 
the area that we will study during the Rglimclim practical sessions. There are a few commands at the end of 
the R_SelfStudy.r script (see Section 6) to produce a map of the area. By now you should know how to 
start up RStudio, set the working directory correctly (if you’re not already there), open the script and scroll to 
the bottom.  

We’re going to use a command from the lattice graphics package, to produce a map of the area with an 
altitude scale (there are other commands that can be used to produce maps, without loading additional 
packages; but they don’t automatically produce altitude scales). The first step is to load the lattice 
package: 

> library(lattice) 

If you already had R on your computer before installing the lattice package, you may get a warning 
message such as package ‘lattice’ was built under R version 3.0.3 (or something). This 
means that the version of R on your machine is slightly out of date. This is not usually a problem, providing 
your R installation is not too old.  

The next step is to read the data that will be used to produce the map. These data are provided in file 
Topography.rda, which is a binary file in “R data format”.  

> load(“Topography.rda”) 

If you look at the “Environment” tab in the top right-hand subwindow now, you should see an object called 
topo.data which is described as a “Large matrix (273600 elements, 2.1Mb)”; also some vectors 
topo.lats and topo.longs. The topo.data matrix contains a gridded representation of the topography 
of the area, at roughly 1x1km2 resolution; the data are altitudes in hundreds of metres, and are from the 
GTOPO30 Digital Elevation Model at http://webmap.ornl.gov/wcsdown/dataset.jsp?ds_id=10003. The 
topo.lats and topo.longs vectors merely contain the latitude and longitude coordinates corresponding 
to each dimension of the matrix.  

                                                      
6 Users of other operating systems may have more difficulties here – for example, Linux users may need to 
type sudo apt-get install tcl8.5-dev and sudo apt-get install tk8.5-dev from a terminal 
before attempting the installation above. If you’re using Linux, I assume you know what you’re doing … 

http://webmap.ornl.gov/wcsdown/dataset.jsp?ds_id=10003
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The study region is not even approximately the same shape as the RStudio graphics window. To produce a 
reasonable map, therefore, it is helpful to open a new graphics device with specified dimensions: 

> x11(width=8,height=4) 

The width and height arguments here are in inches (an inch is about 25mm). Now you can produce your 
map: 

> filled.contour(topo.longs,topo.lats,100*topo.data, 
+  color.palette=terrain.colors, 
+  plot.title= 
+   title("Topographic map of northern Iberia", 
+    xlab="Longitude (degrees)", 
+    ylab="Latitude (degrees)"), 
+   key.title=title("Altitude (m)",cex.main=0.8)) 

The syntax for this command is quite complicated; however, hopefully you can look at the resulting plot and 
figure out what the various options are doing. If you want to know more about this command, type 
help(filled.contour). For most graphics commands in R, the syntax is simpler than this: the lattice 
package is not very intuitive. The results are impressive, however. 

You have already seen (Section 6.3) the use of the dev.copy() command to export graphics to a file. We’ll 
finish by creating a PDF file containing the map:  

> dev.copy(pdf,"NorthernIberiaMap.pdf",width=8,height=4) 
pdf  
  4  
> dev.off() 
RStudioGD  
        2 

Notice that by specifying the same width and height (8 inches and 4 inches) that were used to open the 
graphics window, you can guarantee that the resulting graphics file will look exactly the same as it did on 
screen. This can be very useful.  
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